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ABSTRACT

The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper

Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a

gigantic eolian sand sea (erg ), formed under an arid climate in the south-central part

of Gondwana. This trackway is composed of two track rows, whose internal width

is less than one-quarter of the external width, with alternating to staggered series,

consisting of three elliptical tracks that can vary from slightly elongated to tapered

or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the

Araraquara municipality, São Paulo State. Comparisons with neoichnological studies

andmorphological inferences indicate that the producer of Paleohelcura araraquarensis

isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the

ecological roles that different species of this group are capable of performing in dune

deserts. The producer could have had a herbivorous or carnivorous diet or been

part of the fauna of omnivores, being able to adopt herbivorous, carnivorous, and

saprophagous diets when necessary. In modern dune deserts, some species of pterygote

insects are detritivores (like Tenebrionidae), relying on organicmatter that accumulated

among the sand grains of the dunes during dry periods with no plant growth. The

presence of additional burrows suggests that the Botucatu paleodesert would have

had a detritivorous fauna like this. Based on the interpretation of the ichnofossil

producers, it was possible to reconstruct the food web of this paleodesert. All the

omnivorous and herbivorous invertebrates and the herbivorous ornithopod dinosaurs

made up the primary consumers. These animals were, in turn, the food source for bigger

carnivorous or omnivorous animals unable to feed on detritus, like arachnids, possible

predatory insects, mammaliaforms, and theropod dinosaurs. The highest trophic level

was occupied by larger theropod dinosaurs and mammaliaforms, which, because of

their size, could prey upon a wide range of animals. The producer of Paleohelcura

araraquarensis isp. nov. could have been a primary consumer if it were an omnivorous
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detritivore or a herbivore, or a secondary consumer if it were produced by a predatory

insect or an omnivore relying on animal biomass. The description of this new trackway

expands the knowledge on the faunal composition of the Botucatu paleodesert and

provides insights into the ecological relationships in ancient deserts. The presence

of these arthropod trackways in Mesozoic eolian deposits helps to trace a continuity

between Paleozoic and post-Paleozoic desert ichnofaunas, further reinforcing a single

Octopodichnus—Entradichnus Ichnofacies for eolian deposits.

Subjects Biodiversity, Ecology, Ecosystem Science, Entomology, Paleontology

Keywords Deserts, Erg , Palaeoecology, Trophic web, Gondwana, Ichnofacies, Botucatu
Formation, Paraná Basin

INTRODUCTION

The Botucatu Formation, a stratigraphic unit of the Paraná Basin, is the testament of a

gigantic sand desert (erg ) that existed from the Late Jurassic to the Early Cretaceous in the

south-central part of the supercontinent Gondwana, totaling an area of 1.5 × 106 km2,

encompassing parts of Brazil, Argentina, Uruguay, Paraguay, Namibia and South Africa

(Scherer & Goldberg, 2007). Ichnofossils are the only evidence of animal life in this ancient

desert because no animal body fossils have been found. Therefore, trace fossils play a central

role in understanding animal diversity and ecological relationships in this ancient erg.

Eolian deposits have been traditionally considered of minor interest from an ichnologic

perspective. However, this situation has changed at an accelerated rate in recent years with

the publication of several papers on the topic (e.g., Ekdale, Bromley & Loope, 2007; Ekdale

& Bromley, 2012; Good & Ekdale, 2014; Krapovickas et al., 2016; Carmona, Ponce & Wetzel,

2018; Xing et al., 2018; Buatois & Echevarría, 2019; Marchetti et al., 2019a; Marchetti et al.,

2019b). A recent review emphasized the complex pattern of trace-fossil distribution in

eolian and related facies, the debate surrounding definition of an archetypal ichnofacies,

and delineation of macroevolutionary trends in desert environments (Krapovickas et al.,

2016). Documentation of trace fossils in desert successions is of paramount importance to

provide support to these models, and to help clarify the diagnostic characteristics of the

so-called Octopodichnus-Entradichnus Ichnofacies.

Several trackways of tetrapods and arthropods have been recovered from eolian dune

deposits of different ages (McKeever, 1991, table 1). There has been contention over the

preservation potential of such trackways in ‘dry’ dune deposits andwhether they had to have

been produced subaqueously (Brand, 1979; Brand & Tang, 1991; McKeever, 1991; Brand,

1992; Lockley, 1992; Loope, 1992). Moisture (Mckee, 1947; Sadler, 1993) and the presence of

clay minerals (Loope, 1986;McKeever, 1991) between sand grains have both been proposed

to play a role in trackway stabilization and preservation potential. Experiments have

demonstrated that the combination of the two can lead to enhanced survivorship of

arthropod trackways over those made in dry sand or sand with just surface moisture or the

presence of clay minerals alone (Davis, Minter & Braddy, 2007). Nevertheless, it has been
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recently argued that special conditions are not necessarily needed to preserve such trace

fossils (see Davies & Shillito, 2018).

The aims of this study are to: (i) describe the new ichnospecies, Paleohelcura

araraquarensis isp. nov., which consists of trackways produced by pterygote insects walking

on sand dunes; (ii) discuss the implications of this record with respect to ecological

relationships within the Botucatu paleodesert; and (iii) assess its importance for our

understanding of eolian dune ichnofacies.

Previous work

Most of the previous studies in the Botucatu Formation focused on tetrapod trackways,

with only two publications dealing in detail with invertebrate trace fossils (Fernandes, Netto

& Carvalho de, 1988; Fernandes, Carvalho & Netto, 1990). Before these studies, invertebrate

trackways were only mentioned within the context of vertebrate ichnofaunas as the source

of food for the presumed mammaliaform producer of Brasilichnium elusivum (Leonardi,

1981, p. 803). Subsequently, Leonardi (1984, p. 54) illustrated invertebrate trackways

identical to those documented in this study, but whose repository is unknown. Arthropod

trackways from São Bento Quarry (Araraquara city—São Paulo State) were later illustrated

as well by Leonardi & Sarjeant (1986, p. 83), but no further information regarding a

repository was provided. Leonardi, Carvalho de & Fernandes (2007) reported trace fossils

of insects and arachnids in Araraquara (São Bento Quarry), but no illustrations were

provided. Fernandes (2005) identified arachnid tracks in slabs from São Bento Quarry, and

interpreted them as made by scorpions and spiders. Peixoto et al. (2016) documented new

findings of Taenidium serpentinum and Skolithos linearis, probably produced by insects.

The occurrences of invertebrate ichnofossils are summarized in Table 1.

The only plant fossils from the Botucatu Formation are conifer trunks, found in the

region of Araguari (Minas Gerais State), north of the Tringulo Mineiro, within the limits

of the sandstone occurrence area of this unit (Pires et al., 2011; Malaquias, Riff & Riff,

2017). Those trunks exhibit xylophagous marks assigned to termites (Isoptera) and beetles

(Coleoptera) (Riff, Kloster & Riff, 2017).

With respect to the vertebrate trace-fossil record of the Botucatu Formation, there

are two ichnospecies of Brasilichnium produced by small mammaliaform organisms: one

demonstrating cursorial locomotion described as B. elusivum (Leonardi, 1981; Fernandes

& Carvalho, 2008), and the other one in hopping locomotion (D’Orazi Porchetti, Bertini &

Langer, 2017a), described as B. saltatorium (Buck et al., 2017b). There is also a record of a

burrow compatible with the Brasilichnium elusivum producer (Manes, Da Silva & Scheffler,

2017). There is some controversy in describing new ichnotaxa based on differences in

locomotion patterns instead of objective morphological attributes of the footprints alone

(Lockley, 2007; Minter, Braddy & Davis, 2007). Nevertheless, the presence of a hopping

behavior (e.g., B. saltatorium) is useful in indicating a biomechanical capability that

constrains eligible clades of possible producers, together with when this biomechanical

capability appeared.

