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The exceptionally well-preserved holotype of the
armoured dinosaur Borealopelta markmitchelli (Ornithischia;
Nodosauridae) from the Early Cretaceous (Clearwater
Formation) of northern Alberta preserves a distinct mass
within the abdominal cavity. Fourteen independent criteria
(including: co-allochthony, anatomical position, gastroliths)
support the interpretation of this mass as ingested stomach
contents—a cololite. Palynomorphs in the cololite are a subset
of the more diverse external sample. Analysis of the cololite
documents well-preserved plant material dominated by leaf
tissue (88%), including intact sporangia, leaf cross-sections and
cuticle, but also including stems, wood and charcoal. The leaf
fraction is dominated (85%) by leptosporangiate ferns (subclass
Polypodiidae), with low cycad–cycadophyte (3%) and trace
conifer foliage. These data represent the most well-supported
and detailed direct evidence of diet in an herbivorous dinosaur.
Details of the dietary palaeoecology of this nodosaur are
revealed, including: selective feeding on ferns; preferential
ingestion of leptosporangiate ferns to the exclusion of
Osmundaceae and eusporangiate ferns such as Marattiaceae;
and incidental consumption of cycad–cycadophyte and conifer
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leaves. The presence of significant (6%) charcoal may represent the dietary use of recently burned

conifer forest undergoing fern succession, early evidence of a fire succession ecology, as is
associated with many modern large herbivores.
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1. Introduction
Dinosaurs dominated terrestrial landscapes for over 150 Myr, and included a diversity of herbivorous
forms, from ornithischians to sauropods and many theropods [1,2]. Despite the importance of
herbivorous dinosaurs in Mesozoic ecosystems, there is very little direct evidence of diet. What large
herbivorous dinosaurs ate has implications for our understanding of how Mesozoic terrestrial
ecosystems functioned, and the physiology and ecology of these animals.

Across modern ecosystems, large terrestrial herbivores, and specifically megaherbivores (sensu [3]; i.e.
herbivores with a mass greater than 1000 kg), have disproportionate effects on the landscapes they
occupy and are termed ‘keystone herbivores’ [3–7]. In modern ecosystems, this ecological guild is
occupied exclusively by mammals [3]. During the Mesozoic, the megaherbivore niche was occupied
by dinosaurs, where multi-ton herbivores evolved independently a minimum of five times within
Dinosauria (Sauropodomorpha: Triassic; Thyreophora: Triassic/Jurassic; Iguanodontia: Jurassic;
Therizinosauria: Cretaceous; and Ceratopsidae: Cretaceous) [8].

Dinosaur megaherbivores greatly exceeded mammal megaherbivores in both temporal duration
(150 Ma versus 40 Ma) and body mass [8,9], and a disproportionate ‘keystone’ effect of megaherbivores
may be expected for Mesozoic dinosaurs. To test this, sustained research in dinosaur megaherbivore
palaeoecology has attempted to analyse the diet and ecological interactions of these animals [2,10–12],
with multiple authors hypothesizing, and testing, dinosaur megaherbivore and plant coevolutionary
patterns [13–16]. Despite this broad interest, direct data on the diets of herbivorous dinosaurs are very
limited, and researchers have largely inferred diet based on factors including: flora availability and
energy/nutrient content [12,17–19]; dinosaur–plant associations [20–22]; jaw biomechanics [1,23–27];
tooth wear [26,28–30]; posture and feeding height [31,32]; and stable isotopes [33,34].

Drawing direct parallels between modern mammal and Mesozoic dinosaur megaherbivores is
hindered due to major differences in both the animals and available plant food sources. Herbivorous
dinosaurs possess drastically different dental and masticatory anatomy compared to mammals, and
largely unknown thermal and digestive physiology. Although some dinosaur megaherbivores evolved
complex dentitions capable of mastication [23,35], and potentially on par with mammals [36,37],
many dinosaur megaherbivore clades possessed simple teeth capable of cropping plants, but with
inefficient capacity for mastication [38]. Broad dietary hypotheses have been suggested for many
groups, but these have proven difficult to test. Furthermore, the foliage available as diet for these
dinosaur megaherbivores, largely ferns and gymnosperms (e.g. conifers, cycads–cycadophytes), was
quite different from that of modern megaherbivores, for which angiosperms, and in particular grasses,
make up a dominant portion of large herbivore diets [12,18,22,39,40].

