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Abstract 

Pterosaur eggs can offer information about pterosaur reproductive strategies and are extremely precious because 
only a small number of specimens have been discovered. Previous studies have mainly focused on morphological 
descriptions of pterosaur eggs and their embryos while the chemical composition of pterosaur eggs has received 
little attention. The conventional view believed that the eggshell was composed of calcite. However, previous SEM–
EDS results for Hamipterus tianshanensis showed that the eggshell contains phosphorus. Therefore, the object of this 
research is to determine the mineral composition of the eggshell of H. tianshanensis. Two eggs were analyzed by 
scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM–EDS) and Raman spectros-
copy. The SEM–EDS results show that both surface and cross section are porous and characterized by small irregularly 
shaped particulates. Moreover, the distribution of Ca and P has a strict coincidence in the cross-section of eggshells. 
Furthermore, neither the intense peaks of calcite nor organic peaks can be observed by Raman spectroscopy in egg-
shells. Meanwhile, the Raman spectroscopy mapping analysis result shows a sharp and intense peak at approximately 
966  cm−1 among the white eggshell, which can be hard evidence that H. tianshanensis eggs are mainly composed 
of calcium phosphate. Combined with the present of F in the eggshell, it can be inferred that fluorapatite  Ca5(PO4)3F 
is the main mineral. The fluorapatite eggshell can be interpreted in two ways. One explanation is that H. tianshanen-
sis laid apatite-shelled eggs, similar to living Salvator merianae, and the bioapatite transformed to fluorapatite over 
geological time. Another possible explanation is that the fluorapatite comes from the result of phosphatization of 
soft egg membrane tissues through taphonomic processes, indicating that H. tianshanensis might have laid soft eggs. 
Regardless, the results show that fluorapatite, rather than calcite is the main preserved mineral composition of H. tian-
shanensis eggshell, correcting the previous view. This study contributes to the present understanding of the mineral 
composition of pterosaur eggshells and may offer some insight into the pterosaur reproduction pattern.
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Introduction
Raman spectroscopy, because of its ability to perform 
non-destructive in-situ analysis, with little or no sample 
preparation, is an ideal method to analyze precious rel-
ics and is widely used in analyzing their composition. 
For example, analysis of corrosion products on bronze 
artifacts [1]; analysis of the pigments and dyestuff [2–6], 
especially for the cobalt blue pigment [7], Chinese Blue 
 (BaCuSi4O10), and Chinese Purple  (BaCuSi2O6) [7]; iden-
tification of the firing temperature of ancient ceramics 
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[8]; and identification of Chinese jades [9] and glass 
beads [10].

In addition to cultural heritage, Raman spectros-
copy also plays an important role in paleontology stud-
ies. Firstly, it is a powerful tool to identify fossil damage, 
especially sulfate efflorescence [11]. Secondly, it is useful 
for detecting the chemical composition of fossils, such as 
identifying minerals in wood fossils [12], root fossils (rhi-
zoliths) [13], insect cuticle fossils [14], microscopic fos-
sils [15], and ctenophore embryos [16]. Moreover, Raman 
spectroscopy is powerful for detecting organic matter, 
such as organics in the silica matrix [17] and kerogen in 
fossils [14, 18]. Moreover, N-heterocyclic polymers in 
fossils can provide clues about how proteinaceous tissues 
undergo diagenesis [19]. Thirdly, Raman spectroscopy 
spectra can be used to determine the diagenetic degree, 
which is important for other analyses carried out on fos-
sils, such as isotope analysis [20, 21].

Fossil eggs, as valuable specimens, can provide repro-
ductive information on amniotes [22] and paleoenviron-
mental and taphonomy information [23, 24]. Meanwhile, 
Raman spectroscopy, as a non-destructive test, has drawn 
much attention in fossil egg researchers. For exam-
ple, Raman spectroscopy can be used to identify the 
chemical composition of fossil eggshell [25], such as the 
hydroxyapatite (HAP) preserved in the cuticle layer [26], 
phosphate in the membrane [27], and color-producing 
pigments [28–30], S- to N-heterocycles [31], and amor-
phous carbon [32]. Moreover, Raman spectroscopy with 
the deconvolution technique can be used to detect the 
maximum paleotemperature recorded in eggshells [33].

