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ABSTRACT

Because teeth can be taxonomically distinct, particularly for non-mammalian carni-
vores such as non-avian dinosaurs, teeth that have broken off in the bone of another
animal during feeding, predation or antagonism can provide direct information
on carnivore behaviour. Here, we report on a semi-complete, articulated adult
Edmontosaurus skull (MOR 1627) from the Hell Creek Formation with an embedded
theropod tooth in the nasal. To ascertain taxonomic identity of the preserved tooth
tip, we compare standardized crown and denticle measurements as well as denticle
descriptions of the embedded tooth to known non-avian theropods recovered from the
Hell Creek Formation. We also use computed tomography (CT) scans to investigate
the full extent and orientation of the embedded tooth. The apicobasal, labiolingual and
mesiodistal dimensions of the tip as well as measured denticle densities and observed
denticle characteristics indicate the embedded tooth is from a medium to large bodied
tyrannosaurid. The curvature and ovoid cross-sectional shape of the tooth further
suggests that the tooth is a maxillary tooth from a middle or posterior tooth position.
The lack of reactive bone in the region surrounding the tooth suggests the animal died
around the time the tooth became embedded in the nasal. Combined, this information
suggests the tooth broke off when a tyrannosaurid bit the snout of the Edmontosaurus
from the front at or near the time of death of the animal. Comparing observations of
hunting and feeding behaviors of modern carnivores specializing in large-bodied prey,
the scenario captured by MOR 1627 is most consistent with a bite inflicted during an
attempt to control the struggling Edmontosaurus or deliver a killing blow followed by
carcass consumption.

Subjects Animal Behavior, Ecology, Paleontology

Keywords Tooth marks, Bite marks, Feeding behavior, Paleontology, Paleoecology, Predation,
Scavenging

INTRODUCTION

Tooth marks are produced when one or more teeth contact, and sometimes penetrate, bone.
Such marks can provide information on an array of behaviour from carcass consumption
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to intraspecific antagonism (Erickson ¢ Olson, 1996; Jacobsen, 1998; Njau ¢ Blumenschine,
2006; D’Amore & Blumensehine, 2009; D’Amore ¢ Blumenschine, 2012; Drumbheller et al.,
2020; Brown et al., 2022a). Identifying the carnivore(s) responsible for producing tooth
marks left behind on bone is often not possible, making behavioural inferences, particularly
those surrounding predation and feeding for different taxa, especially difficult. In some
rare instances, taxonomic identity can be narrowed down such as when punctures are
very deep, exceeding the maximum tooth crown size of most possible carnivores in a
formation (Erickson ¢ Olson, 1996; Fowler ¢ Sullivan, 2006; Schwimmer, 2010; Dalman ¢
Lucas, 2018; Peterson ¢ Daus, 2019), serrated tooth marks, where the spacing of grooves
can be approximately correlated to the spacing between denticles and can be used to
eliminate possible candidates (Demere ¢ Cerutti, 1982; Schwimmer, Stewart ¢ Williams,
1997; D’Amore ¢ Blumenschine, 2012), and embedded teeth, where a part of a carnivore’s
tooth breaks off and becomes lodged in the animal being fed and/or preyed upon (Currie
& Jacobsen, 1995; Chin, 1997; Schwimmer, Stewart ¢& Williams, 1997; Everhart, 2008; Ehret,
MacFadden & Salas-Gismondi, 2009; Bell & Currie, 2010; Xing et al., 2012; Perez, Godfrey
& Chapman, 2021). Embedded teeth are perhaps the best way to identify the producer of
a tooth mark as teeth are taxonomically informative, at least to the family level, and in
some cases, to the species level (Currie, Rigby Jr ¢ Sloan, 1990; Peng, Russell ¢ Brinkman,
2001; Sankey et al., 2002; Smith, Vann & Dodson, 2005; Samman et al., 2005; Larson, 2008;
Evans, Larson ¢ Currie, 2013). The positioning of the embedded tooth can also provide
information on orientation of the bite, allowing for more detailed descriptions of behaviour.
Here, we present on an Edmontosaurus skull from the Maastrichtian Hell Creek Formation
with an embedded theropod tooth crown and associated tooth marks which preserves
potential evidence of predator—prey interactions.

MATERIALS AND METHODS
Background

The Hell Creek Formation primarily consists of interbedded fluvial sandstones and
mudstones and records the end of the Mesozoic Era in Montana and surrounding regions
(e.g., Clemens & Hartman, 2014; Hartman et al., 2014; Fowler, 2020). Non-avian dinosaurs
preserved in the formation include well-known taxa such as Tyrannosaurus, Triceratops,
and Edmontosaurus (e.g., Brochu, 2003; Horner ¢ Goodwin, 2006; Campione & Evans,
2011). Large sample sizes available for these terminal Cretaceous taxa provide insights
into their ontogeny and evolution (e.g., Horner ¢ Goodwin, 2006; Campione ¢ Evans,
2011; Scannella et al., 2014; Carr, 2020; Woodward et al., 2020; Wosik ¢ Evans, 2022) and
contribute to hypotheses regarding their behaviour (e.g., Farke, Wolff & Tanke, 2009;
Mathews et al., 2009; Longrich et al., 2010; Horner, Goodwin & Myhrvold, 2011; Peterson ¢
Daus, 2019).

In 2005, Museum of the Rockies (MOR) specimen 1627 was discovered by Marge Baisch
and collected by Ken Olson in the Hell Creek Formation of Dawson County, Montana
(MOR locality no. HC-387). MOR 1627 is a nearly complete, articulated Edmontosaurus
skull that was discovered in a sandstone unit of the formation on lands managed by the
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Bureau of Land Management. Precise stratigraphic placement of the locality within the
formation remains to be determined. The specimen was prepared by Carrie Ancell at MOR.

Tooth mark description

Tooth marks can be described using an ichnological or taphonomic framework (Zonneveld
et al., 2022). Recently, Zonneveld et al. (2022) advocated for the use of terminologies that
are well-established and accessible to the broader scientific community. Following these
recommendations, we have chosen to utilize the recently proposed Category-Modifier
system as it synthesizes, refines and expands upon previous taphonomic terminologies
historically used to describe dinosaurian tooth marks (e.g., Erickson & Olson, 1996; Fowler
& Sullivan, 2006; Hone ¢ Watabe, 2010; Hone, Tanke ¢ Brown, 2018; Brown, Tanke ¢
Hone, 2021).