Direct evidence of diet in herbivorous dinosaurs is rare and comes in the form of coprolites (fossil faeces),
and even rarer still, cololites (fossil stomach or intestinal contents). Coprolites of herbivorous dinosaurs
[41–45] often provide little dietary information and are difficult to match to the trace maker [46].
Although cololites (or other fossil gastrointestinal contents) have been reported in many herbivorous taxa,
nearly all of these reports have not held up under closer analysis [12,47–49] (table 1), and in many cases
do not provide data beyond indeterminate plant fragments [47]. Within herbivorous dinosaurs, putative
cololites or other preserved stomach contents have been reported for three major groups: Sauropoda,
Ornithopoda (largely Hadrosauridae) and Thyreophora (largely Ankylosauria) (table 1).

Several reports of putative cololites from Sauropoda have been published, [50–52]; but all of these are
now regarded as unlikely to be stomach contents [12,47] (table 1).

Multiple cases of fossil gastrointestinal contents in Hadrosauridae have been reported [47,49,53,54];
although most of these are now viewed as unlikely to be truly gastric/intestinal in origin [12,48,49],
or are viewed as equivocal at best [47,49]. The most recent and detailed account is that of a
mummified specimen of Brachylophosaurus canadensis [47]. However, even if verified, this provides
little in the way of novel dietary and digestive information other than that it may indicate the
presence of chewed leaves (table 1).

To date, armoured dinosaurs have preserved a more credible account of stomach contents than any
other group of herbivorous dinosaurs (table 1). The small ankylosaur Kunbarrasaurus ieversi from the
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Early Cretaceous of Australia is described as preserving a cololite within the abdominal cavity [55,56].
Several criteria support the conclusion that this material represents a cololite. Although well supported,
much of the preserved material consists of non-diagnostic fragments of vascular tissue, indeterminate
seed-bearing organs, and possible sporangia, which does little to inform on diet. The recently described
ornithischian Isaberrysaura mollensis from the Early Jurassic of Argentina (originally described as a basal
neornithischian [57], but see recent re-evaluations suggesting it is a Thyreophoran [58,59]), also preserves
putative stomach contents. These are described as Cycadales (Zamiineae) seeds as well as smaller
indeterminate seeds. However, the description of the stomach contents is limited, and taxonomic
stability of the dinosaur uncertain, and more refined assessment of the stomach contents is needed.
Finally, Ji et al. [60] report the unexpected finding of ingested fish in a small-bodied early Cretaceous
ankylosaur from China, suggesting a potential piscivorous, or at least omnivorous, diet.

Here, we document, and quantify, an unequivocal and exceptionally well-preserved cololite from the
Early Cretaceous dinosaur Borealopelta markmitchelli (Ornithischia, Nodosauridae) [61]. The analysis
provides the most detailed account of direct evidence of diet in an herbivorous Mesozoic dinosaur,
and informs the palaeoecology of armoured dinosaurs.
c.Open
Sci.7:200305
2. Material and methods
2.1. Specimen and geological context
The holotype specimen of the recently described armoured dinosaur Borealopelta markmitchelli, TMP
2011.033.0001 is exceptional in preserving soft tissue, including scales and keratinous coverings of
the bony osteoderm armour across the body, while also maintaining its three-dimensional shape [61].
In addition to the animal tissue, a large spheroid mass within the abdominal cavity is also preserved
(figures 1 and 2). This mass is composed of a distinct matrix, dominated by organic and inorganic
inclusions, and is interpreted as a cololite.

Borealopelta markmitchelli was recovered near the base of a 3m thick greenish-grey, very fine- to
medium-grained glauconitic sandstone unit within the marine Wabiskaw Member of the fully marine
Clearwater Formation, approximately 8 m above the underlying McMurray Formation. This same
restricted glauconitic sandstone unit has yielded abundant articulated marine reptiles, including the
ichthyosaur Athabascasaurus bituminous [62], the plesiosaur Nichollssaura borealis [63], a polycotylid [64]
and the elasmosaur Wapuskanectes betsynichollsae [65]. This fossil-rich unit was deposited in the lower
shoreface to offshore transition zone, between the fair- and storm-weather wave base [66]. Combined
data from ammonite, palynological and foraminiferal biostratigraphy indicate an Early Albian age
[62]. Geographically, the specimen was recovered from the Suncor Millennium Mine (open pit, oil
sands) in northern Alberta (UTM; 12 U; 478 446 m E; 6,315,224 m N, WGS84).