Trackways of mammaliaforms larger than the producer of Brasilichnium elusivum have

been described independently as Brasilichnium anaitti (D’Orazi Porchetti, Bertini & Langer,
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Table 1 Occurrence of invertebrate ichnofossils from the Botucatu Formation and the first references describing them.

Locality Ichnofossil Description Reference

Quarry 3–4 km from São Carlos (SP) (probably

Migliato or Araújo quarry)

‘‘Worm Tunnels’’ Pacheco & De Amaral (1913)

Sierra of Botucatu (SP) ‘‘Worm tubes.’’ Almeida (1954)

Pacaembú neighborhood, São Carlos (SP) ‘‘Worm trails.’’ Bjornberg & Tolentino (1959)

São Tomás Ranch quarry, Ibaté Municipality (SP) ‘‘Fossil tracks of conchostracans(?)’’ Paraguassu (1970)

Quarry near Araraquara (SP) ‘‘Vermiform trails and tracks of arthropods.’’ Leonardi (1980)

‘‘Arthropods trackways’’ (Leonardi, 1984)

‘‘Arthropod trails’’ (Leonardi & Sarjeant, 1986)

‘‘Invertebrate trackways and burrows’’ (Leonardi & Godoy, 1980)

(...)Ten rare forms of invertebrate

trails, mainly attributable to arthropods

(arachnids and insects, adults or larvae)(...)

(Leonardi, Carvalho de & Fernandes, 2007)

São Bento Quarry, Araraquara (SP)

Insects, scorpions and spiders (Fernandes, 2005).

Itaguaçu Farm Quarry, São Carlos (SP) ‘‘Trails of vermiform invertebrates.’’ Leonardi & Godoy (1980)

Campo Minado Cave, Sierra of Itaqueri, Ipeúna

(SP)

Taenidium serpentinum and Skolithos linearis Peixoto et al. (2016)

Sobradinho Farm, Araguari (MG) Burrows of xylophagous termites and Coleoptera insects in

conifer wood.

Riff, Kloster & Riff (2017)

Notes.
SP, São Paulo State (Brazil); MG, Minas Gerais State (Brazil).

Ichnofossils descriptions were translated literally from the original sources. Modified from Leonardi, Carvalho de & Fernandes (2007).

P
e
ix

o
to

e
t

a
l.

(2
0
2
0
),

P
e
e
rJ

,
D

O
I
1
0
.7

7
1
7
/p

e
e
rj.8

8
8
0

4
/3

7



2017b) and as Aracoaraichnium leonardii (Buck et al., 2017a). These two ichnotaxa bear

several morphological similarities and were described from slabs reposited in different

scientific collections. In addition, theropod and ornithopod dinosaur trackways have

been recorded (Leonardi, 1979; Leonardi, 1980; Leonardi & Godoy, 1980; Leonardi, 1981;

Leonardi, 1984; Leonardi & Sarjeant, 1986; Leonardi, 1987; Leonardi et al., 2002; Fernandes,

2005; Leonardi, Carvalho de & Fernandes, 2007; Francischini et al., 2015). Also noteworthy

is the rare occurrence of an urolite, a biogenic mark interpreted as the result of the liquid

extrusion of urine from dinosaurs onto unconsolidated sediment (Fernandes, Fernandes &

Souto, 2004).

Geological setting

The Botucatu Formation is exposed in the Brazilian states of Mato Grosso, Mato Grosso do

Sul, Goiás,Minas Gerais, São Paulo, Paraná, Santa Catarina, and RioGrande do Sul with the

same sedimentary system extending intoArgentina,Uruguay, Paraguay,Namibia and South

Africa, covering an area over 1.5 × 106 km2 (Scherer & Goldberg, 2007). In São Paulo State,

the Botucatu Formation outcrops as a northeast-southwest strip (Fig. 1), with monotonous

deposits mostly consisting of yellowish to reddish, very fine- to coarse-grained sandstone,

mainly quartz arenite and subordinately subarkose. The quartz arenite is texturally and

mineralogically supermature, whereas the subarkose is texturally submature to mature and

mineralogically mature (Wu & Caetano-chang, 1992). The consensus is that the Botucatu

Formation represents a giant dry eolian depositional system (erg ) based on the presence

of large to medium-sized cross-stratified sandstones (Scherer & Goldberg, 2007) (Fig. 2),

and on the basis of the mineralogical and textural maturity of the dominant deposits (Wu

& Caetano-chang, 1992). The landscape was dominated by linear, crescentic and some

star dunes, representing a hyperarid system, according the classification framework of

Mountney (2004), with winds predominantly coming from the north in the northern part

of the Paraná Basin (Scherer & Goldberg, 2007) where the study area is located (Araraquara

City).

Fluvial/eolian sandstone of the Pirambóia Formation occurs below the Botucatu

Formation in the northern portion of the basin (State of São Paulo) (Milani et al., 2007, p.

287; Soares, Soares & Holz, 2008a, their fig2). The contact between these two formations

is still controversial (Giannini et al., 2004, p. 282; Soares, Soares & Holz, 2008b, their fig.

2; p.126) (Fig. 3). The Botucatu Formation is overlain by the magmatic extrusive rocks

of the Serra Geral Group (former Serra Geral Formation) (Milani et al., 2007; Fernandes

et al., 2018) (Fig. 3). Lenses of eolian sandstone (paleodunes) in the Serra Geral Group

indicate that the eolian depositional system was active during volcanism. The Botucatu

Formation and the Serra Geral Group have a concordant contact because the flow of lava

over the unconsolidated sand of the paleodunes created marks on the paleodune surfaces

(e.g., striations, crescentic ridges), formed breccias (peperites), and also preserved the relief

of the ancient dunes (Milani et al., 1998; Scherer, 2000; Scherer, 2002; Waichel et al., 2007;

Holz, Soares & Soares, 2008;Waichel, Scherer & Frank, 2008).

U–Pb baddeleyite/zircon dating for the lowest sub-unit of the Serra Geral Group that

makes concordant contact with Botucatu Formation in São Paulo State (Chapecó-type
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Figure 1 The localization of Araraquara City, where the fossils were collected, and outcrop area of the
Botucatu and Pirambóia formations in the State of São Paulo, Brazil.Modified from Fernandes, Fernan-

des & Souto (2004).

Full-size DOI: 10.7717/peerj.8880/fig-1

dacites) yields an age of approximately 134 Ma (Janasi, Freitas & Heaman, 2011). This

radiometric date, together with the oldest paleomagnetic date of the Botucatu Formation

from southern Brazil (Tamrat & Ernesto, 2006) indicates a Late Jurassic to Early Cretaceous

age for this unit.

MATERIALS & METHODS

Paleontological material analyzed

The ichnofossils described here were collected between 1997 and 2005, at São Bento quarry

(21◦49′07.6′′S48◦04′28.8′′W), in the municipality of Araraquara (São Paulo State). All the

ichnofossils here described were found during the commercial exploitation of the successive

layers of sandstone of the slipface of a single paleodune (that was more than 100 m long

and 20 m high) of the Botucatu Formation (Fig. 2. The full-size figures are in Figs. S1 and

S2). The paleodune slipface dips at 29◦ in the S-SW direction.