Most researchers focus on hard-shelled eggs (such as 
dinosaur eggs), while there are few studies on softshell 
specimens. Mainly because the soft eggs have poor pres-
ervation potential, and only a small number of cases have 
been reported [34–36]. To obtain more information from 
these valuable and rare soft egg specimens, researchers 
have shown an increased interest in element and chemi-
cal analysis [37], especially in using Raman spectroscopy 
for its non-destruction. Recently, Raman spectroscopy 
has played an important role in soft egg studies, such as 
a giant egg from the Late Cretaceous of Antarctica (Ant-
arcticoolithus) [35], the ornithischian Protocertops, and 
the basal sauropodomorph Mussaurus eggs [36].

The eggs of Hamipterus tianshanensis, with calcare-
ous hard eggshell followed by a soft membrane [38], have 
gained much influence since they were first reported. 
Similar to the comments by David M. Martill [39], never 
before have so many pterosaur eggs been found in such 
concentrated conditions. Taking the most important 
section in the sandstone block (3.28  m2) as an example 
(Fig.  1c), more than 200 eggs have been yielded, while 
more are uncountable and buried under the exposed 

eggs [40]. This discovery provides a unique opportunity 
to investigate pterosaur reproduction and early growth 
[40]. However, little research has focused on the eggs of 
H. tianshanensis, and more information is still needed, 
for example, the mineral composition of the white shell 
of Hamipterus eggs.

A previous study believed that the eggshell was com-
posed of calcite, similar to most reptiles [38]. However, 
the SEM–EDS results presented in that work showed 
that the shell contained phosphorus [38]. Therefore, it is 
unclear which kind of phosphorus-rich minerals exists in 
the Hamipterus eggshell. Moreover, how are calcite- and 
phosphorus-rich minerals distributed over the eggshell? 
The specific objective of this study is to answer these 
questions. The findings should make an important con-
tribution to the field of pterosaur eggs. In addition, there 
are few studies on pterosaur eggs because only a few 
specimens have been reported [41–49], so this study can 
supply more information about pterosaur egg structure.

In this study, with the support of SEM–EDS pre-obser-
vation, micro-Raman spectroscopy analysis coupled with 
an optical microscope was carried out to identify the 
white eggshell composition and the mineral distribution 
of Hamipterus pterosaur eggs. This study can provide 
important information about the characteristics of ptero-
saur eggs and the taphonomy of Hamipterus pterosaur.

Materials and methods
Materials
Bones and eggs of H. tianshanensis were collected from 
2006 to 2016 at the Turpan-Hami Basin, Xinjiang Uygur 
Autonomous Region, northwestern China (Fig.  1a). 
According to the geological studies done in this region, 
the layers where the fossils were found were fall into part 
of the Lower Cretaceous Tugulu Group [40, 50]. The fos-
sil bearing strata is consisted of gray sandstones with 
coarse cross bedding and grayish-white fine sandstones 
with parallel beddings and coarser reddish-brown sand-
stones (Fig. 1b) [40]. Almost Hamipterus specimens and 
their eggs were found in tempestite interlayers.

The two specimens involved in this research were all 
eggs of H. tianshanensis from Hami. Both specimens 
were collected in layer f (Fig. 1b) and now they are pre-
served in the Institute of Vertebrate Paleontology and 
Paleoanthropology, Chinese Academy of Sciences.

