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Titanosaurian sauropod dinosaurs were the most diverse and abundant large-bodied herbivores in the
southern continents during the final 30 million years of the Mesozoic Era. Several titanosaur species are
regarded as the most massive land-living animals yet discovered; nevertheless, nearly all of these giant
titanosaurs are known only from very incomplete fossils, hindering a detailed understanding of their
anatomy. Here we describe a new and gigantic titanosaur, Dreadnoughtus schrani, from Upper
Cretaceous sediments in southern Patagonia, Argentina. Represented by approximately 70% of the
postcranial skeleton, plus craniodental remains, Dreadnoughtus is the most complete giant titanosaur
yet discovered, and provides new insight into the morphology and evolutionary history of these colossal
animals. Furthermore, despite its estimated mass of about 59.3 metric tons, the bone histology of the
Dreadnoughtus type specimen reveals that this individual was still growing at the time of

death.

he sauropod dinosaur clade Titanosauria includes the most massive terrestrial animals yet discovered".

Nevertheless, with the exception of Futalognkosaurus—known from much of the vertebral column and

pelvis’—all truly gigantic titanosaurs (sensu Sander et al.%; i.e., those with an adult body mass exceeding 40
metric tons) are represented by very fragmentary fossils®”. The incomplete understanding of the anatomies of
colossal titanosaurs has frustrated attempts to characterize important aspects of their evolutionary history and
palaeobiology. For example, it is presently uncertain whether extreme gigantism evolved multiple times or only
once within Titanosauria®. Furthermore, it is not even clear how large the largest titanosaurs were, with different
studies yielding widely divergent estimates of body dimensions™*".

Here we report a new and gigantic titanosaur from Upper Cretaceous (Campanian-Maastrichtian'*'%; ~84-
66 Ma'®) rocks exposed in south-western Patagonia, Argentina (Supplementary Fig. 1), some 1,200 km from the
best-known South American dinosaur localities, which occur in northern Patagonia'. Represented by all major
skeletal regions (see Supplementary Information), Dreadnoughtus schrani nov. gen. nov. sp. (Figs. 1, 2,
Supplementary Figs. 2-18) offers new insight into the skeletal anatomy, bone histology, phylogenetic relation-
ships (Fig. 3, Supplementary Figs. 19, 20), and body shape and mass of an enormous titanosaur. Most bones are
exquisitely preserved, with details such as muscle scars and other osteological correlates of soft-tissues clearly
discernible.

| 4:6196 | DOI: 10.1038/srep06196 1


mailto:lacovara@drexel.edu
mailto:lacovara@drexel.edu

Figure 1 | Axial skeletal anatomy of the gigantic titanosaur Dreadnoughtus schrani. Posterior (~9™) cervical vertebra in (A) left lateral, (B) right lateral,
(C) posterior, and (D) ventral views. (E) Anterior (~4") dorsal vertebra in right lateral view. Middle (~6") dorsal vertebra in (F) left lateral and (G)
anterior views. (H) Posterior (~7") dorsal vertebra in right lateral view. Posterior (~8") dorsal vertebra in (I) left lateral and (J) posterior views.

(K) Partial sacrum in ventral view. (L) Biconvex first caudal vertebra in posterior view. (M) First 32 caudal vertebrae and 18 haemal arches in left lateral
view (positions of first 21 caudal vertebrae and haemal arches 4 to 18 known with certainty). All depicted elements definitively pertain to the holotype
(MPM-PV 1156), with the possible exceptions of the dorsal vertebrae in (E) and (H) to (J), which belong to either the holotype or the paratype (MPM-PV
3546). Abbreviations: acpl, anterior centroparapophyseal lamina; apcdl, accessory posterior centrodiapophyseal lamina; a-spdl, anterior ramus of
spinodiapophyseal lamina; cdf, centrodiapophyseal fossa; cpol, centropostzygapophyseal lamina; dp, diapophysis; nc, neural canal; ns, neural spine;
pacdf, parapophyseal centrodiapophyseal fossa; pcdl, posterior centrodiapophyseal lamina; pedl-f posterior centrodiapophyseal fossa, pcpl, posterior
centroparapophyseal lamina; pe, paddle-shaped distal expansion; pocdf, postzygapophyseal centrodiapophyseal fossa; podl, postzygodiapophyseal
lamina; posdf, postzygapophyseal spinodiapophyseal fossa; poz, postzygapophysis; pp, parapophysis; ppdl, paradiapophyseal lamina; prdl,
prezygodiapophyseal lamina; prsdf, prezygapophyseal spinodiapophyseal fossa; prsl, prespinal lamina; prz, prezygapophysis; p-spdl, posterior ramus of
spinodiapophyseal lamina; s6, sixth sacral vertebra; sdf, spinodiapophyseal fossa; spdl, spinodiapophyseal lamina; spof, spinopostzygapophyseal fossa;
spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina; sr, sacral rib; sy, sacricostal yoke; tp, transverse process; tpol,
intrapostzygapophyseal lamina; tprl, intraprezygapophyseal lamina. Scale bars equal 50 cm.