The São Bento quarry is currently inactive and is part of the Ouro Ichnofossiliferous Site,

in Araraquara (Leonardi et al., 2002), a region with several abandoned ichnofossiliferous

quarries. The sandstone slabs containing the ichnofossils here analyzed were collected from

sites A, C and D (sensu Fernandes, 2005) of the São Bento quarry and are: LPP-IC-0028,

LPP-IC-0029, LPP-IC-0030, LPP-IC-0031, LPP-IC-0032, LPP-IC-0033, LPP-IC-0034,

LPP-IC-0035. Sandstone extraction at the São Bento quarry was done without scientific

monitoring, and most of the fossils were in slabs ready to be cut, or already cut for

commercialization. Therefore, no data is available regarding orientation of specimens with

respect to the slopes. All of these slabs are deposited in the Paleoichnology Collection of

the Laboratório de Paleoicnologia e Paleoecologia (LPP) of the Federal University of São

Carlos (UFSCar), São Carlos campus.
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Figure 2 Representative drawing of the location of the work fronts of São Bento quarry. Photographs
1, 2, 3 and 4 are the work fronts rock outcrop in March 2004, during the commercial exploitation of the

Botucatu sandstone and collection of all ichnofossils here described. (A), (B), (C), (D), (E), (F), (G), (H),

(I), (J), (K), (L) are the relative location of the sites of occurrence of ichnofossils, as described by Fernan-

des (2005). The invertebrate ichnofossils occur in sites A, C, and D, in the work front 1. At present, the

quarry is inactive, and the outcrop looks different because of the further exploitation and weathering.

Drawing is not in scale (modified from Fernandes, 2005). The full-size image is in the Supplemental Infor-

mation.

Full-size DOI: 10.7717/peerj.8880/fig-2

The electronic version of this article in Portable Document Format (PDF) will

represent a published work according to the International Commission on Zoological

Nomenclature (ICZN), and hence the new names contained in the electronic version

are effectively published under that Code from the electronic edition alone. This

published work and the nomenclatural acts it contains have been registered in

ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life

Science Identifiers) can be resolved and the associated information viewed through

any standard web browser by appending the LSID to the prefix http://zoobank.org/.
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Figure 3 Simplified stratigraphic column showing the lithology, relative age and contact relationships
between the Pirambóia, Botucatu and Serra Geral stratigraphic units.Not in scale.

Full-size DOI: 10.7717/peerj.8880/fig-3

The LSID for this publication is: urn:lsid:zoobank.org:pub:53C73174-4645-40E1-BB7B-

75856AEAEAF5. The LSID for the here described Paleohelcura araraquarensis isp. nov.

is: urn:lsid:zoobank.org:act:7D4303AE-BB63-4474-B79C-AD39AB144917. The online

version of this work is archived and available from the following digital repositories: PeerJ,

PubMed Central and CLOCKSS

Trackway measurements

The methodology and terminology of Trewin (1994), Braddy (2001) andMinter, Braddy &

Davis (2007) for arthropod trackway description have been adopted herein (Fig. 4). For

the description of preservation, the classification proposed by Seilacher (1964) is followed.

For measurements of Paleohelcura araraquarensis isp. nov., four series on each side of the

trackway were selected on slabs LPP-IC-0028, LPP-IC-0029, LPP-IC-0032, LPP-IC-0035.

For those slabs with more continuous trackways, eight series on slab LPP-IC-0030 and

nine series on slab LPP-IC-0031 were measured. The measured series are indicated in
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Track width

Series

Track length

Internal width

External width

Track 1

Track 2

Track 3
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Pace

Anterior

Posterior

Left Right

Figure 4 Nomenclature andmeasurements used for the analysis of Paleohelcura araraquarensis isp.
nov. Measurements of the trackway and track characteristics.

Full-size DOI: 10.7717/peerj.8880/fig-4

the photographs in Figs. S3 and S4. The series measured were chosen on the basis of the

quantity and quality of the tracks on either side of the trackway. We attempted to select

the series to be measured with regular distances between them along the trackway. In the

slabs that show part and counterpart (LPP-IC-0029 with LPP-IC-0030 and LPP-IC-0031

with LPP-IC-0032), the same series were measured in the two slabs (i.e., negative epirelief

and positive hyporelief). LPP-IC-0029 and LPP-IC-0032 present shorter trackways than

their counterparts; therefore, only partial measurements were obtained. Measurements of

internal and external width were taken; as were the pace, stride, and lengths and widths of

the individual tracks (Fig. 4).

Trewin (1994, p. 813) proposed using the ratio between the external width and the

internal width as a trackway parameter; however, such a relationship is not practical in the

case of Paleohelcura araraquarensis isp. nov. since there are sections of the trackways where

the internal width is zero, producing fractions with zero as divisor, and it is impossible to

divide by zero (Kaplan, 2000). Therefore, we adopt the inverse of the relation proposed

by Trewin (1994, p. 813), that is, internal width/external width (I/E), and we propose this

as a standard for the description of trackways. The ratio between the length and width

(L/W) of the tracks was also used to see if the tracks are circular (values close to one),

or elliptical/elongated (values greater than one). The measurements were taken using a

Vernier caliper. All measurements are listed in Table S1. The line drawing illustration of the

holotype of Paleohelcura araraquarensis isp. nov. was produced using the Inkscape vector

drawing program 0.92, whose license is free and open source (General Public License 3),

using a photograph as a model for the footprint contour. All the graphic elements were

produced with the aforementioned program.

Peixoto et al. (2020), PeerJ, DOI 10.7717/peerj.8880 9/37



RESULTS AND DISCUSSION

Ichnotaxonomy.

Ichnogenus: Paleohelcura Gilmore, 1926

Type Ichnospecies: Paleohelcura tridactyla Gilmore, 1926.

Emended Diagnosis: Trackways with external width greater than 20 mm, comprising two

parallel track rows with series of commonly three tracks, but there can be fewer or up to

four tracks per series. Series have alternating to staggered symmetry. Tracks vary from

slightly elliptical to tapered or circular and can be in a linear or triangular arrangement

within series. A medial impression may be present.

Remarks: Historically, many arthropod trackway ichnotaxa were inadequately described

and illustrated, at times based on few and/or poorly preserved specimens (Trewin, 1994,

p. 821). Several trackway ichnotaxa with series of at most four tracks have been described,

resulting in potential junior synonyms. Analysis of trackways from the Permian of Germany

and southwestern United States (Minter, Braddy & Voigt, 2007; Minter & Braddy, 2009)

showed intergradations between several ichnotaxa, underscoring morphological and

preservational variations, due to small variations in locomotion or characteristics of the

substrate.

Paleohelcura (Gilmore, 1926) was originally described from the lower Permian Coconino

Sandstone of western United States and subsequently described in other studies dealing

with the ichnology of this and other units (Toepelman & Rodeck, 1936; Brady, 1939; Brady,

1947; Brady, 1961; Alf, 1968; Sadler, 1993; Braddy, 1995; Lucas & Lerner, 2004; Morrissey &

Braddy, 2004; Voigt, Small & Sanders, 2005; Batchelor & Garton, 2013; Stoller, Rowland &

Jackson, 2013). Only Paleohelcura tridactyla is accepted as a valid ichnospecies, and four

forms are regarded as junior synonyms: P. dunbari (Brady, 1961), P. delicatula (Fischer,

1978), P. badensis Kozur, Loffler & Sittig (1994), and P.? lyonsensis (Toepelman & Rodeck,

1936), which was provisionally included in Paleohelcura when described.

Sadler (1993) noted intergradations between P. tridactyla and P. dunbari, but retained

them as separate ichnospecies because she considered the two ichnotaxa as morphologically

different. On the contrary, it has been argued that the morphologic differences between

P. tridactyla and P. dunbari are minor, with intergradations between the two, and so P.

dunbari should be regarded as a junior synonym of P. tridactyla (Minter, Braddy & Davis,

2007;Minter & Braddy, 2009). Paleohelcura delicatula is only known from a single specimen

that consists of comma-shaped tracks, opposite symmetry, and small size compared with P.

tridactyla (Fischer, 1978). New ichnotaxa should not ideally be erected on the basis of single

specimens and the characteristics presented are not reliable to erect a new ichnospecies.