To obtain the full dimensions of the embedded tooth, MOR 1627 was CT-scanned at
Advanced Medical Imaging at Deaconess Hospital in Bozeman, Montana, using a Toshiba
Aquilion CT Scanner. 3D models were constructed using these scans with 3D Slicer and
exported to Blender for measurement of the apicobasal (~crown base height, CBH),
mesiodistal (~crown base length, CBL) and labiolingual (~crown base width, CBW)
dimensions of the preserved tooth. Measurements of the embedded tooth and tooth marks
are available in Tables S1-52.

RESULTS

MOR 1627 is a partial, adult Edmontosaurus annectens skull from the Maastrichtian Hell
Creek Formation of Montana with an embedded non-avian theropod tooth tip. Elements
on both sides of the skull are preserved in articulation and relatively complete except for the
region anterior to the right maxilla which is mostly missing. The surangular and angular
are also missing on the right side of the skull. The left dentary lacks a symphyseal process
and the portion of the dentary ramus anterior the tooth row has been broken such that
the broken edges of the bone anterior the break rest on top of the portion of the ramus
posterior the break. The tooth penetrates the dorsal surface of the left nasal and protrudes
down into the external nares (Fig. 1) with the labial or lingual surface of the tooth visible in
the left lateral view of the skull. Part of the tooth is visible in dorsal view and accompanied
by four possible tooth marks located on the dorsal surface of the left nasal (Fig. 1).

In addition to the embedded tooth, a total of 23 possible tooth marks were identified on
the skull—nine on the left and 14 on the right. The four possible tooth marks on the left
nasal, as defined under the Category-Modifier system of Wyenberg-Henzler et al. (2024),
consist of two curved scores (marks 2 and 4) and two pits (marks 3 and 5) (Table S1)
(Fig. 1). Four tooth marks, consisting of one linear furrow (mark 6), two linear scores
(marks 7 and 9) and a curved score (mark 8), are located on the left jugal below the orbit.
Two curved scores (marks 10 and 15), four linear scores (marks 11, 13, 16 and 17) and
two pits (marks 12 and 14) are observed on the right mandible on the coronoid process.
The remaining six marks are located on the ramus of the right dentary—five curved scores
(marks 18, 19, 21, 22, 23) and one linear score (mark 20). Most of the marks observed on
MOR 1627 are smooth-edged except for one mark on the right coronoid process (mark
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Figure 1 Skull of MOR 1627 showing location and orientation of the embedded tooth and associated
tooth marks. (A) Skull in lateral view with corresponding line drawings. Top rose diagram shows the ori-
entation of tooth marks on the dorsal surface of the left nasal with the anteroposterior axis along 90°/270°.
Bottom rose diagram shows the orientation of the remaining tooth marks standardized to the left lateral
view of the skull with the anteroposterior axis at 0°/180° and anteroposterior axis at 90°/270°. (B) Em-
bedded tooth and associated tooth marks on left nasal in lateral view. (C) Embedded tooth and associated
tooth marks on left nasal in dorsal view. (D) tooth marks on left jugal in lateral view. (E) Tooth marks on
base of right coronoid process in lateral view. (F) Tooth marks on right dentary and base of right coronoid
process in lateral view. (G) Tooth marks on right dentary along mandibular ramus in lateral view. Scale
bars are 10 cm in (A) and one cm in (B-G).

Full-size & DOL: 10.7717/peerj.20796/fig-1

14) and one on the mandibular ramus of the right dentary (mark 18) which are both
rough-edged. All marks are also internally smooth with the exception of mark 6 on the left
jugal which shows a spongey texture anteriorly and becomes smooth posteriorly. A total of
seven tooth mark groups were identified based on similarities in location and orientation,
with three marks that could not be assigned to a group (Table 1).
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Table 1 List of tooth mark groups with locations and orientations for MOR 1627. Orientation of group
1 marks is relative to the anteroposterior axis (90°/270°) of the left nasal. All other orientations are relative
to the anteroposterior axis of the skull in left, lateral view with dorsoventral at 0°/180° and anteroposterior
axis at 90°/270° .

Location Group Mark # Orientation
range (°)
Middle of left nasal, dorsal 1 1,2,3,4,5 25-38
surface
Left jugal below the orbit, 2a 6,7,8,9 98-105
lateral surface
2b 22,23 126-140
2¢ 15 102
Right mandible, lateral surface 3 10,19, 20 2>-31
4 11, 18, 21 162-169
5 16,17 72-75
indeterminate 12,13, 14 43

The tip of the tooth is directed ventrally, curving slightly towards the anterior end of
the skull. Thus, the mesial surface of the tooth is closest to the posterior end of the skull
and the distal surface of the tooth is closest to the anterior end of the skull (Figs. 1 and 2).
Mesial denticles are preserved and visible in left lateral view and some of the apical-most
distal denticles are visible in oblique, lateral view but most are obscured by matrix. Mesial
and distal denticles are roughly equal in size and proximodistally sub-rectangular in
shape. The apical and basal edges of the denticles on both carinae are rounded (i.e., have
a relatively symmetrical margin), do not show any obvious curvature apically and are
oriented approximately perpendicular to the apicobasal axis of the tooth. There are no
visible blood grooves on the tooth. Denticles have an apicobasal height of 0.43-0.5 mm
and mesiodistal length of 0.38—0.58 mm with approximately 1.76 denticles per mm along
the mesial carinae and 1.28 denticles per mm along the more apical region of the distal
carinae (Table S2). Macrowear is visible on the tip of the tooth as the first couple apical
denticles have been removed and the region with the missing denticles are smooth. Fine
mesiobasal-apicodistally oriented microstriae (i.e., microwear) are also visible on the
labial/lingual surface of the tooth. CT data indicates that the tooth penetrates the left nasal
at an oblique angle (Fig. 2). The tooth is ovoid in cross section with a preserved crown base
length of approximately 19.9 mm, crown base width of 12.3 mm and crown height of 22.0
mm (Table S2).