Results

Systematic palaeontology. Dinosauria Owen 1842. Saurischia See-
ley 1887. Sauropoda Marsh 1878. Titanosauriformes Salgado, Coria,
and Calvo 1997. Titanosauria Bonaparte and Coria 1993. Dread-
noughtus schrani nov. gen. nov. sp.

Etymology. Dreadnought (Old English), fearing nothing; genus
name alludes to the gigantic body size of the taxon (which pre-

sumably rendered healthy adult individuals nearly impervious to
attack) and the predominant battleships of the early 20" century
(two of which, ARA [Armada de la Republica Argentina] Riva-
davia and ARA Moreno, were part of the Argentinean navy).
Species name honours the American entrepreneur Adam Schran
for his support of this research. Holotype. MPM-PV 1156, a par-
tially articulated partial skeleton that comprises a maxilla fragment, a
tooth, a posterior cervical vertebra, cervical ribs, multiple dorsal

| 4:6196 | DOI: 10.1038/srep06196

2



Figure 2 | Reconstruction, appendicular skeletal anatomy, and bone histology of Dreadnoughtus schrani. (A) Reconstructed skeleton and body
silhouette in left lateral view with preserved elements in white. (B) Left scapula and coracoid in lateral view. (C) Sternal plates in ventral view. (D) Left
forelimb (metacarpus reconstructed) in anterior view. (E) Left pelvis (ilium partially reconstructed) in lateral view. (F) Left hind limb in anterior view
(metatarsus and pes partially reconstructed and reversed from right). (G) Transverse ground thin section of humeral shaft, showing heavy secondary
remodelling (arrow indicates extent of dense osteon formation), a thick layer of well-vascularized fibrolamellar bone, and a lack of lines of arrested growth
or an external fundamental system. Abbreviations: acet, acetabulum; acf, acromial fossa; acp, acromial process; acr, acromial ridge; ast, astragalus; cc,
cnemial crest; cof, coracoid foramen; cor, coracoid; dpc, deltopectoral crest; fem, femur; thd, femoral head; fib, fibula; flb, fibrolamellar bone; gl, glenoid;
hum, humerus; il, ilium; ilp, iliac peduncle; isc, ischium; isp, ischial peduncle; It, lateral trochanter; mtl, metatarsal I; mtIl, metatarsal II; of, obturator
foramen; pop, postacetabular process; prp, preacetabular process; pu, pedal ungual; pub, pubis; pup, pubic peduncle; rac, radial condyle; rad, radius; sc,
scapula; scb, scapular blade; sr, secondary remodelling; tib, tibia; tpp, tuberosity on preacetabular process; ul, ulna; ulc, ulnar condyle. Scale bars equal
1 min (A) to (F) and 1 mm in (G). (Skeletal reconstruction by L. Wright, with G. Schultz.)

vertebrae and ribs, the sacrum, 32 caudal vertebrae and 18 haemal
arches (including an articulated sequence of 17 anterior and middle
caudal vertebrae and their corresponding haemal arches), the left
pectoral girdle and forelimb minus the manus, both sternal plates,
all pelvic elements, the left hind limb lacking the pes, and the right
tibia, metatarsals I and II, and pedal ungual I. Paratype. MPM-PV
3546, a partially articulated postcranial skeleton of a slightly smaller
individual that includes a partial anterior cervical vertebra, multiple
dorsal vertebrae and ribs, the sacrum, seven caudal vertebrae and five
haemal arches, all pelvic elements, and the left femur. The specimens
are catalogued in the collection of the Museo Padre Molina (MPM;
Rio Gallegos, Argentina; see Supplementary Information for other
institutional abbreviations). Type locality. Cerro Fortaleza, east bank
of the Rio La Leona, Santa Cruz Province, south-western Patagonia,
Argentina (coordinates on file at MPM). Horizon. Cerro Fortaleza
Formation, approximately 350 m below the top of the formation.
Age. Late Cretaceous, Campanian-Maastrichtian, ~84-66 Ma.

Diagnosis. A gigantic titanosaurian sauropod diagnosed by the
following autapomorphies (* = character observable in both
known specimens): (1) first caudal centrum with axial ventral keel;

(2) anterior caudal neural spines with extensively subdivided
pneumatocoel between spinoprezygapophyseal and spinopostzyga-
pophyseal laminae*; (3) anterior caudal neural spines with hyper-
trophied prespinal and postspinal laminae*; (4) middle caudal neural
spines with triangular anterodorsal process that extends well beyond
anterior margin of centrum®; (5) anterior haemal arches with
paddle-shaped distal expansion®*; (6) posterodorsally—anteroven-
trally oriented ridge on medial surface of anterior end of scapular
blade; (7) posteromedial surface of radius concave in proximal view;
(8) distal end of radius nearly square, with subequal anteroposterior
and mediolateral dimensions. (See Supplementary Information for
detailed comparisons with Puertasaurus reuili, a fragmentary,
similarly-sized titanosaur from the same lithostratigraphic formation).