2.2. Criteria for assessing support for stomach contents
In order to develop a more objective, or at least more explicit, rationale for evaluating the evidence
supporting putative cololites (preserved stomach contents), a series of independent criteria were
established (table 2). Criteria applied to evaluate or validate putative stomach contents build on those
suggested by Molnar & Clifford [55], as well as some criteria, either explicit or implicit, of Currie et al.
[49], Mayr [69], Tweet et al. [47], O’Keefe et al. [67] and Druckenmiller et al. [68]. In total, 16 criteria are
used to evaluate published accounts of cololites in herbivorous dinosaurs (table 2). Most criteria
are developed to be generally applied, but some criteria (e.g. co-occurrence with gastroliths) are not
applicable to all taxa. Similarly, these criteria are developed for herbivorous taxa, and while several
criteria are independent of diet (e.g. co-allochthony, anatomical position, exceptional preservation),
others are diet-dependent (e.g. co-occurrence with gastroliths, mastication), and may not be applicable
across all diets and taxa. Similarly, additional criteria may be relevant for carnivores (e.g. tooth-marked
bone, acid etching of bone), but are not applicable for herbivores.

2.3. Palynology
Palynological preparations were made of samples of the cololite and of the external matrix in order to
compare the composition of the last meal preserved within the cololite with the regional and time-
averaged vegetation recorded in the surrounding sediment. The samples were processed using the
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Figure 1. Location of abdominal mass, including stomach contents (cololite), within the well-preserved nodosaur Borealopelta
markmitchelli (TMP 2011.033.0001). Photograph (a) and scientific line drawing (b) of the specimen in dorsal view. Schematic
drawing (c) of specimen showing position and extent of abdominal mass, as well as extrapolated body outline. Inset (d ) of i,
showing close up photograph of dorsal view of posterior margin of abdominal mass. Inset (e) of ii, showing detailed map of
extent of abdominal mass. ( f ) Schematic drawing of Kunbarrasaurus ieversi (GM F18101) scaled to (c), showing relative size
and positon of cololite. Solid orange, observed cololite; hatched orange, inferred cololite. A, anterior; L, lateral. Scale bars in
(a,b,c,f ) are 1 m, and in (d,e) are 10 cm.
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standard palynological techniques [70], with the resulting slides assigned the palynological series
number TMP 2017.205.
2.4. Microscopic palaeobotanical analysis of cololite

2.4.1. Histological sections

Seven thin sections of the cololite were prepared in order to microscopically analyse its contents,
including mineralogy of the matrix and gastroliths, as well as to allow analysis of any preserved
organic matter (electronic supplementary material, figure S1a–g). Additionally, two thin sections
sampling transects from the external matrix into the cololite were also prepared, to allow for
investigation of this transition (electronic supplementary material, figure S1h–j). Thin sections were
prepared using standard techniques: embedded in clear resin under vacuum; cut to size; mounted on
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Figure 2. Images of preserved abdominal mass of TMP 2011.033.0001. Visible (a) and UV fluorescence (b) photographs and
interpretive drawing (c) of block F, in the plain of the sacral armour (i.e. frontal plain). Wetted cross-polarized light
photograph (d ) and interpretive drawing (e) of the abdominal mass in lateral view (in stratigraphic position). ( f ) Wetted cross-
polarized light photograph of abdominal mass in dorsolateral view (in anatomic position). Orientations: A, anterior; L, lateral;
V, ventral. All scale bars equal 10 cm. Legend applies to both (c) and (e).
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glass slides; and thinned until desired translucence was achieved. As a result of being based on ex situ
hand samples, the thin sections do not have known anatomical or sedimentological orientations.