Therefore, we regard Paleohelcura delicatula as a junior synonym of Stiaria intermedia.

Paleohelcura badensis is regarded as a junior synonym of Stiaria intermedia (Minter

& Braddy, 2009). Paleohelcura? lyonsensis has been considered a junior synonym of P.

tridactyla (Braddy, 1995, p. 221). Gilmore (1927) erected Triavestigia niningeri, and Kozur,

Loffler & Sittig (1994) referred it to Paleohelcura as a distinct ichnospecies; however, the

holotype consists of an incomplete trackway, and the arrangement of the tracks within a
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Table 2 Arithmetic mean of the measurements of the trackway. (I/E) Internal Width/External Width.

LPP-IC-0033 and LPP-IC-0034 were not measured because of their poor preservation.

Specimen External width
mean (mm)

Internal width
mean (mm)

I/EMean Pace
mean (mm)

Stride
mean (mm)

LPP-IC-0028 22,80 2,43 0,11 12,73 12,80

LPP-IC-0029 23,43 2,70 0,11 10,78 11,30

LPP-IC-0030 22,75 1,68 0,07 5,49 10,92

LPP-IC-0031 23,22 1,41 0,06 6,13 11,75

LPP-IC-0032 22,10 1,95 0,09 10,90 11,40

LPP-IC-0035 23,55 3,11 0,10 11,18 11,27

Mean (mm) 22,97 2,21 0,09 9,53 11,57

Standard de-

viation/Mean

0,05 0,57 0,62 0,14 0,11

series suggests that it is a junior synonym of P. tridactyla (Braddy, 1995, p. 221; Minter &

Braddy, 2009).

Paleohelcura tridactyla is similar to Stiaria intermedia Smith, 1909 (Walker, 1985;Minter

& Braddy, 2009). Stiaria was described from continental fine-grained sediment lenses

within andesites (Walker, 1985; Phillips & Smith, 2008, p. 5) from the Lower Devonian

Old Red Sandstone of Scotland, and was revised by Pollard & Walker (1984), and Walker

(1985), with the latter paper erecting a neotype, lectotype and paratypes not previously

assigned to this ichnotaxon. Both ichnogenera may possess a medial impression and linear

series with two to four tracks (Brady, 1947; Walker, 1985; Minter & Braddy, 2009). In fact,

Walker (1985) suggested that Paleohelcura should be regarded, at least in part, as a junior

synonym of Stiaria.

Stiaria quadripedia is a similar ichnospecies and was also revised by Walker (1985),

but differs from Paleohelcura by presenting bifid or trifid tracks, which are possible to

delineate in finer-grained sediments. Stiaria intermedia consists of trackways with up to

three circular tracks, similar to Paleohelcura. In contrast, Stiaria quadripediamay have four

tracks, and is larger than S. intermedia. Size is not regarded as an appropriate ichnotaxobase

(Bertling et al., 2006), but analysis of the external widths of specimens assigned to Stiaria

intermedia and to Paleohelcura tridactyla has shown that they fall into two separate size

classes (Minter & Braddy, 2009). Whilst not separated by an order of magnitude, a working

model was proposed (Minter & Braddy, 2009) whereby Stiaria intermedia should be used

for trackways with an external width of less than 20 mm, and Paleohelcura for those with

an external width greater than 20 mm, like the trackways here described (see Table 2).

The clarification of the ichnotaxonomic status of Stiaria intermedia and Paleohelcura

tridactyla remains to be achieved through examination of their holotypes and neotypes

(Minter & Braddy, 2009). In any case, Paleohelcura is a well-accepted ichnotaxon, which has

been recorded extensively. The working model proposed by Minter & Braddy (2009) has

been adopted in many papers (Lucas et al., 2005; Minter & Braddy, 2009; Fillmore, Lucas

& Simpson, 2010; Poschmann & Braddy, 2010; Batchelor & Garton, 2013; Getty et al., 2013;

Getty et al., 2017; Bernardi, Marchetti & Gobbi, 2018; Uchman, Gazdzicki & Blazejowski,
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Figure 5 Holotype of Paleohelcura araraquarensis. isp. nov. (LPP-IC-0028). (A) Photograph of LPP-

IC-0028 slab showing the positive hyporelief of Paleohelcura araraquarensis isp. nov. (B) Representative

scheme of the holotype of Paleohelcura araraquarensis isp. nov. Lowercase letters c and d indicate exam-

ples of footprint orientation within the series. The producer walked from bottom to top.

Full-size DOI: 10.7717/peerj.8880/fig-5

2018), and is endorsed here. Paleohelcura araraquarensis isp. nov. is placed in Paleohelcura

instead of Stiaria because it exhibits an external width greater than 20 mm.

Paleohelcura araraquarensis isp. nov.

Figures 5 and 6A.

Horizon and type locality: São Bento Group, Botucatu Formation; Locality: Ouro;

municipality: Araraquara; São Paulo State (Fig. 1); São Bento quarry (Corpedras company)

(Fig. 2), geographical coordinates: 21◦49′07.6′′S 48◦04′28.8′′W, altitude: 670 m.

Holotype: LPP-IC-0028: sandstone slab showing slightly curved trackway, preserved in

positive hyporelief over a length of 34 cm. Reposited in the Paleoichnology collection of

the Laboratório de Paleoecologia e Paleoicnologia (LPP) of the Federal University of São

Carlos (UFSCar) campus São Carlos-SP.
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Figure 6 Photographs of some of the slabs bearing Paleohelcura araraquarensis isp. nov. (A) LPP-IC-
0028 (holotype). (B) LPP-IC-0029 and (C) LPP-IC-0030. The producer walked from bottom to top. Scale

bar: 10 cm.

Full-size DOI: 10.7717/peerj.8880/fig-6

Paratypes: Sandstone slabs: LPP-IC-0029 (negative epirelief) and its counterpart LPP-

IC-0030 (positive hyporelief); LPP-IC-0031 (negative epirelief) and its counterpart LPP-

IC-0032 (positive hyporelief); LPP-IC-0033 (negative epirelief) and its counterpart LPP-

IC-0034 (positive hyporelief); LPP-IC-0035 (negative epirelief) and with no apparent

counterpart slab. All slabs are reposited in the Paleoichnology collection of the Laboratório

de Paleoecologia e Paleoicnologia (LPP) of the Federal University of São Carlos (UFSCar)

campus São Carlos-SP.

Etymology: It is dedicated to the city of Araraquara, São Paulo State, where these trackways

were found, along with most of the ichnofossils of the Botucatu Formation.

Diagnosis: Trackways composed of two rows, whose internal width between the rows is

less than one-quarter of the external width; with alternating to staggered series, consisting

of up to three tracks with different sizes that may vary from slightly elongated to tapered

or circular in shape.

Description: Due to the similarity between the size of the sandstone grains and the size of

the locomotory appendages of the producer, the tracks of Paleohelcura araraquarensis isp.

nov. in all the analyzed slabs have little definition. The following slabs have counterparts:

LPP-IC-0029 (negative epirelief) and LPP-IC-0030 (positive hyporelief), Figs. 6B and

6C, respectively; LPP-IC-0031 (negative epirelief) and LPP-IC-0032 (positive hyporelief),

Figs. 7A and 7B, respectively; LPP-IC-0033 (negative epirelief) and LPP-IC-0034 (positive

hyporelief), Figs. 7C and 7D, respectively. The organization of the tracks in the series follows

a patternwith two, usually smaller, tracks grouped anteriorly and oftenmore externally, and

a longer track more posteriorly and commonly internally positioned (Fig. 5C). In places,

the series adopt a linear configuration (Fig. 5D) that, despite showing some recurrence, is
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Figure 7 Photographs of some of the slabs bearing Paleohelcura araraquarensis isp. nov. (A) LPP-IC-
0031. (B) LPP-IC-0032. (C) LPP-IC-0033. (D) LPP-IC-0034. (E) LPP-IC-0035. The producer walked from

bottom to top. Scale bar: 10 cm.