DISCUSSION

Taxonomic identification

The embedded tooth of MOR 1627 is most likely from a non-avian theropod given the
presence of denticles (eliminating crocodylians and pterosaurs) and the preserved crown
height exceeds that of lizards and avians recovered from the Hell Creek Formation. Various
tooth-bearing non-avian theropods have been recovered from the Hell Creek Formation:
Acheroraptor temertyorum, cf. Saurornitholestes langstoni, Richardoestesia isosceles, Troodon
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Figure 2 Three-dimensional model rendering from CT data for MOR 1627. (A) Left lateral view of en-
tire skull with close-up (D) of the embedded tooth. (B) Dorsal view of entire skull with close-up (E) of the
embedded tooth. (C) Anterior view of entire skull with close-up (F) of the embedded tooth. Dashed lines
indicate the specimen midline.

Full-size Gal DOI: 10.7717/peer;j.20796/fig-2
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sp. Paronychodon lacustris, Dakotaraptor steini and Tyrannosaurus rex (Brown, Currie

& Therrien, 2022b). Recent studies have suggested the presence of multiple species of
Tyrannosaurus in the latest Maastrichtian (Paul, Persons ¢» VanRaalte, 2022; Paul , 2025),
a hypothesis disputed by other theropod workers (Carr et al., 2022; Carr, 2025). Further,
debate has surrounded the taxonomic status of smaller-bodied tyrannosaur specimens from
the Hell Creek Formation, which have been hypothesized to represent a distinct taxon,
Nanotyrannus lancensis (e.g., Bakker, Michael & Currie, 1988; Longrich & Saitta, 2024, but
see Carr, 1999; Carr, 2020; Woodward et al., 2020). Most recently, Zanno ¢ Napoli (2025)
presented evidence for two species of Nanotyrannus in the Hell Creek Formation (N.
lancensis and N. lethaeus).

To aid in a taxonomic identification for the embedded tooth, comparisons of the
preserved crown and denticle dimensions for MOR 1627 and published values from
various sources (Smith, Vann ¢ Dodson, 2005; D’Amore ¢» Blumenschine, 20125 Larson ¢
Currie, 2013; Evans, Larson ¢& Currie, 2013; DePalma et al., 2015; Larson, Brown ¢ Evans,
2016; McLain et al., 2018; Currie ¢ Evans, 2020) (Tables $3-S4) for Hell Creek theropods
were made. Because the embedded tooth is not complete, when the apicobasal (~crown base
height, CBH), mesiodistal (~crown base length, CBL) and labiolingual (~crown base width,
CBW) dimensions of the tooth exceed corresponding values for complete tooth crowns
for any taxon, that taxon can be eliminated from the list of possible candidates. Preserved
length, width and height of the MOR 1627 tooth exceeds the reported crown heights for
many Hell Creek theropods except for Nanotyrannus or Tyrannosaurus (Fig. 3). Denticle
densities along the mesial and distal carinae are also consistent with the embedded tooth of
MOR 1627 being from a tyrannosaurid. When the labiolingual and mesiodistal dimensions
(taken at a crown height of five mm) of MOR 1627 are compared to corresponding
dimensions for immature and adult Tyrannosaurus from maxillary and dentary positions
(Peterson ¢ Daus, 2019), the values for MOR 1627 plot closest to that of an adult maxilla
(Fig. 3). Thus, MOR 1627 is most likely an adult Tyrannnosaurus maxillary tooth rather
than an immature Tyrannosaurus or Nanotyrannus tooth. Denticle shape also suggests
that MOR 1627 is a tyrannosaurid tooth (Table 2). Briefly, the embedded tooth of MOR
1627 lacks the disproportionately large and strong, apically hooked denticles characteristic
of Troodon (Peng, Russell & Brinkman, 20015 Sankey et al., 2002). Paronychodon can also
be quickly eliminated given the absence of longitudinal ridges along the exposed surface
of the tooth and presence of well-developed denticles along both carinae (Sankey et al.,
2002; Larson, 2008). The shape of the preserved tooth tip also lacks the characteristic
isosceles shape of Richardoestesia isosceles, the denticles are much larger than that expected
for Richardoestesia, and there is no noticeable disparity in mesial-distal denticle size or
lack of mesial denticles (Peng, Russell ¢~ Brinkman, 2001; Sankey et al., 2002; Larson, 2008).
Dromacosaurids are generally unlikely candidates given that the embedded tooth lacks the
mesio-distal denticle size disparity commonly observed for dromaeosaurid teeth (Currie,
Rigby Jr & Sloan, 1990; Sankey et al., 2002; Evans, Larson & Currie, 2013), which is less
pronounced in Dromaeosaurus (Peng, Russell & Brinkman, 2001) (Fig. 4). Thus, by process
of elimination, the denticle morphology of MOR 1627 is most consistent with that of a
tyrannosaurid.
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Table 2 Comparison of key denticle characteristics of various theropods reported from the Hell Creek Formation and the embedded tooth of MOR 1627. Symbols: ?,
condition of MOR 1627 cannot be directly compared to condition described in the literature; ~, condition of MOR 1627 partially matches the condition described in the
literature; X, condition of MOR 1627 does not match the condition described in the literature; /, condition of MOR 1627 matches the condition described in the litera-

ture.

Source(s) Taxa

Select characteristics

MOR 1627

Currie, Rigby Jr & Sloan (1990);
Sankey et al. (2002); Sankey Paronychodon
(2008); Larson (2008)

Troodon

Troodon “large morph” spe-
cific

Currie, Rigby Jr & Sloan (1990);
Peng, Russell & Brinkman (2001 );
Sankey et al. (2002); Sankey
(2008)
Troodon “flat morph” specific

Currie, Rigby Jr & Sloan (1990);
Peng, Russell ¢ Brinkman (2001);
Sankey et al. (2002); Sankey
(2008); Larson (2008)

Richardoestesia isosceles

longitudinal ridges on both labial and
lingual surfaces

denticles along carinae are usually ab-
sent

when denticles are observed, they are
poorly developed

disproportionately large denticles
compared to the rest of the tooth

sharply pointed denticles

longitudinal ridges on labial and lin-
gual surfaces

denticles on both carinae

longitudinal ridges on labial and/or
lingual surfaces

mesial denticles are typically absent
but when observed are reduced in size
compared to distal denticles

denticle tips are rounded to pointed
denticles on both carinae

mesial denticles smaller than distal
denticles

small denticles that are closely spaced;
high denticle density

square-shaped denticles

>

B

no longitudinal ridges on exposed side
of tooth

denticles on both carinae
denticles are well developed

denticles are not disproportionately
large

denticle tips are rounded

no longitudinal ridges on exposed side
of tooth

no longitudinal ridges on exposed side
of tooth

denticles on both carinae; mesial den-
ticles are similar in size to distal denti-
cles

denticle tips are rounded

mesial denticles are similar in size to
distal denticles

large to moderate-sized denticles

chisel-like denticles

(continued on next page)
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Table 2 (continued)