Sample no. 1 (IVPP V 18939) was cut for SEM–EDS 
analysis several years ago [38]. This specimen was ana-
lyzed by a non-destructive method because it is from the 
museum’s collection storeroom and should be returned. 
The eggshell of sample no. 1 is in good condition (Fig. 2f, 
h), and only a few areas are exfoliated (Fig.  2g). Sample 
no. 2 is a half fossil egg and can be analyzed by destruc-
tive methods if necessary. The eggshell of sample no. 2 is 
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in poor condition because many eggshell areas have exfo-
liated during removing the matrix (Fig. 3d). Only a small 
area is relatively well preserved (Fig.  3c). Furthermore, 
a small area is covered with matrix on both sides and 
therefore can be regarded as well preserved with no exfo-
liation (Fig.  3e). Both specimens are preserved in three 
dimensions and contain no embryos.

Methods
SEM–EDS
Phenom XL with a 100  mm * 100  mm sample size was 
used to observe sample no. 1b because sample no. 1a is 
too large to analyze. A small part of the egg was cut off 
from specimen no. 2. The sample was gold-coated and 
imaged by Phenom Pro X. Both Phenom desktop scan-
ning electron microscopes (SEM) were equipped with 

Fig. 1 a Map showing the fossil site. b Section of the fossil bearing strata, and layer f is the main level where specimens of c were collected. 
Two specimens in this article were also collected in layer f (legend: 1, coarse grained sandstone with pellets; 2, middle grained sandstone; 3, fine 
sandstone; 4, cross beddings; 5, parallel beddings; 6, scour marks; 7, pterosaur bones; 8, pterosaur eggs). c Eggs of H. tianshanensis preserved with 
pterosaur bones in sandstone (IVPP V 18941–18943). d The close-up view of egg fossils (IVPP V 18942). Figure 1b, c, d reproduced with permission of 
Ref. [40], Copyright of ©2017 Science
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Fig. 2 Hamipterus tianshanensis egg Sample no. 1 (IVPP V 18939). This sample was cut for SEM–EDS analysis in Wang et al. [38]. a Eggs pieces 
together (front view). b, c The bigger cut part, numbered Sample no. 1a. d, e The smaller counterpart, numbered Sample no. 1b. f The 
microstructure of eggshell preserved well. g An enlargement of the red box in c shows the exfoliated area. h Enlargement of the red box in d shows 
the preserved well area



Page 5 of 14Li et al. Heritage Science           (2022) 10:84  

a backscattered electron (BSE) detector and EDS. The 
operating voltage was 15kv.

Raman Both spot and mapping Raman analyses were 
performed by a Horiba XploRA PLUS Raman spectrom-
eter with a 600 grooves/mm grating and a CCD detector. 
The Raman maps were constructed using Nikon E Plan 
50 × LWD objectives, depending on the scan size.

For the spot analysis, data were collected using a laser 
wavelength of 532 nm (or 638 nm) and a laser power of 
15 mW. The spectra were obtained in the range of 100 
and 4000   cm−1 at an exposure time of 5 s and two data 
accumulations.

For the Raman spectroscopy mapping analysis, the 
incident beam was ∼2 μm in diameter and 33 μm in pen-
etration depth with ∼15 mW power at a 532  nm laser. 
Spectra in the range of Raman shifts between 100 and 
1500   cm–1 were collected from 23 × 107 spots on the 
eggshell cross-section with a 1 μm step. Acquisition time 
was 0.5  s for one spot. Integrated signals with peak fit 
amplitude results at 963  cm–1 were used for RS images.

Results
SEM–EDS
The BSD images show that the eggshell cross section is 
porous and charactered by irregularly shaped particu-
lates. Some small irregularly round holes can be observed 
(Fig. 4a, b). The distribution patterns of Ca and P are the 
same, and the concentrations of Ca and P were very high 
in the eggshell (Fig. 4d). Meanwhile, the signal for carbon 
is relatively weaker in the eggshell area. The strong Ca-P 
signal and weak C signal indicate that eggshell may not 
be composed only of calcium, and some phosphorous 
compound must be in it. Moreover, the signals for C and 
N are much stronger in the outer surface area. This phe-
nomenon can be explained by this specimen having been 
consolidated by some organic material after excavation. 
The distribution of Cl and Na has a strict coincidence 
(Fig. 4d). Based on the fossil bones and matrix have high 
content of halite [51, 52], it can be inferred that halite 
may also exist in the eggshell. Furthermore, the distribu-
tion patterns of Si, Al, Mg, and O are the same, indicating 
that the interior of eggshell is composed of quartz and 
feldspar.