Full-size DOI: 10.7717/peerj.8880/fig-7

Table 3 Arithmetic mean of the measurements of each track in the series. (L/W) Length /Width. LPP-IC-0033 and LPP-IC-0034 were not mea-

sured because of their poor preservation.

Specimen Track 1 (Mean) Track 2 (Mean) Track 3 (Mean)

Length (mm) Width (mm) L/W Length (mm) Width (mm) L/W Length (mm) Width (mm) L/W

LPP-IC-0028 5,41 3,14 1,73 4,94 3,03 1,63 5,11 3,79 1,35

LPP-IC-0029 4,98 2,83 1,76 4,38 3,41 1,28 4,28 3,37 1,27

LPP-IC-0030 4,43 2,73 1,62 4,13 2,77 1,49 4,32 3,21 1,35

LPP-IC-0031 4,60 2,97 1,55 4,53 3,07 1,47 4,81 3,77 1,27

LPP-IC-0032 4,96 3,10 1,60 4,44 3,01 1,47 4,77 3,53 1,35

LPP-IC-0035 4,28 2,84 1,51 4,73 3,28 1,44 5,41 3,74 1,45

Mean (mm) 4,78 2,93 1,63 4,52 3,09 1,47 4,78 3,57 1,34

Standard de-

viation/Mean

0,19 0,17 0,17 0,15 0,15 0,15

not an appropriate feature for the diagnosis because it is a variation in the more consistent

triangular pattern shown in Fig. 6C.

The arithmetic means of the measurements of the trackway parameters are summarized

in Tables 2 and 3. All measurements are in the Table S1. The average external width of the

trackways is 22.97 mm, and the average internal width is 2.21 mm, with absolute values

of the latter varying from 3.80 mm to 0 mm (i.e., no internal separation between series).

The internal trackway width is, on average, approximately one-tenth of the outer trackway

width. The ratio between the length and width of the tracks (L/W) is always greater than

one, which indicates that they are elongated. It is rare in Paleohelcura araraquarensis isp.

nov. for tracks to have lengths and widths with similar values, that is, with a circular shape.
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There were variations observed between track measurements in the negative epirelief

and their corresponding counterpart slab. This may have two causes: (i) subjectivity

may have caused variation in the measurement of tracks of different toponomy, one in

negative epirelief and another one in positive hyporelief (i.e., methodological bias); or (ii)

it would suggest that arthropod tracks are susceptible to another type of alteration, after the

production of the footprint and the lithification of the substrate, generated by the splitting

of the layers in to part and counterpart slabs (i.e., taphonomic bias). In this situation,

tracks can lose parts, become smaller, or retain the sediment of the counterpart slab,

thereby modifying their size. As such, the measurements taken from an ichnofossil may

not correspond precisely to the size of the tracks left by the animal when the substrate was

unconsolidated. It was not possible to take accurate track measurements of the counterpart

slabs LPP-IC-0033 and LPP-IC-0034 (Figs. 7C and 7D) due to the poor preservation of the

tracks, but they are included as paratypes because they represent part of the variation that

Paleohelcura araraquarensis isp. nov. can exhibit, whether due to preservation, taphonomic

process or produced by the disaggregation of the layers. The paratypes (LPP-IC-0029,

LPP-IC-0030, LPP-IC-0031, LPP-IC-0032, LPP-IC-0033, LPP-IC-0034) did not present

significant differences in relation to the holotype (LPP-IC-0028).

Specimens in LPP-IC-0028, LPP-IC-0029, LPP-IC-0030, LPP-IC-0031, LPP-IC-0032,

LPP-IC-0035 show sediment displacement associated with the tracks (Fig. 8). In slabs with

positive hyporelief (LPP-IC-0028, LPP-IC-0030, LPP-IC-0032), the displacement appears

as a faint depression attached to the track. This displacement indicates the direction

of movement, being located on the opposite side from the direction of movement

of the animal, generated by the effort that the locomotory appendage applied to the

unconsolidated substrate to generate propulsion. However, we cannot rule out the

possibility that the displacement could have been generated by sliding of the animal

caused by the slope of the dune; this interpretation is less likely because the orientation of

the displacement is the same in all the specimens that exhibit it. Therefore, we consider

that the displacement was more likely to have been generated by the propulsion of the

animal over the sand.

The commercial extraction of the sandstone at the São Bento quarry was undertaken

without scientific monitoring, and most of the fossils were in slabs ready to be cut, or

already cut for commercialization. Thus, the fossils were rescued and there was no record

of the orientation of the slabs in relation to the slope or whether the holotype and the

paratypes could be parts of the same large but fragmented individual trackway.

Comparisons

The main difference between Paleohelcura araraquarensis isp. nov. and Paleohelcura

tridactyla, and its junior synonyms (revised in Remarks section of the ichnogenus

Paleohelcura) is the ratio of the internal width to the external width. Paleohelcura

araraquarensis isp. nov. has an internal width equal to or less than one-quarter of the

external width (on average one-tenth of the external width). The internal width in other

ichnospecies of Paleohelcura is greater than one-quarter of the external width, even in

Paleohelcura with narrow internal widths like some of from the lower Permian Robledo
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Figure 8 Specimen LPP-IC-0035 of Paleohelcura araraquarensis isp. nov. in negative epirelief exhibit-
ing deformation in the sediment by the effort of locomotion of the animal. Red arrows: strain by loco-

motion effort; White arrow: the direction of movement of the animal. The light source is at the top of the

photo.

Full-size DOI: 10.7717/peerj.8880/fig-8
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Mountains and Coconino Sandstone of the USA that have external widths of similar or

lower absolute values to P. araraquarensis isp. nov. (Minter & Braddy, 2009, their fig. 30;

31), and those from the Permian Lyons Sandstone of Colorado (USA) (Toepelman &

Rodeck, 1936, their fig. 1).

The triangular series arrangement and ellipsoidal tracks shown by Paleohelcura

araraquarensis isp. nov. (Fig. 5C) slightly resemble Lithographus and some of its junior

synonyms. Lithographus comprises trackways with series of up to three tracks with alternate

to staggered symmetry but differs from Paleohelcura in that the tracks are linear and have

varied orientations with respect to the midline of the trackway (Minter & Braddy, 2009).

Several ichnogenera were synonymized with Lithographus by Minter & Braddy (2009).

Series within Lithographus and P. araraquarensis isp. nov. share two usually smaller tracks

that are grouped anteriorly and commonly more externally, and a longer track that is

positioned more posteriorly and internally. We suggest that this characteristic may reflect

the pterygote insect leg arrangement (see Trace-fossil producer section).

The main morphological characteristic of Lithographus are its linear tracks with

varied orientations, which differs from the rounded to elliptical tracks of Paleohelcura

araraquarensis isp. nov., whose long-axes are subparallel to the midline of the trackway. It

is, therefore, more reasonable to assign the trackways described here to Paleohelcura, and

to establish a new ichnospecies for forms with a narrow internal width.

Trace-fossil producer

Although series arrangement and track shape are variable, the most common pattern

identified is useful for making neoichnological comparisons. An alternating tripod gait is a

relatively robust locomotion pattern for Hexapoda (Wöhrl, Reinhardt & Blickhan, 2017a).

Arachnids, although possessing four pairs of locomotory appendages, can produce series

with three tracks, either by adopting a hexapedal gait or for taphonomic reasons (Davis,

Minter & Braddy, 2007; Schmerge, Riese & Hasiotis, 2013). Trackways comprising series

with alternating symmetry on either side of the medial line, and with a maximum of three

tracks per series, indicate that the animal maintained at least three feet on the ground while

walking (Fig. 9). Therefore, we restrict the discussion of the producer to the Arachnida and

Hexapoda.