Source(s) Taxa Select characteristics MOR 1627
longitudinal ridges on labial and lin- X no longitudinal ridges on exposed side
gual surfaces of tooth
denticles on both carinae Vv
mesial denticles are smaller than distal X mesial denticles are similar in size to
denticles distal denticles
Evans, Larson & Currie (2013) Acheroraptor denticle tips are rounded v
sub-rectangular distal denticles ~ both mesial and distal denticles are
sub-rectangular
distal denticles apically oriented X denticles are not apically oriented
denticles on both carinae J
mesial denticles are smaller than distal X mesial denticles are similar in size to
denticles distal denticles
(distal) denticle tips are rounded ~ both mesial and distal denticles are
rounded
DeP 6'1177161'61‘ al. (2015) and based sub-rectangular (distal) denticles, ~ both mesial and distal denticles are
on Fig. 7 in (DePalma et al., Dakotaraptor being apicobasally shorter than sub-rectangular
2015) for distal denticles mesiodistally long
(distal) denticles show apical inclina- X denticles are not apically oriented
tion
mesial denticles may be absent but X denticles on both carinae; mesial den-
when observed are reduced in size ticles are similar in size to distal denti-
compared to distal denticles cles
chisel-like denticles Vv
denticle tips are sharply pointed with X denticle tips are rounded; denticles are
Currie, Rigby Jr & Sloa n (1990); the point directed apically; apical hook not apically oriented
Peng, Russell & Brinkman (2001); Saurornitholestes of denticle tips most noticeable on dis-

Sankey et al. (2002); Sankey
(2008); Currie ¢ Evans (2020)

tal denticles located near tooth apex

blood grooves oriented parallel denti-
cle long axis

no visible blood grooves

(continued on next page)
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Table 2 (continued)

Source(s)

Taxa

Select characteristics

MOR 1627

Currie, Rigby Jr & Sloan (1990);
Peng, Russell ¢ Brinkman (2001);
Sankey et al. (2002); Sankey
(2008)

Sankey et al. (2002); Sankey
(2008)

Currie, Rigby Jr & Sloan (1990);
Peng, Russell & Brinkman (2001);
Smith (2005); Larson (2008)

Dromaeosaurus

cf. 2Dromaeosaurus morpho-
type A

Tyrannosauridae

denticles on both carinae

mesial denticles are smaller than distal
denticles; according to Peng, Russell ¢
Brinkman (2001) size disparity is less
pronounced

chisel-like denticles

denticle tips are not sharply pointed,
with points being slightly inclined api-
cally

blood grooves are shallow and poorly
defined

blood grooves oriented perpendicular
to apicobasal tooth axis

longitudinal ridges on labial and lin-
gual surfaces

distal denticles may be absent but
when observed are reduced in size
compared to mesial denticles

chisel-like denticles
denticle tips are not sharply pointed
denticles on both carinae

mesial denticles are similar in size to
distal denticles

chisel-like denticles

denticle tips are rounded

denticles do not curve towards tooth
tip

blood grooves are long and oriented

basally; best visible near base of tooth
in lingual view between distal denticles

LA

=

UL U S S SN >

-~

denticle tips are rounded; denticles are
not apically oriented

no visible blood grooves
no visible blood grooves

no longitudinal ridges on exposed side
of tooth

denticles on both carinae; mesial den-
ticles are similar in size to distal denti-
cles

denticle tips are rounded

no visible blood grooves, base of tooth
where grooves would be most visible
not preserved
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Figure 3 Select tooth crown measures for various theropods reported from the Hell Creek Formation.
(A-E) depict common tooth crown dimensions considered in the literature. Dashed lines with asterisk in-
dicates the corresponding values obtained for MOR 1627. (F) Comparison of mesiodistal and labiolingual
dimensions of Tyrannosaurus tooth crowns at five mm crown height from Peterson ¢ Daus (2019) to cor-

responding dimensions of MOR 1627. Abbreviations: CBL, mesiodistal crown base length; CBW, labiolin-
gual crown base width; CH, apicobasal crown height. Note denticle densities shown for various theropods
in B and D represent values taken from mid-way along the teeth to increase the number of taxa that could
be compared whereas the denticle densities taken from MOR 1627 are apical.

Full-size & DOL: 10.7717/peer;j.20796/fig-3

Position and bone of origin

The ventral orientation of the tip, slight curvature of the tip towards the anterior end of
the skull suggests that the embedded tooth is either a maxillary or premaxillary tooth.
In order for the tooth to be of dentary origin and for the tip to be directed ventrally,
the theropod’s head would need to be unnaturally held upside-down during the bite or
the bite was delivered while the Edmontosaurus was positioned upside-down. The ovoid
cross-sectional shape of the tooth further narrows the tooth to a maxillary or dentary origin,
from positions 3 onwards (i.e., non “mesial”’) as tyrannosaurid premaxillary teeth have
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Figure 4 Comparison of mesial (D-H) and distal (I-M) denticle morphology of lateral Dromaeosaurus
(UALVP 55317), lateral tyrannosaurid (UALVP 60286) and MOR 1627. (A) Lingual and labial views of
isolated tyrannosaurid tooth. (B) Lingual and labial views of isolated Dromaeosaurus tooth. (C) Lateral
view of embedded tooth of MOR 1627. (D) Close-up of mesial denticles of MOR 1627. Labial (E) and lin-
gual (F) views of mesial denticles on Dromaeosaurus tooth. Labial (G) and (H) lingual views of mesial den-
ticles on tyrannosaurid tooth. I) Close-up of distal denticles of MOR 1627. Labial (J) and lingual (K) views
of distal denticles on Dromaeosaurus tooth. Labial (L) and lingual (M) views of distal denticles on tyran-
nosaurid tooth. Scale bars in mm. All views show teeth with apices pointing down. Note: all lingual views
have been mirrored to match the orientation of the mesial and distal denticles of MOR 1627.