Fig. 3 Hamipterus tianshanensis egg Sample no. 2. a A half pterosaur egg. b Another side of this half pterosaur egg. c Enlargement of the only 
preserved well area in this sample. d Most areas are in poor condition, with white eggshell exfoliation. e The eggshell area was covered by matrix, 
and these areas can be recognized as non-exfoliation
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Figures 5 and 6 show the SEM images of pterosaur egg 
sample no. 2 and the distribution of the elements. Both 
surface and cross section are characterized by small 
irregularly shaped particulates. Moreover, the eggshell is 
porous and many circular holes can be observed.

The SEM–EDS point analysis show high O, Ca, F and 
P peaks with minor quantities of C and Si in the egg-
shell (Figs.  5e and  6e). The mapping results show that 
the eggshell is composed of abundant concentrations of 
phosphorus and calcium, and Ca and P exhibit a similar 
distribution pattern (Fig. 6i).

The results show the same element distribution pat-
terns in both specimens, especially for the significant 
phenomenon that calcium distribution is space-related 
to phosphorus in eggshells. The high Ca, P, and F con-
tent (> 5%) and low C content (2%) in the eggshell (Fig. 5) 
indicate that some phosphorus-rich minerals must be in 
the eggshell.

Raman spectroscopy
Raman spectroscopy was used to identify the mineral 
phase of pterosaur eggshell. The spot test results are 

Fig. 4 SEM–EDS results for no. 1 eggshell sample (cross-section). a Backscatter electronic image at low magnification, outside of eggshell is up. 
b Backscatter electronic image at high magnification, outside of eggshell is up. c Backscatter electronic image, outside of eggshell is down. d 
Elemental mapping images of the same area for c (scale bar 150 μm). Outside of eggshell is down
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Fig. 5 SEM–EDS results for no. 2 eggshell sample (outside surface). a, b, c The secondary electron images of surface eggshell, small irregularly 
shaped particulates can be observed. d The backscatter electronic image of surface eggshell. e The elements content results in point analysis for 
Fig. 5d. f The backscatter electronic image of surface eggshell. g The elements content results in mapping analysis for f. h The fluorine distribution of 
f. i The calcium distribution of f. j The phosphorus distribution of f 
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Fig. 6 SEM–EDS results for no. 2 eggshell sample (cross section). a, b, c The secondary electron images, small irregularly shaped particulates can be 
observed. d The backscatter electronic image. e The elements content results in point analysis for d (marked on red cross). f The mapping analysis 
results for d. The region at bottom of the sample (high F content) is matrix, not eggshell. g The backscatter electronic image. h The elements 
content results in mapping analysis for g. i The mapping analysis results for g. Outside of eggshell is up
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presented in Fig.  7 and compared with RRUFF Raman 
spectroscopy databases (RRUFF Project).

Figure 7a and b are the same analysis region at different 
laser. It can be assured that the high broad peaks in the 
range of 1800–3000  cm−1 (marked in red box in Fig. 7b) 

Fig. 7 Raman spectra point analysis results of samples. a The eggshell surface of Sample no. 2 in 638 nm. b The surface eggshell of Sample no. 2 
in 532 nm. c The cross-section of Sample no. 1 in 532 nm. d The surface eggshell of Sample no. 1 in 532 nm. e The surface weathered white area of 
Sample no. 2 in 532 nm. f The surface well-preserved area (shown in Fig. 3c) of Sample no. 2 in 532 nm
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are the fluorescence signal. Figure 7c, d was draw in the 
range between 0 and 4000  cm−1 with a break region from 
1800 to 3000  cm−1.