Description. The Dreadnoughtus maxilla houses elongate, peg-like
teeth typical of derived titanosaurians (Supplementary Fig. 2).
Cervical vertebrae have opisthocoelous centra that lack lateral
pneumatic fossae (‘pleurocoels’), though they are internally com-
prised of highly pneumatized camellate tissue. The centrum of a
nearly complete posterior (approximately the ninth) cervical verte-
bra of the Dreadnoughtus holotype (MPM-PV 1156) (Fig. 1A-D,
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Figure 3 | Time-calibrated hypothesis of phylogenetic relationships of Dreadnoughtus schrani (Consistency Index = 0.42, Retention Index = 0.76,
Rescaled Consistency Index = 0.32) with relevant clades labelled. Geologic timescale after Walker et al.'’; stratigraphic ranges (indicated by thick black
bars) for most taxa follow Wilson®’, D’Emic*’, and Mannion et al.*. In instances where these sources disagree on the age of a particular taxon, we follow
the most recent source that includes that taxon. Additional age sources are as follows: Dreadnoughtus''®; Epachthosaurus’®; Futalognkosaurus'’;

Mendozasaurus®®; Neuquensaurus'”. Numbers beside nodes are Bremer decay indices. Abbreviations: Br, Brachiosauridae; Lo, Lognkosauria; Mya, million
years ago. See Supplementary Fig. 20 for an unabridged version of this tree that presents the entire topology and also includes bootstrap and jack-knife

support values.

Supplementary Figs. 3, 10) is 1.13 m in length (Supplementary Table
1). This vertebra exhibits a tall, laterally compressed neural spine that
differs dramatically from the transversely expanded spine of the
single known posterior cervical vertebra of Puertasaurus. (See
Supplementary Information for further osteological information.)
The Dreadnoughtus dorsal series is represented by eight partial to
nearly complete vertebrae that pertain to the anterior, middle, and
posterior parts of the sequence (Fig. 1E-], Supplementary Figs. 5, 11,
12). All dorsal centra are camellate and strongly opisthocoelous with
well-developed lateral pneumatic fossae. The anterior (~4™) dorsal
vertebra (Fig. 1E, Supplementary Figs. 5A, 11) is nearly complete but
strongly dorsoventrally compressed. The neural arch is anteriorly
placed, and short, thin spinoprezygapophyseal laminae merge with
the much more robust prespinal lamina just dorsal to the base of the
neural spine. Middle dorsal vertebrae (Fig. 1F-G, Supplementary Fig.
5B-C) closely resemble those of Rapetosaurus'® in anterior view, with
prominent spinopostzygapophyseal laminae and a correspondingly
expanded neural spine apex. Posterior dorsal vertebrae (Fig. 1H-],
Supplementary Figs. 5D-F, 12) have elevated, posterodorsally
inclined neural spines, the lateral surfaces of which possess spino-

diapophyseal laminae that are divided into paired rami by a deep
coel. Along with the spinopostzygapophyseal laminae, the posterior
rami of the spinodiapophyseal laminae terminate dorsally in rugose
projections that are oval in posterolateral view (Fig. 1I, Supple-
mentary Fig. 5E). On the transverse process, immediately dorsome-
dial to the diapophyseal facet, there is a distinct, slightly raised area
ornamented by mediolaterally-oriented striations. A comparable
condition is reported in the lithostrotian titanosaurs Epachtho-
saurus, Lirainosaurus, Saltasaurus, Trigonosaurus, and other som-
phospondylans, and has been hypothesized to indicate soft-tissue
attachment at this site'>*’. Dorsal ribs are plank-like, especially dist-
ally, and have proximal pneumatocoels (Supplementary Fig. 6A).
The six sacral centra are firmly coossified and lack external pneu-
matic fossae (Fig. 1K, Supplementary Fig. 13). Sacral centra and ribs
exhibit camellate internal tissue structure.

The caudal series of Dreadnoughtus is nearly completely pre-
served, lacking only a few of the posterior-most vertebrae (Fig. 1M,
Supplementary Figs. 6B-G, 7, 14). The first 21 caudal vertebrae of
MPM-PV 1156 are known from a closely associated sequence; caudal
vertebrae 5 to 21 and their associated haemal arches were recovered
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Table 1 | Selected maximum measurements (cm) of appendicular elements of Dreadnoughtus schrani compared to other titanosauriform
sauropods, including other gigantic taxa. Non-itanosaurian titanosauriforms  (Brachiosaurus, Giraffatitan, Ligabuesaurus,
Ruyangosaurus) are listed first and arranged alphabetically; remaining taxa are titanosaurs, listed alphabetically. Measurements in
bold are the longest known within Titanosauriformes for each element in question. * = estimate; — = element not preserved; NR =
measurement not reported. Anatomical abbreviations: C<l, mid-posterior cervical centrum length; C-cw, mid-posterior cervical centrum
width; Fe, femur; Fi, fibula; Hu, humerus; II, ilium; Ra, radius; Sc, scapula; Ti, tibia; Ul, ulna. Institutional abbreviations see
Supplementary Information