Full-size Gl DOI: 10.7717/peer;j.20796/fig-4
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Figure 5 Comparison of embedded tooth in MOR 1627 to anterior and middle maxillary teeth of
TMP 1981.006.0001. (A) Full skull in right lateral view with red box indicating the teeth shown in (B). (B)
close-up of anterior and middle maxillary teeth in comparison to the embedded tooth of MOR 1627 (C) at
the same scale. Lines in cyan indicate the maximal extent of the embedded tooth crown.

Full-size &l DOI: 10.7717/peer;j.20796/fig-5

a distinct D-shaped cross-section and the first two anterior (“mesial”’) maxillary/dentary
teeth are more rounded in cross-section (Samman et al., 2005; Smith, 2005) (Fig. 5).
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Animal size

Work by D’Amore ¢» Blumenschine (2012) has suggested a relationship between apicobasal
denticle dimensions and overall size. This relationship has been previously applied within
the context of rake marks (sensu Wyenberg-Henzler et al., 2024) to identify minimum size of
the tooth mark maker (e.g., McLain et al., 2018). Here, we apply a similar approach for the
embedded tooth in MOR 1627, using published denticle heights (Table S5) for in-situ teeth
from maxillary and dentary tooth positions 3+ and corresponding skull lengths to identify
animal size. We do not consider premaxillary teeth or the first two anterior tooth positions
of the maxilla and dentary given the shape of the embedded tooth is not consistent with
these teeth. A reduced major axis regression on estimates of quadrate height and skull length
of Edmontosaurus specimens in the literature (Table S6) was conducted to approximate
the full skull length of MOR 1627 from quadrate height. The full skull length of MOR
1627 is estimated between 0.79 m and 0.89 m while the skull length of the tyrannosaurid is
estimated between 0.86 m and 1.12 m (Figs. 5 and 6). From estimates accumulated in Carr
(2020), this indicates that the animal likely weighed more than 1,807 kg (the estimate for
LACM 23845 with a skull 0.8 m long) but less than 6,100 kg (the estimate for MOR 1125
with a skull 1.16 m long). This suggests the embedded tooth represents an animal over 500
kg heavier than what is estimated for the maximum mature weight of N. lethaeus (BMRP
2002.4.1; Zanno ¢ Napoli, 2025) and is consistent with an identification of Tyrannosaurus.

Interpretation and implications
Predation or scavenging?

Whether T. rex and other tyrannosaurids were predators or scavengers has been a subject
of disagreement in the literature citing various lines of evidence including tyrannosaurid
physical attributes and interpretations of tooth marks/pathologies (e.g., Carpenter, 1998;
Wegweiser, 2004; Carbone, Turvey & Bielby, 2011; Murphy, Carpenter & Trexler, 2013 vs
Horner & Lessem, 1993; Horner, 1994; Therrien et al., 2023 respectively). Given the nature
of the fossil record and lack of perfect modern analogues, it is unlikely that this debate will
be satisfactorily settled. Further complicating matters, a majority of modern carnivores
lie on a predation-scavenger spectrum, rarely relying solely on either strategy to procure
food and establishing which end of the spectrum modern carnivores are more inclined
is extremely difficult (DeVault, Rhodes Jr ¢ Shivik, 2003; Holtz Jr, 2008). Although some
recent literature conceptualizes tyrannosaurids as both predators and scavengers (e.g.,
Holtz Jr, 2008; Horner, Goodwin & Myhrvold, 2011; Kane et al., 2016), some publications
still describe adult tyrannosaurids as “apex predators” (e.g., Therrien et al., 2023).

It may be more pragmatic to conceptualize tyrannosaurids as both predators and
scavengers. Further, being able to tease out which behaviour was more commonly practiced
may be difficult with the information available for an extinct animal. The best that can
probably be attained from the fossil record is how tyrannosaurids apprehended prey and
manipulated carcasses. We note that the possibility of bite marks resulting from scavenging
cannot be eliminated without direct evidence that the proposed prey animal was alive at
the time of the bite (e.g., pathologies resulting from failed predation attempts). Of the
pathologies cited as evidence of tyrannosaurid predation, most examples are injuries to
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Figure 6 Estimated sizes of Edmontosaurus and Tyrannosaurus from reduced major axis regressions
for MOR 1627. (A) Skull length of MOR 1627 (blue region) obtained from regression with quadrate
height compared to other Edmontosaurus skulls (from left to right: composite of Prince Creek material,
CMN 8509, MOR cast of DMNH 1493, ROM 57100, MOR 003). Axis numbers correspond to percent
basal skull length of MOR 003. (B) Skull length of embedded tooth of MOR 1627 obtained from
regression with apicobasal height of mesial (dark blue) and distal (light blue) denticles compared to
other Hell Creek tyrannosaurid skulls (from left to right: CMNH 7541 (courtesy of the Cleveland Museum
of Natural History), TMP 1981.006.0001, MOR 1125, MOR 980, RSM P2523.8 (courtesy of J. Milligan),
FMNH PR2081). Axis numbers correspond to percent basal skull length of FMNH PR2081. Information
regarding skull length, relative sizes and ontogenetic stages of specimens are available in Tables S7-S8.
Full-size & DOTI: 10.7717/peerj.20796/fig-6

the tail of hadrosaurids (Carpenter, 1998; Murphy, Carpenter & Trexler, 2013; DePalma
et al., 2013; but see also Bertozzo et al., 2025) with one example of damage to a rib of a
lambeosaurine (Wegweiser, 2004) and another possible example that, if the pathology
resulted from a bite, preserves evidence of an attack to the head of the ankylosaur Tarchia
(Tumanova et al., 2025). Damage to the neural spines of the tail is interpreted as evidence
of a bite delivered from behind while the hadrosaurid was trying to escape (Carpenter,

1998; Murphy, Carpenter & Trexler, 2013; DePalma et al., 2013). Although the etiology of
the Tarchia skull pathologies is unclear, if they are indeed the result of a predation attempt
by a tyrannosaurid, then the bite may have been delivered posterolaterally (Tumanova
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et al., 2025). However, Molnar (1998) suggested that tyrannosaurids, like modern canids,
may have killed their prey by delivering a powerful crushing bite to the snout of a prey
animal ultimately cutting off the airway and resulting in suffocation—a scenario virtually
identical to the predation scenario proposed here that appears to be most consistent with
the emplacement of the tooth in the skull of MOR 1627.