Except for Fig. 7f, the remaining Raman spectra of the 
samples have the same pattern, indicating that the phos-
phorous compound in the eggshell is calcium phosphate. 
The strong band in the range 963–967  cm−1 corresponds 
to v1 stretching of the P-O band in PO4

3−; the band in 
the range 422–454   cm−1 is attributed to v2 bending of 
the O–P–O in  PO4

3−; and 568–617  cm−1 is attributed to 
v4 bending PO4

3− [53]. Except the white well-preserved 
area of sample no. 2 (Fig. 7f ), all white regions of eggshell 
showed an intense and sharp Raman band in the range 
963–967  cm−1, indicating calcium phosphate in the egg-
shell. It is hard to recognize a band around 3570   cm−1 
(the OH band) [54]. Combined with the existence of F 
element in the eggshell, it can be inferred that the white 
eggshell is mainly composed of fluorapatite. Moreover, 
the blue shift of the v 1 peak (intense peak at 966   cm−1 
for fluorapatite while intense peak at 962   cm−1 for 
hydroxyapatite) is also the evidence of fluorapatite in the 
eggshell [53, 55].

Interestingly, the spectra of both samples show none 
of the bands at 1085   cm−1, 710   cm−1, 280   cm−1, and 
152   cm−1, which are characteristic of the calcite vibra-
tional pattern. In particular, no bands were observed at 
approximately 1085  cm−1, which is the most characteris-
tic and strongest band of calcite.

Figure  7f shows the Raman spectra for the well-pre-
served area of sample no. 2. As shown in Fig.  3c, the 
well-preserved white area had almost no eggshell fall-
ing off the matrix. The Raman spectroscopy results indi-
cated that this area is composed of gypsum. The signals 
at 415  cm−1, 494  cm−1, 621  cm−1, 670  cm−1, 1007  cm−1, 
and 1133   cm–1 are attributed to gypsum. Specifically, 
the strongest peak is at 1007  cm−1, which is the υ1 sym-
metric stretch vibration mode of  SO4 tetrahedra [56]; in 
addition, the peaks at 415   cm−1 and 494   cm−1 are dou-
blets for υ2 symmetric bending of  SO4 tetrahedra [57]. 
The peak at 1133  cm−1 is attributed to υ3 antisymmetric 
stretch vibration modes, and the peaks at 621  cm−1 and 
670   cm−1 are attributed to υ4 antisymmetric bending 
vibration modes [56].

The gypsum on the egg surface can be attributed to 
making plaster-jacketed blocks during fossil collection 
and transportation. The large fossils were encased in 
plaster bandages and then moved to the laboratory for 
mechanical development. While making plaster-jacketed 
blocks, although wet tissue paper acts as a separator 
between the fossil and the plaster, some plaster may be 
covered on the exposed bones, eggs, and adjacent matrix. 
Thus, the white well-preserved area is not the eggshell, 

and it can be the residue when making plaster-jacketed 
blocks.

Based on the results of the Raman spot analysis, the 
presence of fluorapatite in the eggshell was ensured. 
Together with the mapping results of SEM–EDS, Ca and 
P have strong signals among the eggshell and exhibit a 
similar distribution pattern. However, carbon has a weak 
signal and exhibits a relatively uniform monotonous dis-
tribution between eggshell and matrix. Moreover, there is 
no characteristic peak of calcite. Is the pterosaur eggshell 
mainly composed of fluorapatite? Since single spectra 
obtained by spot analyses cannot give a conclusive result 
[58], Raman mapping was used to reveal the spatial dis-
tribution of fluorapatite.

The Raman mapping images of eggshells (sample no. 
1) are shown in Fig. 8. The red areas indicate the strong 
signal of fluorapatite, and fluorapatite makes up the main 
white eggshell (Fig.  8c). However, the blue and green 
areas indicate that this area has a weak or no fluorapa-
tite signal (Fig.  8c), and this area is consistent with the 
darker area in the optical photomicrograph, which can 
be related to the matrix surrounding the eggshell and the 
inclusion or impurity in the white eggshell (the arrow in 
Fig. 8b).

Based on the intense peak around 966  cm−1 in Raman 
spectrogram and the F existence in the SEM–EDS point 
analysis, it can be inferred that fluorapatite  [Ca5(PO4)3F] 
is the main mineral that composed the eggshell.