Taxon Specimen C-d C-ew Sc Hu ul Ra Source
Brachiosaurus FMNH P 25107 - - - 204 - - 71

Giraffatitan HMN SiI 87 44 NR 213 130 124 40
Ligabuesaurus MCF-PVPH-233 - 35 144 149 - - 72
Ruyangosaurus 41HI1I-0002 18 51=* - - - - 73
'Antarctosaurus’ MLP 26-316 - - 5

giganteus

Alamosaurus USNM 15560 148 136 89 80 65
Argentinosaurus MCF-PVPH-1 - - - - 6
Argyrosaurus MLP 77-V-29-1 - 137 97 86 37
Diamantinasaurus AQODF 603 - - 140* 112 73 - 42
Dreadnoughtus MPM-PV 1156 113 42 174 160 101 95 This paper

Elaltitan PVL 4628 - - 149 130 88 73 37
Epachthosaurus UNPSJB-PV 920 - - NR 94 61 55 61
Futalognkosaurus MUCPv-323 NR 40* - - - - 3
Opisthocoelicaudia ~ ZPAL MgD-/48 - - 118 100 78 64 35

Paralititan CGM 81119 - - NR 169 - - 7
Rapetosaurus FMNH PR 2209 26 10 54 52 37 37 18

Taxon Specimen Il Pu Fe Ti Fi Source
Brachiosaurus FMNH P 25107 124 - 203 - - 71

Giraffatitan HMN SiI - 121 NR NR 119 40
Ligabuesaurus MCF-PVPH-233 - 166* 104 108 72
Ruyangosaurus 41HI1-0002 - 200* 127 - 73
'Antarctosaurus’ MLP 26-316 145 231 - 5

giganteus

Alamosaurus USNM 15560 - 65
Argentinosaurus MCF-PVPH-1 155 6

Argyrosaurus MLP 77-V-29-1 - - - - - 37
Diamantinasaurus AODF 603 87 110 133 80 71%* 42
Dreadnoughtus MPMPV 1156 131 126 191 120 103 This paper

Elaltitan PVL 4628 - 113 115% NR 65* 37
Epachthosaurus UNPSJB-PV 920 77 67 110 70 73 61
Futalognkosaurus MUCPv-323 NR 137 - - - 3
Opisthocoelicaudia ~ ZPAL MgD-/48 114 112 140 81 83 35

Paralititan CGM 81119 - - - - - 7

Rapetosaurus FMNH PR 2209 NR 48 66 50 47 18

in articulation (Fig. 1M, Supplementary Figs. 6B-E, 7, 14). The first
caudal centrum (Fig. 1L-M, Supplementary Figs. 7, 14) has a well-
developed ventral keel, a character that, among titanosaurs, is other-
wise known only in a more posteriorly-positioned anterior caudal
vertebra of the possible saltasaurine Bonatitan®'. This Dreadnou-
ghtus vertebra is biconvex, as in derived titanosaurs such as
Alamosaurus, Baurutitan, and Pellegrinisaurus®*, and has elongate,
plate-like transverse processes reminiscent of those of Saltasaurus™.
The complete left transverse process curves posteriorly before arcing
anterolaterally, and a prominent roughened tubercle adorns its pos-
terodorsal edge. Digital reconstruction (Supplementary Fig. 9)
demonstrates that these processes would not have contacted the ilia
in life, and as such that this biconvex vertebra is not an unfused
seventh sacral vertebra as in the saltasaurine Neuquensaurus™?>.
All remaining caudal vertebrae have strongly procoelous centra that
lack pneumatic fossae (Fig. 1M, Supplementary Fig. 6B, D, F,
Supplementary Figs. 7, 14). Anterior caudal centra are pierced by
small vascular foramina ventral to the transverse processes, as in
Adamantisaurus®, Alamosaurus®, Andesaurus®, Paralititan’,
Pellegrinisaurus®, and other sauropods®. Their neural spines are
distinctive in possessing hypertrophied prespinal and postspinal
laminae (presumably indicative of robust interspinal ligament

attachments) and deep, extensively subdivided pneumatocoels
between the spinoprezygapophyseal and spinopostzygapophyseal
laminae (occupying the position of the conjoined postzygapophyseal
spinodiapophyseal and postzygapophyseal centrodiapophyseal fos-
sae of Wilson et al.>"). Comparable but less complex coels occur on
the first caudal neural spine in Alamosaurus and Opisthocoelicau-
dia” and in some anterior caudal spines of Adamantisaurus®,
Bonatitan®', Dongyangosaurus®, and Mendozasaurus®. Middle cau-
dal vertebrae have elongate prezygapophyses, as in Aeolosaurus spp.®
and closely related taxa, and neural spines with triangular antero-
dorsal processes; the latter are especially pronounced on caudal ver-
tebrae 11 to 13, extending well beyond the anterior margins of the
centra (Fig. 1M, Supplementary Figs. 7, 14). Among titanosaurs, the
anterior haemal arches of Dreadnoughtus are unique in possessing
paddle-shaped anteroposterior expansions of the distal shaft
(Fig. 1M, Supplementary Figs. 7, 14).