2.4.2. Palaeobotanical analysis of material

Most of the plant material was present as small fragments typically sheared at oblique angles, obscuring
tissue character and often lacking taxonomically diagnostic characters, necessitating a morphological
category approach. Quantitative microscopic analysis of five of the slides used an Olympus BX51
compound microscope with Z-stack computerized imagery and 26 categories based on gross
morphological criteria (table 3). For the analysis and interpretation, these categories were subsequently
aggregated to yield more ecologically meaningful inclusive groupings.

2.4.3. Taxonomy

Taxonomic identifications of leaf material, where possible, were made using diagnostic epidermal/cuticular
anatomy. Clubmoss (class Lycopodiopsida: Lycopodiaceae and Selaginellaceae) and fern (class



Table 2. List of criteria to support the attribution of material to dietary stomach contents in fossil material.

no. criteria details

1 co-allochthonous co-occurrence of food items and animal in non-habitat host rock (modified from

Molnar & Clifford [55])

2 anatomical position A food items enclosed within three-dimensional body cavity (modified from Molnar &

Clifford [55])

3 anatomical position B food items in appropriate position for stomach/intestines (modified from

Molnar & Clifford [55])

4 exceptional preservation other tissues (e.g. skin) well-preserved (modified from Tweet et al. [47])

5 size uniformity uniformity of food item size (modified from Molnar & Clifford [55])

6 mastication of material cleanly sheared margins (modified from Molnar & Clifford [55])

7 gastrolith association food items associated with gastroliths (modified from O’Keefe et al. [67])

8 mass mineralogy/

sedimentology

mass distinct from surrounding matrix (modified from Tweet et al. [47])

9 mass margin defined margin, organic envelope (modified from Druckenmiller et al. [68])

10 mass shape three-dimensional spheroid or oblong mass (new)

11 content restricted food items localized internally, and absent in external matrix (new)

12 concentration unusual concentration, rarity of food items (modified from Mayr [69])

13 distinct palynomorphs mass and external palynomorphs are distinct (modified from Tweet et al. [47])

14 acid etching on bone bone surface shows etching from stomach acid (modified from Currie et al. [49])

15 geochemical evidence of stomach enzymes, etc. (new)

16 dietary appropriate dietary items are appropriate given independent data (modified from Currie et al. [49])

royalsocietypublishing.org/journal/rsos
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Polypodiopsida) sporangia were identified from in situ spores. Leptosporangiate ferns (subclass
Polypodiidae) were identified through the presence of sporangia with a well-developed annulus: a
thickened band forming along the outer margin of the sporangium. Non-leptosporangiate ferns (e.g.
Angiopteris, Marattiaceae) and basal leptosporangiate ferns such as Osmunda (Osmundaceae) lack this
annulus on their sporangia [71–73].
2.5. The contemporaneous Gates Formation (Grand Cache Member) macroflora
Borealopelta markmitchelli was deposited in marine sediments (i.e. Wabiskaw Member of the Clearwater
Formation), and so there is no associated macroflora representing the local flora this herbivorous dinosaur
fed within. The Albian coastline lay 200–400 km to the west, and so the Lower Albian Grand Cache
Member of the Gates Formation [74] provides a picture of the local vegetation available to Borealopelta
and other herbivorous dinosaurs (figure 3). We review the Grand Cache Member macroflora from an
unpublished taxonomic analysis [74] and a collection in the Royal Tyrrell Museum of Palaeontology
(RTMP) of fossil leaves collected from the Grand Cache Coal Mine (collected in 2015), Smokey River Coal
Mine (collected in 1990) and near the McIntyre Mine (collected in 1981; detailed site information available
from the RTMP database). Representative examples of key fern and gymnosperm taxa were
photographed using a Canon EOS 6D digital SLR camera with 24–105 mm [1:4] lens from both the RTMP
collection as well as the collection made by Wan [74] housed at the University of Saskatchewan (figure 3).
Identifications follow Wan [74], except where a new unpublished taxon was proposed by Wan, in which
case we have used the currently accepted generic name or species binomial.
2.6. Institutional abbreviations
AMNH, American Museum of Natural History, New York, USA; JRF, Judith River Foundation, Malta,
Montana, USA; NMS, Naturmuseum Senckenberg, Frankfurt, Germany; TMP, Royal Tyrrell Museum
of Palaeontology, Drumheller, Alberta, Canada; QM, Queensland Museum, Brisbane, Queensland,