Discussion
The objective of this study is to identify what kinds of 
phosphorus-rich minerals existed in Hamipterus egg-
shell. The results show that the white eggshell is mainly 
composed of fluorapatite. Moreover, contrary to expecta-
tions, this study did not find calcite signals in eggshells. 
This phenomenon can be interpreted in two ways.

One possible explanation for this might be that H. 
tianshanensis laid apatite-shelled eggs, and the bioapa-
tite transformed to fluorapatite over geological time. 
Although calcium carbonate is the most common chemi-
cal composition of amniotic eggs [59, 60], some reptile 
eggs can be composed of apatite ocassionally [61, 62]. For 
example, hydroxyapatite is the only biomineral present in 
the eggshell of Salvator merianae, the largest living liz-
ard in South America [61]. It is possible that Hamipterus 
laid apatite eggs, similar to S. merianae. Bioapatite (bio-
genic hydroxyapatite) is generally unstable in a range of 
varying geochemical conditions and can be transformed 
to a more stable phase like fluorapatite. It is very com-
mon that the primary biological material (bioapatite such 
as bone and dental enamel) is replaced by a secondary 
fluorapatite phase [63, 64].
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Another possible explanation for this is that the 
fluorapatite is the result of phosphatization of soft egg 
membrane tissues through taphonomic processes after 
the eggs were buried. Apatite replacement of the mem-
brane testacea is common in fossil eggs [27, 35, 65, 66]. 
For example, Antarcticoolithus bradyi, a giant soft-shelled 
egg from the Late Cretaceous of Antarctica, is composed 
of calcium phosphate and is thought to be the result of 
diagenetic alteration [35]. Phosphatization, as an impor-
tant taphonomic process of fossil preservation, is the only 
taphonomic mode that can preserve putative subcellular 
structures [67]. For example, much-nonmineralized tis-
sue, such as fungi, bacteria, the soft tissue of animals, and 
coprolites, can be preserved by diagenetic mineralization 
in apatite [68]. During the phosphatization taphonomic 
processes, for one thing, the organic tissues, such as the 
egg membrane, are a potential source of phosphate [67]. 
In other words, the egg membrane, as the template, natu-
rally synthesized hydroxyapatite, and apatite grew onto 
the organic template [69–71]. In addition, microbes also 
play a critical role in phosphatization. First, microbes can 
release organically bound phosphate from the carcass 
[72]. Second, microbes can concentrate phosphate [73]. 
Thus, microbial decay can assist in the phosphatization 
process [74]. Furthermore, phosphatization of soft tis-
sue can occur within weeks of death [75]. Hence, it is also 

possible that the apatite of Hamipterus eggs is the result 
of the phosphatization of the membrane.

If fluorapatite is the result of diagenesis, it could there-
fore conceivably be hypothesized that H. tianshanensis 
may lay soft eggs. Soft eggs, such as secondarily phos-
phatized protocertops [36] and Antarcticoolithus bradyi 
[35], both contain calcium phosphate. In fact, diagenetic 
alteration of the mineral composition of membrane testa-
cea to apatite is relatively common in fossil eggs [27, 65, 
66]. Hence, it may be that H. tianshanensis lays soft eggs 
and that fluorapatite is the phosphatization result of 
membrane testacea.

Overall, the special phenomenon that white pterosaur 
eggshell is composed of fluorapatite can be explained 
either by the biomineral source, similar to living S. meri-
anae eggshells, or by phosphatization taphonomic pro-
cesses. Regardless of which explanation is correct, our 
studies provided more information about pterosaur 
eggs. After all, fluorapatite pterosaur eggshell has not 
previously been described. In reviewing the literature, 
most pterosaur egg studies focus on morphologic analy-
sis [41–49]. To date, only Grellet-Tinner et  al. reported 
the composition of a three-dimensional pterosaur egg 
(Pterodaustro guinazui, from central Argentina) [47]. 
The eggshell thickness averages 50 μm, which is consist-
ent with the eggs of H. tianshanensis in this study [47]. 
However, the mineral composition of eggshells between 