Embedded tooth and group 1 tooth marks

From the information presented above, the embedded tooth likely represents a middle-
posteriorly positioned tooth from an adult Tyrannosaurus. The slight curvature of the
tooth indicates that the mesial surface of the tooth is closer to the posterior end of the
Edmontosaurus skull. Combined, this suggests that the tooth broke off during a bite
that came from the front. The presence of tooth marks more anteriorly on the snout
of MOR 1627 in the same region as the embedded tooth and on the same surface with
a broadly similar orientation as the embedded tooth suggests that multiple teeth made
contact during this bite. Under this scenario, the most anteriorly positioned contacting
tooth would have penetrated the nasal while more posteriorly positioned teeth contacted
the bone. The lack of bone remodelling in this region further indicates that the bite was
inflicted at, near or after the time of death. Based on the behaviours of large carnivores,
bites to the face, particularly to the snout of a herbivore, are inflicted in an attempt to gain
control of a struggling prey animal during predation (mammals, crocodiles), to suffocate
the prey animal (mammals), drown the prey animal (crocodiles) and/or to manipulate
the carcass after the animal is already dead (Emerson ¢ Radinsky, 1980; Cleuren ¢ De Vree,
2000; Karanth & Sunquist, 2000; Njau, 2006; Njau ¢ Blumenschine, 2006; Van Valkenburgh,
2007; Wiesel, 2010; Westaway et al., 2011; Behrendorff, Belonje ¢ Allen, 2018).

Tooth marked specimens thought to be produced by tyrannosaurids are often attributed
to carcass consumption (Erickson ¢ Olson, 1996; Fowler ¢ Sullivan, 2006; Hone ¢ Watabe,
2010; Hone, Tanke ¢ Brown, 2018; Brown, Tanke ¢ Hone, 2021) rather than predation
(Carpenter, 1998; Wegweiser, 2004; Murphy, Carpenter & Trexler, 2013). This is because
most examples of tooth marks are very difficult to attribute to tyrannosaurids and
subsequently interpret as evidence of predatory behaviour, especially given most tooth
marks do not show signs of healing and so were produced at or near the time of death of
the animal being fed upon making it hard to determine the sequence of events. Often, tooth
mark interpretations involve whether predation or feeding is the most likely mechanism
behind the production of those tooth marks but this is by no means definitive. Based on
observations of modern carnivores, bites to the snout are typically inflicted as a means
of prey capture or carcass manipulation (Emerson ¢ Radinsky, 1980; Cleuren ¢ De Vree,
2000; Karanth & Sunquist, 2000; Njau, 2006; Njau & Blumenschine, 2006; Van Valkenburgh,
2007; Wiesel, 2010; Westaway et al., 2011; Behrendorff, Belonje ¢ Allen, 2018; Somaweera et
al., 2018), rather than to consume flesh from the muzzle as relatively little flesh is found
in this region; although, removal of flesh from this region is not entirely out of the realm
of possibility (Haynes, 1980; Haynes, 1982; Boaz et al., 2000). Consumption of flesh from
the snout region of a hadrosaurid is unlikely as very little flesh would have been present
and the snout would have been covered with hard-to-digest, heavily keratinized skin and
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rhampotheca (Fisher, 1981; Haynes, 1982; Novak et al., 2005; Bell, 2014). Thus, two possible
interpretations for MOR 1627 exist: emplacement during predation versus emplacement
during carcass manipulation, either following predation or while scavenging. Falsification
of the scavenging hypothesis would require evidence that the Edmontosaurus was alive
when bitten, either through evidence of bone healing around an emplaced tooth (e.g.,
DePalma et al., 2013) or other means. Although scavenging of MOR 1627 cannot be ruled
out, here we argue that in the case of MOR 1627, predation is the more likely mechanism
of emplacement for the embedded tooth given the directionality of the bite, the number
and relative positioning of tooth marks and the level of articulation of the rest of the skull.
The positioning of the embedded tooth suggests the bite was directed from the front,
while the Edmontosaurus was facing the tyrannosaurid. If the tooth was embedded during
manipulation of the carcass after the animal was already dead, surely it would have been
easier to grab the snout from either side with the upper jaws on one side of the skull and the
lower jaws on the other side of the skull. Although rarely described, carrying behaviour in
modern carnivores generally appears to leave multiple scores or pits on long bone diaphyses
and multiple and/or paired marks on the cranium with punctures and/or furrows being
relatively rare (Pokines, 2021). Mammalian carnivores tend to carry carcasses that are
smaller compared to their body size, while larger carcasses tend to be consumed on-site or
more mobile elements such as limbs (and rarely heads, which appear to be facilitated by
grabbing the neck) are disarticulated and carried away to be eaten elsewhere (Windell et al.,
2019). The penetrating nature of the tooth of MOR 1627 on the snout indicates high forces
were exerted during the bite, something that is not expected during carrying behaviour after
the animal has already been incapacitated. In modern carnivores, high bite forces are often
delivered to dispatch prey or maintain control of a struggling animal from a position where
the prey is unlikely to inflict damage via horns, tusks or teeth. Felids and spotted-tail quolls
will apply a single, crushing bite to the head or throat of larger prey to reduce handling
time and decrease the chances of injury (Jones ¢ Stoddart, 1998; Mondini ¢» Mufioz, 2008;
Meachen-Samuels & Van Valkenburgh, 2009). In quolls the bite is delivered from behind to
the braincase while in most felids, the attack begins from behind and the forelimbs are used
to maintain a grip on the prey animal while the felid repositions itself to deliver a killing
bite to the throat. Legless lizards will apply a similar strategy, biting relatively large prey
by the head or neck and waiting for asphyxiation or exhaustion to occur (Wall ¢ Shine,
2007; Mukherjee & Heithaus, 2013). In cooperative species, such as lions or African wild
dogs, particularly for more dangerous prey with horns or tusks, bites to the head are used
to control and/or drag down prey animals while other members of the group deliver the
killing blow (Kruuk e Turner, 1967; Mukherjee ¢» Heithaus, 2013). Other predators such as
civets, Komodo monitors, and some canids will employ the opposite strategy, increasing
handling time to reduce injury by delivering a series of quick bites to other areas of the
body to exhaust prey or induce shock prior to applying the final crushing bite to the head
or neck (Eisenberg ¢ Leyhausen, 1972; Jones ¢ Stoddart, 1998; Therrien, Henderson ¢ Ruff,
2005; Meachen-Samuels & Van Valkenburgh, 2009). Crocodiles are ambush predators that
will grab the legs or snout of a prey animal at the waters edge before dragging it into the
water to be dispatched (Heller, 1918). Such attacks typically occur while the prey animal
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is drinking, facilitating a front-facing attack by the crocodile. Although a wide variety of
hunting strategies can be seen in the animal kingdom, single bites to the head appear to be
related to prey control or rapid dispatch of prey. Thus, the single, powerful bite to the snout
emplacing the tooth in the nasal of MOR 1627 would appear to be more consistent with
behaviours exhibited during predation rather than behaviours observed during feeding.
The high level of articulation of the skull also suggests predation. Most modern
mammalian carnivores will consistently consume a carcass starting with higher economy
areas, such as the abdominal cavity, and gradually consume lower economy areas, with
the head usually being the last region consumed (Blumenschine, 1986; Richardson, 1980;
Selva et al., 2003; White & Diedrich, 2012; Haynes & Klimowicz, 2015; Drumheller et al.,
2020). Hyaenas are one of the few large mammalian carnivores that will occasionally
deviate from this pattern, using multiple crushing bites to open the braincase to consume
the brain relatively early on in the carcass consumption sequence (Richardson, 1980;
Blumenschine, 1986; Boaz et al., 2000; Wadley, 2020). Comparison of encephalization
quotients, which are calculated values quantifying relative brain and body masses, suggest
a hyaena-like approach would have been less beneficial for dinosaurian carnivores. In
modern megaherbivores such as blue wildebeest (Connochaetes taurinus, REQ = 26.7),
impala (Aepyceros melampus, REQ = 27.0), African buffalo (Syncerus caffer, REQ = 23.6)
and African elephants (Loxodonta africana, REQ = 73.2) (Hurlburt, 1996), values calculated
using the reptilian encephalization quotient formula are much higher than those estimated
for hadrosaurs (Iguanodon, REQ = 2.6; “Anatosaurus”’, REQ = 2.4; Edmontosaurus, REQ
= 2.8) (Hurlburt, 1996; Evans, 2005). Consideration of previous examples attributed to
cannibalistic scavenging would be consistent with the interpretation that tyrannosaurids
followed a similar consumption sequence to modern, non-hyaenid carnivores wherein
higher economy areas such as the abdominal cavity with cranial flesh being utilized later
after most of the postcranial flesh has been consumed or decomposed (Longrich et al.,
2010; Hone & Tanke, 2015). Under the typical carcass consumption sequence observed in
modern carnivores, damage to the cranium is mainly concentrated around areas where the
musculature is located (such as the coronoid process), occipital condyles and/or parietal
bones and orbital margins (Richardson, 1980). The nasals of ungulates can also be heavily
damaged or fragmented during carcass consumption. In some cases, the mandibles will also
become disarticulated once the muscles and skin attaching them to the rest of the skull have
been consumed (Richardson, 1980). Conversely, under a predation scenario, some damage
might be inflicted during prey capture but the skull would remain otherwise unmodified
as higher economy areas such as the internal organs in the abdominal cavity would be
one of the first areas to receive attention after the animal was killed (Richardson, 1980
Blumenschine, 1986; Selva et al., 2003; White ¢ Diedrich, 2012; Drumheller et al., 2020).