The appendicular skeleton of Dreadnoughtus is completely repre-
sented except for the manus and part of the pes (Fig. 2A, Supple-
mentary Fig. 9). The 1.74 m scapula of MPM-PV 1156 (Fig. 2B,
Supplementary Fig. 15) is the longest yet reported for any titanosaur
(Table 1). An oblique, textured ridge, probably indicative of muscle
attachment, extends anteroventrally—posterodorsally along the med-
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ial face of the blade, posterior to the scar for the M. subscapularis. The
coracoid (Fig. 2B, Supplementary Fig. 15) is rectangular with a robust
infraglenoid lip, as in many macronarians. The sternal plates are
mediolaterally wide with rounded anterolateral and posterolateral
ends (Fig. 2C, Supplementary Fig. 15). The massive 1.60 m left
humerus of MPM-PV 1156 (Fig. 2D, Supplementary Fig. 16) is
greater in minimum shaft circumference (785 mm) than that of all
other described titanosaurs, and is longer than all other titanosaur
humeri except that of Paralititan (Table 1). Its proximal articulation
is convex in anterior view, lacking the proximolateral expansion
characteristic of saltasaurids®. The deltopectoral crest is prominent,
less medially twisted (after accounting for taphonomic distortion)
than in Mendozasaurus® and Opisthocoelicaudia®, and extends dist-
ally to about one-third the length of the humerus. It remains narrow
in width and has a prominent lateral bulge along its distolateral edge,
a feature shared with Alamosaurus, Jainosaurus, Qingxiusaurus, and
Saltasaurus®®. The ulna (Fig. 2D, Supplementary Fig. 16) is stout with
a prominent olecranon process, and possesses a deep medial depres-
sion that renders its proximomedial process concave in proximal
view, a condition that is otherwise known only in Elaltitan®. The
radius (Fig. 2D, Supplementary Fig. 16) is gracile with an autapo-
morphically large concavity on the posteromedial aspect of its prox-
imal end. As in Rapetosaurus', there is a distinct scar on the
anteromedial surface of the distal end of the bone.

The preacetabular processes of the Dreadnoughtus ilia (Fig. 2E,
Supplementary Fig. 17) are less laterally directed than in many tita-
nosaurs (e.g., Isisaurus®®, Saltasaurus®, Trigonosaurus®), and are not
strongly canted towards the horizontal. A small, rounded tuberosity,
seen elsewhere only in the brachiosaurid Giraffatitan®, arises from
the ventrolateral edge of the preacetabular process. The robust pubes
(Fig. 2E, Supplementary Fig. 17) have proportionately short ischial
articulations, as in all titanosaurs more derived than Andesaurus™.
The distal pubic blade is dorsoventrally thick and tapers medially,
similar to the condition in Opisthocoelicaudia® but unlike that of
most other titanosaurs. The ischia (Fig. 2E, Supplementary Fig. 17)
are short and laminar with a moderately expanded distal blade. As in
many sauropods (e.g., rebbachisaurids, most macronarians), a tuber-
osity for attachment of M. flexor tibialis internus III*° is located near
the posterior margin of the lateral ischial face.

The left femur of MPM-PV 1156 (Fig. 2F, Supplementary Fig. 18)
measures 1.91 m (Table 1). The femoral head is not as proximome-
dially directed as in many other titanosaurs (e.g., Jainosaurus,
Rinconsaurus, Rocasaurus). The fourth trochanter is positioned
proximal to midshaft and is comparatively better developed than
in most lithostrotians (e.g., Tapuiasaurus*'). Unlike the condition
in saltasaurids®, the distal condyles are not bevelled dorsomedially.
The tibia (Fig. 2F, Supplementary Fig. 18) possesses a large proxi-
molateral bulge similar to that in Diamantinasaurus*, Gobititan®,
and Uberabatitan*'. The fibula (Fig. 2F, Supplementary Fig. 18) is
strikingly robust, with a prominent lateral trochanter and a poster-
iorly curved distal half that renders the bone slightly sigmoid in
lateral view. This sigmoid character is shared with Tastavinsaurus*
and Aeolosaurus sp.*’, and is also reported in one Neuquensaurus
fibula®. The astragalus (Fig. 2F, Supplementary Fig. 18) is compar-
able to that of Camarasaurus*” and Elaltitan®, differing from the tall,
pyramidal astragali of many other titanosaurs (e.g., Diamantina-
saurus, Neuquensaurus). Pedal ungual I (Fig. 2F, Supplementary
Fig. 18) retains a large flexor process at the proximal end of its plantar
surface, a character shared only with Opisthocoelicaudia®.