Table 3. Plant fragment categories used in the analysis.

category name description

1 cuticle with stomata

Type A

fern or angiosperm type stomata (bean-shaped guard cells) present

2 cuticle with stomata

Type B

gymnosperm type stomata (polygonal guard cells) with a prominent polar flange

3 cuticle type 1 epidermal cells with low-amplitude and high-frequency sinuous lateral walls

4 cuticle type 2 epidermal cells with high-amplitude and low-frequency sinuous lateral walls

5 cuticle type 3 epidermal cells with high-amplitude and high-frequency sinuous lateral walls

6 leaf epidermis with

cellular material

typically has stomata present; epidermal cells and often also underlying

parenchyma (palisade and/or mesophyll) present

7 leaf cross-section with

thickened cells

recognizably a leaf fragment showing one or more of parenchyma, vascular cells

or epidermal cells in addition to sclerenchyma

8 leaf cross-section

without thickened

cells

recognizably a leaf fragment showing one or more of parenchyma, vascular cells,

or epidermal cells with no presence of sclerenchyma

9 leaf cross-section

undifferentiated

recognizably a leaf fragment showing one or more of parenchyma, vascular cells

or epidermal cells but where further differentiation is not possible

10 leaf cross-section

undifferentiated

‘narrow’

recognizably a narrow in cross-section leaf fragment showing one or more of

parenchyma, vascular cells or epidermal cells but where further differentiation

is not possible

11 undifferentiated plant

material (probably all

leaf mesophyll)

recognizably plant tissue, typically mostly parenchyma, but not assignable to any

of the other categories

12 clump of thickened cells

(sclerenchyma)

sclerenchyma that is not associated with any other cells or recognizable tissue

13 wood/woody stems plant tissue composed mostly of xylem tissue; includes woody stem cross-sections

showing growth rings

14 isolated tracheids/xylem

fragments

isolated individual tracheids or scattered clumps of tracheids or similar vascular

tissue

15 round stem cross-section a round piece of plant tissue that shows a discrete dermis on the outside, and

internal to the dermis evidence of structure such as vascular bundles,

parenchyma or other recognizably organized tissues; these may be leaf

petioles or reproductive structures such as strobili

16 square stem

cross-section

a square or polygonal piece of plant tissue that shows a discrete dermis on the

outside, and internal to the dermis evidence of structure such as vascular

bundles, parenchyma or other recognizably organized tissues; these are

probably petioles or leaf mid-veins

17 stem longitudinal section an irregularly polygonal piece of plant tissue that shows evidence of

longitudinally organized tissues such as vascular bundles, parenchyma or other

recognizable tissues; may include longitudinally sectioned stobili

18 stem cross-section

uncertain

as for the above, but where the angle of cut prevents recognition of the shape

being round or polygonal

(Continued.)
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Table 3. (Continued.)

category name description

19 sporangia

undifferentiated

any sporangia that cannot be placed in any of the sporangia categories (A–F)

20 sporangia type A leptosporangiate: has a prominent annulus with dark thickened ‘ridges’, contains

spores that are trilete and psilate with concave sides (indet.)

21 sporangia type B leptosporangiate: contains spores that are trilete and psilate with convex sides

(indet.)

22 sporangia type C Lycopodiopsida: multiseriate band of thickened cells +/− present, contains trilete

spores that are echinate and rounded (Echinatisporis sp.)

23 sporangia type D leptosporangiate: contains trilete spores that are very sharply angular (indet.)

24 sporangia type E leptosporangiate: well-developed annulus, trilete spores that are almost circular

(Deltoidospora sp. or Biretrisporites sp.)

25 sporangia type F leptosporangiate: contains trilete spores that are striate (Cicatricocsisporites sp.)