The trackways made by spiders do not resemble Paleohelcura araraquarensis isp. nov.

because they have larger internal width, circular tracks, and a different series arrangement

Davis, Minter & Braddy, 2007, their Fig. 9). When scorpions leave series with three tracks

they resemble P. araraquarensis isp. nov., but with a different arrangement of tracks within

the series. In P. araraquarensis isp. nov., there are two tracks anteriorly positioned, and

a usually longer track more posteriorly and internally positioned. In scorpion trackways,

there are two tracks more posteriorly positioned and one track that lays anteriorly, and

the former are usually longer and commonly most internally positioned (Fig. 10; Davis,

Minter & Braddy, 2007, their fig. 7–8). In addition, even small scorpions, with comparable

size to the animal that made Paleohelcura araraquarensis isp. nov., leave trackways with

a large internal width, differing from the narrow internal width of P. araraquarensis isp.

nov. (Fig. 10). Modern scorpions are very similar to Paleozoic scorpions (Polis, 1990,
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Footprint being marked

Already marked footprint
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B

Figure 9 Illustration simulating the marks left by a cockroach while walking (ventral view). (A) The
photographs show the advancement of a cockroach and the marks that would be left by its feet. The red

footprints on the photograph indicate footprints that have just been produced; magenta footprints indi-

cate already produced footprints. (B) Footprints produced in each step, broken down by color. (C) Asso-

ciation between the footprints within the series and the pairs of feet that produced them. The photographs

are frames of a video courtesy of R.E. Ritzmann showing a cockroach (Blaberus discoidalis) in ventral view

walking on an oiled glass plate (Video S1).

Full-size DOI: 10.7717/peerj.8880/fig-9

p. 2); therefore, neoichnological studies provide strong grounds to exclude scorpions as

producers of P. araraquarensis isp. nov.

Neoichnological studies with cockroaches produced trackways with elongated tracks

because they walk on tarsal segments (tarsomeres) (Davis, Minter & Braddy, 2007).

Therefore, segmented tarsi appear to be an important feature to generate tracks similar

to those of the ichnogenus Lithographus and its junior synonyms. Within the Hexapoda,

Protura, Diplura, Monura and Collembola possess undivided tarsi (Kristensen, 1998,

p. 289; Bitsch & Bitsch, 2000, p. 140), probably producing tracks similar to those of an

arachnid because they also do not have segmented tarsi. Only the true insects (Zygentoma,

Archaeognatha, and Pterygota) have segmented tarsi (Kristensen, 1998, p. 289; Bitsch

& Bitsch, 2000; Gorb & Beutel, 2001, p. 534). The neoichnology of representatives of

Zygentoma and Archaeognatha revealed that they produced circular/elliptical to elongated

tracks (Getty et al., 2013), which resemble those produced by arachnids. In this case, it

is due to the low mobility of the tarsomeres, which lead to the digitigrade posture (on

the pretarsus). The increased mobility of the tarsomeres in Pterygota is linked to the

evolutionary pressure to climb and walk on a variety of new substrates due to their ability

to fly and the necessity to hold onto leaves and plant stems (Gorb & Beutel, 2001, p. 533).

Most Pterygota walk on tarsomeres (Manton, 1972; Zollikofer, 1994, p. 98; Frazier et al.,

1999; Boggess et al., 2004; Davis, Minter & Braddy, 2007; Gladun & Gorb, 2007; Clemente &

Federle, 2008; Wöhrl, Reinhardt & Blickhan, 2017b); cockroach video in Video S1 of this

publication, courtesy of R.E. Ritzmann). As observed in neoichnological experiments

on cockroaches (Davis, Minter & Braddy, 2007), they all probably produce elongated or

elliptical tracks. Nevertheless, it is not possible to assume this for all pterygote insects

without more neoichnological experiments because there are species that walk on a few

distal tarsomeres and on their pretarsus (Niederegger & Gorb, 2003; Gladun & Gorb, 2007;
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CBA

Figure 10 Scorpion Tityus serrulatus. tracks in sand (A and B) and Paleohelcura araraquarensis isp.
nov. holotype LPP-IC-0028 (C). Scale bar: 1 cm. The arrow indicates the direction of the animal move-

ment. (A) and (B) photographs courtesy of Ravi Sampaio, 2015.

Full-size DOI: 10.7717/peerj.8880/fig-10

Endlein & Federle, 2015), thereby probably producing elongated tracks, but less so than

those of full plantigrade insects.

Trackways of some desert darkling beetles (Tenebrionidae) closely resemble Paleohelcura

araraquarensis isp. nov. in that they comprise a narrow internal width, elliptical tracks, and

series that usually exhibit the same arrangement of P. araraquarensis isp. nov. (Fig. 11).

Despite being made by pterygote insects, they do not show strong linear tracks like the

cockroaches used in experiments by Davis, Minter & Braddy (2007) that made trackways

similar to Lithographus. Even with segmented tarsi, these Tenebrionidae leave elliptical

tracks just like in P. araraquarensis isp. nov. This is probably due to the small size of the

animal compared with the sand grain size, which diminishes the resolution of the tracks.

The cockroaches used by Davis, Minter & Braddy (2007) were relatively large compared to

the grain size of the substrate, creating trackways of greater than 40mm external width, and

so it is expected that the tracks reflected more faithfully the morphology of the locomotory

appendages.

The series arrangement in the trackways of Tenebrionidae are also similar to those

observed in Paleohelcura araraquarensis isp. nov. and cockroach trackways, with two

usually smaller tracks grouped anteriorly and often more externally and a longer track

more posteriorly and often internally positioned. This arrangement could be related to the
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Figure 11 Darkling beetles (Tenebrionidae) and their tracks fromMorocco dunes. (A) Oblique view
of the trackway and the walking darkling beetle. (B) Perpendicular view of the trackway and the walk-

ing darkling beetle. The photos were not taken with scales, but these beetles are around 2 cm long. Pho-

tographs courtesy of Martin Harvey, 2004.

Full-size DOI: 10.7717/peerj.8880/fig-11

positions of the legs and the role of each leg in the gait of pterygote insects. Therefore, we

consider that the producer of P. araraquarensis isp. nov. would probably be an insect from

the Pterygota rather than an arachnid, and suggest Recent Tenebrionidae as a plausible

analog, noteworthy for their high abundance and diversity in deserts, as a result of their

striking ability to adapt to hyperarid settings (Cloudsley-Thompson, 2001). This contrasts

with the interpretations of the producers of other ichnospecies of Paleohelcura, inferred

to have been made by scorpions and spiders (Davis, Minter & Braddy, 2007). Although a

beetle affinity is proposed, more neoichnological studies are necessary to discriminate other

potential producers since the diversity of pterygote insects is high (Clapham et al., 2016).

In addition, it will enable greater understanding of the effect on trackway morphology of

the interaction among the size of an arthropod, the morphology of its limbs, the grain size,

and the moisture in the substrate.