Other tooth marks

The spacing between the marks of group 2a on the left jugal are consistent with the spacing
of tooth marks previously attributed to tooth marks produced by the premaxillary teeth
(Erickson ¢ Olson, 1996; Fowler & Sullivan, 2006; Hone & Watabe, 2010; Rivera-Sylva,
20125 Drumbheller et al., 20205 Lei et al., 2020). Hone ¢ Watabe (2010) have suggested that
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these teeth have been used in “scrape feeding” to remove flesh close to the bone surface.
What exactly the tyrannosaurid was consuming in this region is unclear as the adductor
musculature—the major source of flesh on the skull—would have been tucked underneath
the jugal and postorbital (Rybezynski et al., 2008; Holliday, 2009; Nabavizadeh, 2020a;
Nabavizadeh, 2020b) (Fig. 7) and accessing these muscles would have presumably moved
these bones out of articulation. Recently, Sharpe et al. (2025) proposed another soft tissue
in this region known as the exoparia which is reconstructed as extending from the lateral
surface of the jugal flange to the surangular. Removal of this structure would have left
the skull largely articulated if most of the adductor musculature underneath was largely
intact. However, the tooth marks in group 2a are located near the posterior margin of the
postorbital fenestra which is positioned more dorsally than the flange of the jugal where the
exoparia is reconstructed (Fig. 7). One possible, albeit less likely explanation for this is the
exoparia extends higher on the jugal than originally proposed. A more likely explanation is
that the tooth marks in group 2a were produced by teeth of the right premaxilla contacting
the bone surface while teeth of the left premaxilla removed the exoparia.

Spacing between tooth marks of groups 2b, 3, 4 and 5 are much greater than those
seen for group 2a marks (Fig. 1). Although this could suggest that these tooth marks
were produced by more lateral teeth, a scenario where teeth from both premaxillae are
contacting the bone can also be envisioned. The stage of tooth eruption, angle at which
teeth contact bone and the surface topography of the bone will theoretically impact what
teeth contact the bone surface (Hone ¢ Rauhut, 20105 Lei et al., 2020). Tt is possible that
teeth from both premaxillae or at the very least anterior teeth from opposite sides of the
skull were involved in the production of group 3-5 tooth marks but only three teeth made
actual contact with the bone surface—one tooth from one premaxilla and two teeth from
the other or one anterior maxillary tooth on one side and two teeth from the premaxilla
on the opposite side. What teeth produced the remaining tooth marks is uncertain given
ascertaining tooth spacing is impossible from a single tooth mark. Given the proximity of
group 5 tooth marks to m. pterygoideus ventralis, it is possible that these tooth marks were
inflicted while feeding on this muscle (Rybczynski et al., 2008; Holliday, 2009; Nabavizadeh,
2020a; Nabavizadeh, 2020b) (Fig. 7). The close proximity of the remaining tooth marks on
the right mandible to possible articulation points of various adductor muscles (Rybczynski
et al., 2008; Holliday, 2009; Nabavizadeh, 2020a; Nabavizadeh, 2020b) (Fig. 7), would also
suggest that these tooth marks were produced during feeding on the adductor musculature.
However, it is hard to imagine entire muscle masses being removed without disturbing the
overlying jugal in most cases so these tooth marks may either represent removal of only
portions of the muscles or consumption of soft tissue other than the adductor musculature.
It is also possible that some of the tooth marks concentrated on the coronoid process of
the right mandible are associated with the removal of the exoparia which extends from
the lateral surface of the jugal flange to the surangular (Sharpe et al., 2025) and could have
been removed without disturbing the jugal. Although Sharpe et al. (2025) were unable to
determine the exact nature of the exoparia, targeted feeding on the exoparia suggests it
had higher nutritive value which would implicate the exoparia was muscular rather than
ligamentous in nature. Alternatively, the relatively shallow nature of the exoparia could
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Figure 7 Location of tooth marks on the skull of MOR 1627 relative to the approximate location of
adductor muscles and the exoparia. Tooth marks from the right side of the skull have been mirrored and
superimposed on the left side of the skull. (A) Reconstruction assuming attachment of mAMES to the
coronoid process (following Rybczynski et al., 2008; Holliday, 2009; Nabavizadeh, 2020b). (continued on