Discussion

Based on a phylogenetic analysis (Fig. 3, Supplementary Figs. 19, 20;
see Supplementary Information for details), we posit Dreadnoughtus
as a member of Titanosauria, intermediate in phylogenetic position
between basal representatives of the clade such as Andesaurus and
the comparatively derived titanosaurian subclade Lithostrotia. The

enormous forms Argentinosaurus and Futalognkosaurus are also
recovered as non-lithostrotian titanosaurs. Future fossil discoveries
and phylogenetic analyses of Titanosauria are needed to clarify the
relationships of these taxa.

Dreadnoughtus is among the largest known titanosaurs. Con-
clusively establishing the size of the taxon relative to those of most
other gigantic representatives of the clade (e.g., ‘Antarctosaurus’
giganteus, Argentinosaurus, Paralititan, Puertasaurus) is presently
not possible due to the fragmentary nature of the latter forms.
Nevertheless, elements of MPM-PV 1156 are comparable in linear
dimensions to their counterparts in other huge titanosaurs (Table 1).
Furthermore, a recently-refined equation for calculating body mass
in quadrupedal tetrapods based on humeral and femoral circumfer-
ence">*** yields an estimate of 59.3 metric tons for this individual
(Supplementary Information)—approaching twice the value prev-
iously estimated for the large brachiosaurid Giraffatitan (34.0 metric
tons), and approximately four times that estimated for the diplodo-
cid Diplodocus (14.8 metric tons)—using the same method". Recon-
struction of the Dreadnoughtus skeleton (Fig. 2A, Supplementary
Fig. 9) with the mostly missing cervical series restored after that of
Futalognkosaurus® produces an approximate body length of 26 m
(Supplementary Information).

Remarkably, multiple lines of evidence indicate that, despite its
enormous size, MPM-PV 1156 was not osteologically mature at
death. The scapula remains unfused to the coracoid (Fig. 2B,
Supplementary Fig. 15), and the posteromedial margin of the cor-
acoid foramen abuts the scapula; both of these morphologies have
been cited as indicators of osteological immaturity in sauro-
pods®>*'. Moreover, although histological analysis of the humerus
indicates that its cortical bone has undergone extensive secondary
remodelling, the element retains a thick layer of vascularized
fibrolamellar bone between the remodelled inner cortex and the
periphery of the periosteal surface (see Supplementary Infor-
mation). It also lacks lines of arrested growth or an external fun-
damental system® (Fig. 2G), which may indicate osteological
immaturity> (although Company>* proposed this as a synapomor-
phy of Titanosauria rather than an indicator of ontogenetic stage).
A similar pattern is observed in the dorsal ribs, which are exten-
sively remodelled but retain primary fibrolamellar bone tissue
towards the periosteal surface. Recent analyses®*>® have suggested
that titanosaurs may have developed extensively remodelled tis-
sues after reaching sexual maturity but prior to attaining their
maximum size. Thus, the presence of unremodelled fibrolamellar
bone in the outer cortex of the MPM-PV 1156 humerus suggests
that this massive Dreadnoughtus individual was still growing at
the time of its death.

Dreadnoughtus schrani is the most completely known giant tita-
nosaur. Completeness metrics (Supplementary Table 2) indicate that
the new Patagonian taxon has preserved approximately 45.3% of the
bones expected in a complete titanosaurian skeleton, and (depending
on how bones are counted) up to 70.4% of the postcranial elements.
By comparison, these same values are 152% and 26.8% for
Futalognkosaurus, 7.8% and 12.7% for Paralititan, 5.1% and 9.2%
for Argentinosaurus, 2.3% and 3.5% for ‘A.” giganteus, and 1.6% and
2.8% for Puertasaurus. Dreadnoughtus is also among the most ana-
tomically informative titanosaurs of any body size. The new taxon
can be definitively evaluated for 57.5% of the morphological char-
acters included in the data matrix recently published by Carballido
and Sander”. Furthermore, Dreadnoughtus is dramatically more
informative than the other gigantic titanosaurs included in our
phylogenetic analysis, Futalognkosaurus and Argentinosaurus,
which were scored for only 18.5% and 12.6% of the available char-
acters, respectively (Supplementary Table 3). Dreadnoughtus there-
fore offers important new osteological data for future investigations
of the anatomy, biomechanics, and evolution of the most massive
land animals that have ever existed.
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Methods