Paleoautoecologic implications

Looking atmodern deserts, among Pterygota reaching similar size, the Coleoptera are one of

the most conspicuous and abundant animals in arid environments (Holm & Scholtz, 1980;

Cloudsley-Thompson, 2001; Whitford, 2002). Some, like Tenebrionidae, possess several

morphological, physiological, and mainly behavioral adaptations to deal with extremely

dry and hot environments (ultra-psammophilous) (Cloudsley-Thompson, 2001). Beyond

their remarkable incidence in deserts, these animals play an ecological role in dune deserts

of consuming detritus among sand grains and being able to rely on this biomass even when

there is no primary production during dry periods in hyperarid deserts (Seely & Louw,

1980; Southgate, Masters & Seely, 1996).
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The producer of Paleohelcura araraquarensis isp. nov. being a pterygote insect could

predominately have been a herbivore, carnivore, or an omnivore. Omnivory is important

in desert food webs since primary productivity is limited by moisture availability (Polis,

1991). Such an animal would be able to feed on the organic matter that accumulated in the

paleodunes, but also be capable of adopting herbivorous, saprophagous, or carnivorous

diets when appropriate. Tenebrionidae are a notable example of this inmodern dune deserts

(Koch, 1961; Holm & Scholtz, 1980; Robinson & Seely, 1980; Seely & Louw, 1980; Cloudsley-

Thompson, 2001). If it had been carnivorous, the producer of Paleohelcura araraquarensis

isp. nov. could be a predatory insect, like some species of Carabidae (Coleoptera) living in

dunes of the Negev desert (Filser & Prasse, 2008).

Despite Paleohelcura araraquarensis isp. nov. sharing somemorphological characteristics

with trackways of some dune desert Tenebrionidae (see Trace-fossil producer section),

it is not possible to establish a confident link between the fossil tracks and the group

without eliminating other Pterygota as candidates through neoichnology or the discovery

of associated body fossils. Nevertheless, the existence of Taenidium isp. and Skolithos

linearis burrows (Fernandes, Netto & Carvalho de, 1988; Fernandes, Carvalho & Netto,

1990; Fernandes, 2005; Peixoto et al., 2016) shows that the Botucatu paleodesert played host

to a community of omnivorous detritivorous insects just like modern dune deserts, where

they comprise most of the animal biomass on the dune slip-face (e.g., Namib dune desert:

Seely & Louw, 1980). P. araraquarensis isp. nov. could be produced by an insect of this

community like omnivorous Tenebrionidae, which produces similar trackways in modern

dune deserts.

Paleoecology of the Botucatu desert

The trace-fossil record of the Botucatu Formation may provide indirect evidence on the

abundance and diversity of organisms that inhabited these eolian dunes. Through the

interpretation of the phylogenetic affinity and probable nutrient source of the producers, it

is possible to make broad inferences about the ecological relationships of these organisms

in the context of the Late Jurassic—Early Cretaceous Botucatu desert. Modern desert food

webs are complex due to a high frequency of omnivory, generating highly connected food

webs, with species interacting with many predators and prey (Polis, 1991). Omnivorous

insects comprise most of the animal biomass on the dune slip-face of modern deserts (e.g.,

Namib dune desert; Seely & Louw, 1980). A similar situation is envisaged for the Botucatu

paleodesert. Taenidium isp. and Skolithos linearis were most likely produced by insects

feeding on detritus among the sand grains (Figs. 12G to 12E), like Tenebrionidae inmodern

dune deserts. Those with compatible size could produce Paleohelcura araraquarensis isp.

nov. when walking on the sand. Insects feeding on living plant material as omnivores or

herbivores could also produce P. araraquarensis isp. nov. (Fig. 12H to 12E). Accordingly,

relying on plant material, the detritivorous and herbivorous invertebrates are regarded as

part of the primary consumers in the trophic web of the Botucatu paleodesert.

The geomorphological characteristics of an erg create habitats with abiotic characteristics

that determine the productivity, biomass and diversity found in the interdune, and the

windward and slip-face subenvironments of the dune field (Seely & Louw, 1980; Southgate,
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Figure 12 Reconstruction of the Botucatu paleodesert food web based on the interpretation of the
probable producers of the ichnofossil of Botucatu Formation. The dashed arrows represent the ecologi-

cal relations and the flow of energy in the Botucatu paleodesert. (A) Large mammaliaform. (B) Theropod

dinosaurs. (C) Small mammaliaform. (D) Arachnids and possible insects. (E) Insects. (F) Ornithopod di-

nosaurs. (G) Detritus in the sand and blown by the wind. (H) Plants. On the left, the possible ecological

roles that the Paleohelcura araraquarensis isp. nov. producer could have played in the Botucatu desert are

shown. This scheme was made with modifications of artworks of different authors: Carivorous Insect from

Rafael Pasini; Scorpion in (D) from Gareth Monger; (A) and (C) Mammaliaforms from Ceri Thomas; (B)

Theropod dinosaur from Frederic Wierum; (F) Ornithopod dinosaur from Nobumichi Tamura. All art-

works are under the CC-BY-SA 4.0 (https://creativecommons.org/licenses/by/4.0/).

Full-size DOI: 10.7717/peerj.8880/fig-12

Masters & Seely, 1996). Even though the slip-face occupies a small area of the erg, when

compared to the windward or interdune areas (in the case of ergs with well-spaced dunes),

and is a region of low plant growth, it has a high concentration of biomass per unit area

in the form of detritus, concentrated by the wind mainly at the base of the dunes (Seely

& Louw, 1980; Southgate, Masters & Seely, 1996). This detritus originates from adjacent

subenvironments, more conducive to plant growth where there is moisture (Seely & Louw,

1980; Southgate, Masters & Seely, 1996), and could even be carried by the wind from distant

locations, where the climatic regimes allow greater primary productivity (Robinson &

Seely, 1980). During prolonged periods of drought, with low primary productivity, the

dune slip-faces maintain high concentrations of biomass as detritus is deposited by the

wind, providing food for detritivores and letting them survive until periods of increased

availability of moisture and biomass, when they can proliferate (Southgate, Masters & Seely,

1996).

Ornithopods are known to be primary consumers in several Cretaceous ecosystems

(Barrett, 2014), therefore, they likely assumed this role in the Botucatu paleodesert as well

(Fig. 12F). Based on trackways, Francischini et al. (2015) interpreted the dinosaur fauna
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Figure 13 Kahani Dunes in the arid Namib Desert showing some plant growth (Stipagrostis sabuli-
cola). Photography courtesy of Oliver Halsey, 2016.

Full-size DOI: 10.7717/peerj.8880/fig-13

of the Botucatu Formation as ‘‘dwarf’’ when compared with the fauna of the older and

paleoenvironmentally wetter Guará Formation. It is possible that this could be due to

the lower primary productivity of the arid Botucatu paleodesert that would only support

viable populations of smaller herbivorous dinosaurs. We infer that the presence of these

small-sized herbivorous dinosaurs, less than 68 cm in height to the pelvic girdle, is evidence

that there was localized plant growth at least for some period in the region (Fig. 12H to F).

This is supported by the fact that the home range of modern herbivorous animals increases

with increasing body size (e.g., ungulates: Ofstad et al., 2016), so these small ornithopods

with limited home range should not have fed far from where their tracks were found.

Therefore, we can infer that the Botucatu paleodesert landscape could have had some

shrubs, similar to modern arid dune deserts (e.g., Namib Desert: Fig. 13). The presence of

plants makes it reasonable to infer that some invertebrates in the area may not have relied

exclusively on detritus to survive but could also have been herbivorous (Fig. 12: flowing

energy from H to E).