26 charcoal/blackened plant

material

material that is black and non-shiny that otherwise is recognizably plant cells or

tissue; interpreted as charcoal or fusinite
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Australia; MOZ-Pv, Museo Provincial de Ciencias Naturales ‘Prof. Dr Juan A. Olsacher’, Paleovertebrates
collection, Zapala, Neuquén, Argentina.
3. Results
3.1. Macroscopic analysis of the cololite
The extent of the cololite can be observed in dorsal view on block K, the anteromedial extremes of block F
(and counterpart), and in the broken cross-sections along the anteromedial extent of block F,
posteromedial extent of block D and posterior extent of block E (figure 1) [75]. The cololite is located
near the thoracosacral transition (T9–T12 osteoderm rows [75]), positioned to the left of the midline
(figure 1). It is dorsally positioned within the abdominal cavity, being appressed to the ribs of rows
T11–12 (figure 2d–f ). Its shape is a vertically compressed sphere, with horizontal diameter of
approximately 36 cm and a maximum height of approximately 18 cm.

The cololite is composed of a single large three-dimensional cluster of distinct spheroids (interpreted
here as gastroliths) ranging from clast-supported to matrix-supported, within a light grey fine- to
medium-grained sandstone matrix (figures 1d and 2). The spheroids are highly rounded, ranging in
form from oblong to spherical, and diameter from 1.9 to 22.1 mm, and vary in colour from yellow,
orange, red to brown, occasionally bearing signs of concentric rings, or surrounded by a halo of
darkened matrix. The spheroids show some degree of size sorting, with those ventrally positioned
(stratigraphically up) being larger, and those positioned further dorsally being smaller and more
numerous (figure 2d–f ). The matrix surrounding the spheroids is light grey with abundant, small
(generally less than 2 mm), dark, organic fragments (figures 1d and 2). Macroscopically, and even
under stereo microscopy, few details can be discerned from these organic fragments. One exception is
the occurrence of a centimetre-scale woody stem observable in two cross-sections and partial
longitudinal section along the margin of a hand sample block. The stem measures 34.9 mm in
preserved length (truncated at both ends), with diameter of 4.5–5.8 mm.

The sediment external to the cololite is markedly different, consisting of a nearly uniformly dark grey,
fine siltstone with green mottling—indicative of a prominent glauconitic component (figure 2d–f;
electronic supplementary material, figure S3h–j ). In all cases, the contact between the cololite and the
external matrix is distinct, showing: (A) a marked transition from large spheroids to uniform and fine-
grained matrix; (B) a marked transition from dense organic fragments to a matrix lacking inclusions;
(C) an abrupt transition in matrix lithology (light grey fine to medium sandstone of the cololite to
dark green-grey siltstone); and (D) in many cases a thin (less than 1 mm), dark, undulating and
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Figure 3. Gates Formation (Grand Cache Member) plant fossils from central Alberta. (a) Pterophyllum sp. (TMP 1990.027.0021),
(b) Sphenopteris sp. (TMP 1981.055.0103), (c) Gleichenites sp. (USask 925-7273), (d ) Ginkgoites sp. (TMP 1990.027.0020),
(e) Taeniopteris sp. (TMP 1981.055.0006), ( f ) Cladophlebis sp. (top left) and Elatides sp. (arrow) (TMP 1981.055.0012),
(g) Elatides curvifolia (TMP 2015.006.0469), (h) Sagenopteris sp. (TMP 1981.055.0033), (i) Equisetites sp. (USask 750-7557),
( j ) conifer cone (TMP 1981.055.0044) and (k) Coniopteris sp. (TMP 1981.055.0058). Scale bars = 1 cm.
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discontinuous surface that may represent stomach wall or other visceral tissue (figure 2d; electronic
supplementary material, figure S3h–j ). The macroscopic distinction between the matrix internal and
external to the cololite is further highlighted by UV light, where the internal matrix shows a higher
degree of UV fluorescence (figure 2b) than the surrounding matrix.