Phylogenetic analysis. We conducted a phylogenetic analysis to assess the affinities
of Dreadnoughtus schrani within Titanosauria. We added the new Patagonian taxon
to a recently-published matrix of 70 sauropod taxa and 341 morphological
characters® that contains a broad diversity of titanosaurian and non-titanosaurian
titanosauriform genera, including the gigantic form Argentinosaurus. We also added
Futalognkosaurus to the matrix (the scoring of which was based on the description by
Calvo etal.’, and is presented in the Supplementary Information) to more thoroughly
investigate relationships between Dreadnoughtus and other giant titanosaurians. We
analysed the augmented matrix using the methods outlined in Carballido and
Sander”. Specifically, the multistate characters 12, 58, 95, 96, 102, 106, 108, 115, 116,
119, 120, 154, 164, 213, 216, 232, 233, 234, 235, 256, 267, 298, 299, and 301 were
treated as ordered, and the matrix was subjected to a heuristic search in TNT (Tree
Analysis Using New Technology) v. 1.1 (1,000 replicates of Wagner trees, random
addition sequence, tree bisection reconnection branch swapping algorithm, ten trees
saved per replicate). The initial trial yielded ten most parsimonious trees of 1,028
steps, the strict consensus of which recovered numerous taxa traditionally considered
to be basal titanosauriforms as members of Titanosauria, and provided little
resolution within Lithostrotia (Supplementary Fig. 19).

Based on numerous aspects of its morphology, the titanosaurian affinities of
Dreadnoughtus are not in doubt; the aim of our analysis was therefore to ascertain the
position of the new taxon within Titanosauria. Consequently, in an attempt to better
resolve titanosaurian interrelationships, we inspected the matrix using the program
TAXEQ3 (Safe Taxonomic Reduction Based on Taxonomic Equivalence™). The
TAXEQ3 examination did not find taxa that could be safely deleted via safe taxo-
nomic reduction, but did underscore the high proportion of missing data in the
matrix. Although Dreadnoughtus lacked only 42.5% of the available character
information, 47 (of 72 total) taxa lacked more than 50% of these data. We reanalysed
the matrix after pruning 18 of the 20 fragmentary and unstable taxa pruned by
Carballido and Sander”, retaining Andesaurus (to define the node-based clade
Titanosauria) and Argentinosaurus (another giant titanosaurian). This second
iteration recovered 30 most parsimonious trees of 943 steps. The strict consensus of
these trees (Fig. 3, Supplementary Fig. 20; Consistency Index = 0.42, Retention Index
= 0.76, Rescaled Consistency Index = 0.32) yields considerably greater resolution
within Titanosauria, and posits Dreadnoughtus as a non-lithostrotian titanosaur
more derived than Andesaurus, Epachthosaurus, Argentinosaurus, and lognkosaur-
ians (i.e., Futalognkosaurus, Mendozasaurus) but less derived than all other
Campanian-Maastrichtian titanosaurs.

Phylogenetic character states of Dreadnoughtus schrani. Scores for Dreadnoughtus
schrani for the 341 morphological characters employed by Carballido and Sander®
are as follows:
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Body dimensions. Among many other elements, the Dreadnoughtus schrani
holotype (MPM-PV 1156) includes the complete left humerus and femur. Because the
minimum midshaft circumferences of these bones have been found to scale with body
mass in quadrupedal terrestrial tetrapods'>***’, the preservation of these elements in
MPM-PV 1156 permits an estimate of the mass of this specimen. The midshaft
circumference of the humerus is 785 mm and that of the femur is 910 mm. Using the
scaling equation recently proposed by Campione and Evans*’ (logBM = 2.749 *
logCy+r — 1.104, where BM is body mass and Cy+ is combined humeral and
femoral circumference), these values yield an estimated body mass of 59,291 kg
(~59.3 metric tons, or 65.4 short tons) for this Dreadnoughtus individual. By
comparison, the estimated masses of other medium- and large-bodied titanosaur
specimens for which humeral and femoral shaft circumferences have been published
are as follows: Opisthocoelicaudia ZPAL MgD-1/48%, 25,418 kg; Alamosaurus TMM
41541-1%, 35,164 kg; and Elaltitan PVL 4628, 42,798 kg. Additionally, Benson et
al."” provide an estimate of 38,139 kg for Futalognkosaurus®, based on an undescribed
humerus and femur. Large individuals of the diplodocid Diplodocus (USNM 10865)
and the brachiosaurid Giraffatitan (HMN SII) have been estimated at 14,813 and
34,003 kg, respectively, using the same equation'**. It therefore appears that the
Dreadnoughtus schrani holotype was considerably more massive than most other
titanosaurian specimens, and indeed, most other sauropods.

Due primarily to uncertainty in the morphology of the cervical series, it is currently
not possible to definitively establish the total body length of Dreadnoughtus.
Nevertheless, the elongate nature of the two preserved cervical vertebrae implies that
the taxon had a long neck, more similar to those of titanosaurs such as
Futalognkosaurus® and Rapetosaurus'® than to comparatively short-necked forms
such as Isisaurus® and Mendozasaurus®. The centrum of the complete posterior
cervical vertebra of MPM-PV 1156 is 113 cm in anteroposterior length. Assuming
that the neck proportions of Dreadnoughtus were similar to those of
Futalognkosaurus®>®, and that this complete Dreadnoughtus cervical vertebra corre-
sponds to the ninth vertebra in the series, this yields a neck length of approximately
11.3 m for MPM-PV 1156.