Contrasting with most ‘‘dwarf’’ trackway producers, a trackway of a large dinosaur (3.6

m high and 5 m long) interpreted as that an ornithopod has been documented as well

(Fernandes, 2005; Fernandes & Carvalho, 2007; Francischini et al., 2015). Since the trackway

of only one animal was found and there are no trackways of associated predators, it is likely

to infer that there was no settled population of this animal in this location at the time. The

large ornithopod dinosaur that produced this trackway probably had an extensive home

range, encompassing habitats with different primary productivity to support their large

body size, and this trackway of an anomalously large animal for the environment would be

the record of an animal crossing a less suitable area, like modern desert-dwelling elephants

(Viljoen, 1989) and giraffes (Fennessy, 2009; Flanagan et al., 2016).
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The next trophic level includes animals from various phylogenetic groups that feed

on detritivores and herbivores, therefore, they are carnivores and omnivores (secondary

consumers). In the Botucatu Formation, this would include arachnids such as scorpions

and spiders (Fig. 12D), the producer of Paleohelcura araraquarensis isp. nov. if it had been

a predator or an omnivore feeding on animal biomass, small mammaliaform organisms

that produced Brasilichnium elusivum and B. saltatorium (Fig. 12C), and small theropod

dinosaurs (Fig. 12B). Due to the high connectivity of the trophic web, there would be

interactions among the representatives of this level. Trophic interactions would have been

limited by the ability of an animal to prey upon another, which is linked to the size of the

prey. Therefore, the animals grouped here probably preyed on smaller animals from the

same trophic level or even eggs and juveniles of larger animals. The existence of predatory

arachnids in the Botucatu paleodesert does not preclude the existence of predatory insects

because this coexistence is observed in modern dune deserts (e.g., Negev: Filser & Prasse,

2008).

Brasilichnium elusivum is the most common vertebrate trackway recorded in the

Botucatu Formation (Leonardi, Carvalho de & Fernandes, 2007) and is a typical ichnotaxon

in other Mesozoic paleodeserts around the world (Krapovickas et al., 2016; Xing et al.,

2018). Lizards and snakes that could have occupied the same trophic level are common

inhabitants of all modern hot deserts (Cloudsley-Thompson, 1991; Whitford, 2002, p. 129),

but no records of these types of animals have been found in the Botucatu Formation.

Snakes appeared during the Middle Jurassic (Caldwell et al., 2015), and may not have

been widespread in desert ecosystems during the time of the Botucatu paleodesert (Late

Jurassic—Early Cretaceous). There are a few records of lizard-like tracks in paleodeserts

from the Permian (Loope, 1984; Haubold et al., 1995; Lockley & Hunt, 1995; Lockley et al.,

1998). Tracks assigned to lizards (‘‘lacertoids’’) generally show digit impressions with an

inturned ‘‘comb’’ of curved digits, and pes tracks that are longer than wide (Hunt & Lucas,

2006), however, these were not found in the Botucatu Formation.

The top trophic level is hard to define due to the trophic generalism of desert animals.

This level is represented by animals that, because of their size, would be able to prey

on non-detritivorous animals, like the producer of Brasilichnium elusivum, arachnids and

small herbivorous dinosaurs (ornithopods), as well as the small detritivorous animals. Such

organisms would include the larger theropod dinosaurs reported from trackways in the

Botucatu Formation (Francischini et al., 2015) (Fig. 12B), and mammaliaform producers

of Brasilichnium anaitti, which are larger than the producers of Brasilichnium elusivum and

B. saltatorium (Fig. 12A).

Implications for the definition of the Octopodichnus-Entradichnus
Ichnofacies of eolian environments

Two invertebrate eolian ichnofacies were defined independently, the Octopodichnus

Ichnofacies of Hunt & Lucas (2007) and the Entradichnus Ichnofacies of Ekdale, Bromley &

Loope (2007). Subsequently, they were both integrated as the Octopodichnus-Entradichnus

Ichnofacies (Buatois & Mángano, 2011, p. 78;Krapovickas et al., 2016;Buatois & Echevarría,

2019). In particular,Krapovickas et al. (2016) suggested that this ichnofacies is characterized
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by (1) low to rarely moderate trace fossil diversity, (2) dominance of simple sub-superficial

dwelling traces produced mostly by coleopterans, orthopterans and arachnids, with

horizontal (e.g., Palaeophycus) and/or vertically oriented dwelling burrows (e.g., Skolithos,

Digitichnus); (3) superficial locomotion traces produced by arthropods, especially arachnids

(e.g., Octopodichnus, Paleohelcura); and (4) subordinate simple (Planolites) and meniscate

(e.g., Taenidium, Entradichnus) feeding burrows. The Chelichnus Ichnofacies of Hunt &

Lucas (2007) is considered the archetypal vertebrate ichnofacies of eolian environments.

The combined analysis of sedimentary facies and variations in the occurrence, abundance,

and diversity of trace fossils may allow differentiation among hyper-arid, arid and semi-arid

deserts (Krapovickas et al., 2016).

Like ichnofacies from other continental environments, arid eolian environments display

recurrence in the characteristics of their ichnocoenoses, which represent behavioral

convergence as a response to abiotic features of habitat and substrate (Buatois & Mángano,

2011). There is also recurrence of certain tracemakers in arid eolian environments, such as

scorpions and spiders, which can produce Paleohelcura and Octopodichnus (Brady, 1947;

Davis, Minter & Braddy, 2007), both common ichnotaxa in arid deserts (Krapovickas et al.,

2016).

The Octopodichnus Ichnofacies is dominated by arthropod trackways and was based on

the study of Permian ichnoassemblages, illustrated by the Coconino Sandstone (Hunt &

Lucas, 2007). In contrast, the Entradichnus Ichnofacies is characterized as dominated by

simple shallow vertical and horizontal burrows, as well as meniscate trace fossils, having

been based on the study of Jurassic examples, in particular the Navajo Sandstone (Ekdale,

Bromley & Loope, 2007). It has been noted that the diverging characterization of these

ichnofacies was the result of the disparate databases (Buatois & Mángano, 2011;Krapovickas

et al., 2016). Undoubtedly, the apparent contrasting nature of Paleozoic and post-Paleozoic

eolian ichnofaunas has been detrimental to a unifying approach to ichnofacies definition.

In this regard, the presence of arthropod trackways in Mesozoic eolian deposits (like P.

araraquarensis isp. nov.) helps to trace a continuity between Paleozoic and post-Paleozoic

desert ichnofaunas, further reinforcing the notion of a single Octopodichnus-Entradichnus

Ichnofacies for eolian deposits.

CONCLUSIONS

Paleohelcura araraquarensis isp. nov. is characterized by elliptical tracks and a narrow

internal width to the trackway. Despite being included in Paleohelcura, an ichnogenus

usually attributed to arachnids, Paleohelcura araraquarensis isp. nov. was most likely

produced by a pterygote insect on the basis of neoichnological observations. The producer

of Paleohelcura araraquarensis isp. nov. could have occupied one of the ecological roles

that different species of Pterygota are capable of performing in modern dune deserts.

It could have been a herbivore, or a carnivore (like carnivorous Carabidae in some

modern dune deserts) or been part of the fauna of omnivores, being able to adopt

herbivorous, carnivorous, and saprophagous diets when opportune. As an omnivore,

like the abundant Tenebrionidae beetles in some modern dune deserts, it could have been
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capable of relying on organic particles that accumulated among the sand grains of the dunes

during dry periods with no plant growth. The presence of Taenidium isp. and Skolithos

linearis burrows suggests that the Botucatu paleodesert would have had a detritivorous

fauna like modern dune deserts, with the producers of these burrows having a compatible

size with the plausible producers of Paleohelcura araraquarensis isp. nov.

Based on the interpretation of the ichnofossil producers, it was possible to reconstruct

the food web of this paleodesert, in which the producer of Paleohelcura araraquarensis

isp. nov. could have been a primary consumer if it were a herbivorous or an omnivorous

detritivorous insect, or a secondary consumer if it had been produced by predatory

insects or omnivores relying on animal biomass. To date, Paleohelcura araraquarensis

isp. nov. is only known from the Botucatu Formation, but the presence of such types

of arthropod trackways in Mesozoic eolian deposits helps to trace a continuity between

Paleozoic and post-Paleozoic desert ichnofaunas, further reinforcing the notion of a single

Octopodichnus-Entradichnus Ichnofacies for eolian deposits.
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