Fig. 8 Mapping of pterosaur eggshell (sample no. 1b). a Optical microscope image. b The area selected for Raman mapping (optical microscope 
image with higher magnification) c Raman map position of maximum peak intensity in the region of 963  cm−1, the unique and characteristic peak 
of fluorapatite. Red represents the highest scores recorded, and blue represents the lowest scores
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Pterodaustro guinazui and H. tianshanensis is different. 
The mineral composition of H. tianshanensis eggshell is 
apatite, while the eggshell of P. guinazui consists of cal-
cium carbonate [47]. Thus, it can be indicated that the 
high compositional variation among pterosaur eggshells 
is due to the different mineral eggshell compositions 
between P. guinazui and H. tianshanensis.

According to these data, it can be inferred that the 
mineral composition of pterosaur eggshell is compli-
cated and cannot be simply deduced by extant phylo-
genetic bracketing. Because the discovery of pterosaur 
eggs is so rare, the mineral composition of pterosaur eggs 
is mainly deduced by extant phylogenetic bracketing. 
Based on phylogenetic analyses, it is generally assumed 
that pterosaur is the sister taxon to Dinosauria, forming 
the clade Ornithodira (Avemetatarsalia) [76]. Moreover, 
the clade including pterosaurs, dinosaurs, and birds is a 
sister clade to one that contains extant crocodiles [39]. 
Since crocodile dinosaurs and birds all lay eggs with a 
calcium carbonate shell, it is most reasonable that ptero-
saurs also laid eggs with a calcium carbonate shell. How-
ever, a recent study by Norell et al. [36] revealed that the 
first dinosaur egg was soft-shelled. Hence, egg evolu-
tion among crocodiles, dinosaurs, and pterosaurs must 
be complicated. Furthermore, the assumption that the 
mineral composition of pterosaur eggs is  CaCO3 may be 
modified.

However, this study remains limited due to the small 
number of samples. Since laboratory analysis requires 
samples to be removed from large specimens, which is 
harmful, a portable Raman spectrometer in the field may 
be a better method for future research.

The finding that the mineral composition for H. tian-
shanensis eggshell is fluorapatite, while preliminary, is 
significant in at least two major respects. First, this study 
rectifies the formal view that calcite is the main com-
ponent of Hamipterus eggshell. In fact, the eggshell is 
mainly composed of fluorapatite and without calcite. Sec-
ond, the fluorapatite eggshell can be explained either by 
biomineral or diagenetic alteration. Regardless of which 
explanation is correct, this finding indicated that the 
Hamipterus reproduction pattern is special.

Conclusions
In this investigation, the aim was to determine the miner-
als that existed in Hamipterus eggshells. The SEM–EDS 
elemental mapping shows that Ca and P have similar 
distribution patterns among the eggshells. The Raman 
spectroscopy results show an obvious intense peak of 
approximately 966  cm−1 among the white eggshell, which 
can be hard evidence of calcium phosphate in H. ptero-
saur eggs. Moreover, no intense peaks of calcite can be 
observed in eggshells. Combined with the existence of F 

in the eggshell, it can be assumed that the main mineral 
of H. pterosaur eggshell is fluorapatite  Ca5(PO4)3F.

The fluorapatite  Ca5(PO4)3F in the eggshell can 
be explained in two ways. One possibility is that the 
fluorapatite is biomineral source, and the bioapatite 
transformed to fluorapatite over geological time. This 
means that H. tianshanensis laid apatite-shelled eggs, 
similar to living S. merianae. Another explanation is that 
the fluorapatite is the result of phosphatization tapho-
nomic processes, indicating that H. tianshanensis may 
lay soft eggs. More work and specimens are necessary to 
confirm either explanation.

In any case, these remarkable findings contribute to our 
understanding of the mineral composition of pterosaur 
eggshells and offer some insight into the nature of the 
eggshell and even pterosaur reproduction pattern.
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