The holotype of Tapuiasaurus (MZSP-PV 807) is the only adult titanosaurian
specimen known to preserve a complete skull associated with appendicular ele-

ments*'. Using the radius length of MPM-PV 1156 (95 cm), and scaling up from the
relative lengths of the skull and radius in Tapuiasaurus, we estimate the length of the
mostly unknown skull of this Dreadnoughtus specimen at 88 cm. Thus, the total
combined length of the skull and neck of MPM-PV 1156 is estimated at roughly
12.2 m.

The remainder of the axial skeleton is well-represented in Dreadnoughtus, per-
mitting more precise estimates of its length. The majority of titanosaurs for which the
dorsal series is completely known (e.g., Futalognkosaurus, Rapetosaurus,
Trigonosaurus, Overosaurus) possess ten vertebrae in this region™'®**%; with 11
dorsal vertebrae, Opisthocoelicaudia is the only known exception in this regard®. We
therefore assume that ten dorsal vertebrae were present in Dreadnoughtus. The only
described titanosaurian specimen with a completely preserved caudal series is the
holotype of Opisthocoelicaudia (ZPAL MgD-1/48); this includes 34 vertebrae®.
Nevertheless, evidence indicates that the tail may have been longer in some other
titanosaurian taxa. For example, exceptional specimens of Epachthosaurus (UNPS]B-
PV 920) and Alamosaurus (USNM 15560) preserve the first 30 and 29 caudal ver-
tebrae, respectively, all of which are strongly procoelous®*. In both of these caudal
sequences, the posterior-most preserved vertebra is clearly not the terminal caudal
vertebra; moreover, Wilson et al.* demonstrated that the posterior-most ~seven to
eight caudal vertebrae of at least some titanosaurs were biconvex. Furthermore, an as-
yet undescribed titanosaurian skeleton from northern Patagonia is reputed to include
approximately 65 caudal vertebrae®. Taking all of the above into account, we pro-
visionally estimate that the complete caudal series of Dreadnoughtus would have
included approximately 40 vertebrae. Digital reconstruction of the dorsal, sacral, and
caudal vertebral sequences that incorporates these assumptions (Supplementary Fig.
9) yields a combined length of 13.8 m for these parts of the axial skeleton. When
added to the skull and neck length estimated above, this yields an approximate total
body length of 26 m for MPM-PV 1156.

Calculating completeness vs. other giant titanosaurs. We quantified the skeletal
completeness of Dreadnoughtus and other enormous titanosaurs using the following
method. (We chose to devise an un-weighted metric that counts the presence of each
element equally. See Mannion and Upchurch® for an alternative, weighted method.)
First, we used material of the most completely known titanosaurs of any size (e.g.,
Epachthosaurus, Nemegtosaurus, Opisthocoelicaudia, Overosaurus, Rapetosaurus,
Saltasaurus, Tapuiasaurus, Trigonosaurus) to estimate the total number of bones in a
representative titanosaurian skeleton at 256 (Supplementary Table 2). We then
counted the total number of non-duplicated elements preserved between both known
Dreadnoughtus specimens (MPM-PV 1156 and MPM-PV 3546) at 116, and used the
literature to tally the elements preserved for five other giant titanosaurs:
‘Antarctosaurus’ giganteus (six bones)®, Argentinosaurus (13 bones)°,
Futalognkosaurus (39 bones)®, Paralititan (20 bones)”*’, and Puertasaurus (four
bones)’. These numbers were then divided by 256 to yield completeness percentages
for each taxon (Supplementary Table 2).

Because the six titanosaurs under consideration are represented exclusively (‘A.
giganteus, Argentinosaurus, Futalognkosaurus, Paralititan, Puertasaurus) or almost
exclusively (Dreadnoughtus) by postcranial bones, we then explored the postcranial
completeness of each taxon. We calculated the total number of postcranial elements
expected in a representative titanosaur and then counted all such bones for each taxon
in question. We divided the elements preserved by the elements expected to produce
percentages of postcranial completeness for each titanosaur (Supplementary Table 2).

Finally, because, from a morphological standpoint, the preservation of one bilat-
erally symmetrical element is effectively as informative as is the preservation of both,
we calculated what we term the ‘mirrored postcranial completeness’ of each of these
giant titanosaurs (Supplementary Table 2). When determining mirrored postcranial
completeness, bilateral elements are treated as equivalents; in other words, if at least
one of a pair of bilaterally symmetrical bones is preserved in a given taxon, that
element is counted as fully preserved in that taxon. (As an example, in mirrored
postcranial completeness, the humerus of Dreadnoughtus is treated as completely
represented, even though only the left humerus of this titanosaur is actually
preserved.)

Data archiving. Data reported in this paper are available as Supplementary
Information. Specimens MPM-PV 1156 and MPM-PV 3546 are permanently
reposited at the Museo Padre Molina in Rio Gallegos, Santa Cruz Province,
Argentina.
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