next page...)
Full-size Gl DOI: 10.7717/peer;j.20796/fig-7
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Figure 7 (...continued)

(B) Reconstruction assuming attachment of mAMES to the labial dentary ridge (following Nabavizadeh,
2020a). (C) Reconstruction showing the approximate position of the exoparia (following Sharpe et al.,
2025). Abbreviations: mPTv, m. pterygoideus ventralis; mAMEP, m. adductor mandibulae externus pro-
fundus; mAMES, m. adductor mandibulae externus superficialis; mAMEM, m. adductor mandibulae ex-
ternus medialis; mAMP, m. adductor mandibulae posterior.

have made it particularly easy to remove thus making the benefit outweigh the cost of its
removal.

The cracking observed on the left and right jugals and the right mandible that parallel
the bone fiber is consistent with subaerial exposure prior to burial (Behrensmeyer, 1978;
Pokines et al., 2018). The level of cracking on the left jugal is far less pronounced than that
on the right jugal and mandible, suggesting that the skull was positioned left-side-down,
leaving it exposed for a shorter period of time. The presence of this cracking on both sides
of the skull indicates that skull of MOR 1627 would have been sitting exposed to the surface
for some period of time, likely with the right side of the skull exposed for longer than the
left (Behrensmeyer, 1978). Whether this exposure was before or after the majority of the
tooth marks on the skull were inflicted cannot be determined as there is little difference in
the physical appearance of tooth marks inflicted prior to weathering and those inflicted on
the surface of weathered bone (Vachirawongsakorn, 2019).

Carcass abandonment?

The high level of articulation of the skull also suggests something about the nature of the
skull at the time it was buried. As previously discussed, the level of articulation suggests
that some, if not most of the adductor musculature had not been consumed by hungry
carnivores. This adductor musculature could have also prevented disturbance of the
elements during burial in a higher energy environment, as indicated by MOR 1627 being
recovered from a sandstone. It therefore appears likely that at least some of the adductor
musculature was left intact at the time of burial. Although it is possible the skull was
buried before carnivores could have consumed this region, it seems odd that the exoparia
and possibly some of the other adductor muscles were consumed while the majority of
the adductor musculature remained untouched. Presumably, removal of the jugal and
quadratojugal to access the underlying musculature would have been relatively easy for
a tyrannosaurid to have accomplished if it were sufficiently motivated given the deeper
adductor musculature (e.g., mAMEP and mAMEM) would have accounted for a majority
of the flesh on the skull. Although it is possible for the skull to have been buried before the
skull could have been disarticulated to access this musculature, the weathering present on
the jugal suggests the skull sat subaerially exposed for some period of time prior to burial.
Considering the behavior of modern carnivores, we propose that MOR 1627 is an example
where the carcass of a predated animal had been mostly, but not completely, utilized
before it was abandoned. Given tyrannosaurids appear to have followed the typical carcass
consumption sequence of modern non-hyaenid carnivores (e.g., Hone ¢» Tanke, 2015),
more superficial tissue from the skull (e.g., the exoparia) was likely removed after most of
the postcranial tissue had been utilized, producing the remaining tooth marks on MOR
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1627. During the process of carcass consumption, modern carnivores will disarticulate,
fragment and/or carry off parts of the postcranial skeleton away from the main carcass,
especially when competition between carnivores, either of the same or different species,
is higher (Capaldo & Peters, 1995; Haynes ¢ Klimowicz, 2015; White ¢ Diedrich, 2012;
Wadley, 2020). Of particular significance are observations regarding the consumption
of a large kudu carcass reported by Wadley (2020). After a few weeks of being fed upon
by carnivores, all that remained were a few fragments of the postcranial skeleton (about
5.5 g worth) and the skull. Although the skull had been dragged away from its original
position, the skull was virtually untouched and the brains had not been fed upon despite
the presence of hyaenas at the site. If MOR 1627 underwent a similar process before it
was abandoned, only a few postcranial fragments would have been present and could have
easily washed away during burial. There is also precedence in the modern record for the
same carnivores to repeatedly visit a kill site over a period of time before abandoning the
skull (sometimes with the neck also articulated) with relatively little tooth marking or flesh
removal (Richardson, 1980; Haynes, 1982; Capaldo & Peters, 1995; Haglund, 1997; Haynes
& Klimowicz, 2015; Wadley, 2020). Given the spacing of the tooth marks on the left jugal
and right mandibles are consistent with that of a Tyrannosaurus, and the embedded tooth
is also that of a Tyrannosaurus, it is plausible for MOR 1627 to represent a scenario where
the same animal, or group of animals, repeatedly visited the carcass over a period of time
before abandoning the skull, with most of the adductor musculature intact, in favor of a
fresher carcass.

CONCLUSIONS

In summary, MOR 1627 preserves evidence most consistent with the Edmontosaurus
being predated on by a Tyrannosaurus with a skull approximately one meter long and
subsequent subaerial exposure and consumption of the carcass. Predation is the most
consistent explanation for the high level of articulation, relative completeness and lack of
tooth marks in the braincase region observed. Conversely, the lack of postcranial material
combined with the tooth marks on the left jugal and right mandible are more consistent
with consumption of some of the soft tissue on the skull either prior to or following
subaerial exposure of the skull before the skull was ultimately buried. Together, these
observations suggest that MOR 1627 could have been the result of prolonged carcass
utilization and subsequent carcass abandonment following a predation event.
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