3.2. Palynology
A total of 50 palynomorphs were recovered from the cololite and external matrix samples, including six
bryophytes (i.e. moss or liverwort), 28 pteridophytes (i.e. clubmosses and ferns), 13 gymnosperms
(principally conifers, and one cycad) and two angiosperms (electronic supplementary material, figure S2,
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Figure 4. Palaeobotanical elements observed on the cololite histological slides. (a) Clubmoss (Lycopodiopsida) sporangium type C
with Echinatisporis sp. (Lycopodiaceae or Selaginellaceae), (b–d ) isolated leptosporangiate fern sporangia with spores in situ, (b)
sporangium type F with Cicatricosisporites sp. (Schizaeaceae), (c) sporangium type E with Deltoidospora sp. ( fam. indet.) or
Biretrisporites sp. (Matoniaceae-Cyatheaceae-Dicksoniaceae), (d ) sporangium type A (spore indet.), (e) charcoal/blackened plant
fragment, ( f ) square stem cross-section, (g) cuticle without stomata displaying sinuous lateral cell walls (Type 1), (h) leaf cross
section, (i) cuticle with stomata and sinuous lateral cell walls (Type 2), ( j ) cuticle with stomata Type B, (k) thickened cells/
sclerenchyma, (l ) cuticle with stomata (Type A), (m) twig cross-section showing annual rings. (c,d,j,k) scale bars = 40 µm; (a,b,
e,g,h,i,l) scale bars = 100 µm; (m,f ) scale bars = 400 µm.
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appendix 1). Pteridophyte spores were primarily leptosporangiate (Polypodiidae: 21 taxa) such as
Gleicheniaceae and Schizaeaceae, as well as four species of Osmundaceae. Spores in situ within
sporangia were also identified in the cololite sample (figures 4 and 5). The external matrix has a much



Figure 5. Wide views (top and bottom panels) showing abundance of plant material found in the histology slides of the cololite
sample. In both, (a) sporangia, (b) leaf cuticle with stomata present, (c) gastroliths, (d ) woody material, (e) leaf cross-sections and
( f ) sclerenchyma. Top, slide 3; bottom, slide 6. Scale bars = 200 µm.
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higher diversity of palynomorphs, with 42 taxa recognized, or 84% of the combined total palynomorph
diversity of 50. By contrast the cololite has a lower diversity, with only 24 palynomorphs, representing just
48% of total diversity. Of the 50 palynomorph taxa, 16 (32%) were common to both samples, 26 (52%) were
found only in the external matrix and 8 (16%) were found only in the cololite (electronic supplementary
material, figure S2). The external matrix was rich in moss (six taxa), fern and other pteridophyte spores
(24 taxa), and gymnosperm pollen (11 taxa), whereas the cololite sample had only one moss taxon,
15 pteridophyte spore taxa, five gymnosperm pollen taxa, and two angiosperm pollen taxa, and lacked
cycad pollen (electronic supplementary material, appendix 1). The pteridophyte spores in the external
matrix included taxa not assignable as either leptosporangiate or eusporangiate ferns (Impardecispora spp.)
as well as lycophytes (e.g. Retitriletes singhii), all of which were absent from the cololite sample. All of the
fern spores in the cololite sample were from leptosporangiate groups and included Osmundaceae. No
araucarian pollen was identified in either sample; however, the pollen Classopollis classoides in the external
matrix is assigned to the extinct conifer family Cheirolepidiaceae by some palynologists.

The two samples, although sharing numerous palynomorphs, are therefore somewhat distinct, with
the cololite sample being largely a subset of the more diverse external matrix. This result is consistent
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with a temporally and spatially restricted sample of local flora eaten by the nodosaur versus the regional
flora reflected in the external matrix, which represents sampling over an extended period of time.
Consistent with the depositional environment of marine sediments, the external matrix was both rich
in, and dominated by bisaccate gymnosperm pollen, including Pinaceae, Podocarpaceae and extinct
taxa such as the pteridosperm Alisporites and Vitreisporites pallidus (Caytoniales).
3.3. Microscopic palaeobotanical analysis of stomach contents
For slide 2, where all transects and all grid squares were counted (for a total of 88 629 grid squares), 13% of
grid squares contained plant fragments, whereas gastrolith material or solely matrix were present in 55%
and 25% of the grid squares, respectively (figure 6a). A gastrolith record represents a grid square where
at least half the square was gastrolith. For some fields of view, all grid squares were occupied by
gastrolith material.

Plant fragments—Most of thematerial wasmacerated, probably through a combination of biting/shearing,
and subsequentprocessing through thegrinding actionof the gastroliths in theanimal’s stomach (gastricmill),
yielding fragments sheared at oblique angles (figures 4 and 5), obscuring cell detail. The presence of fern
sporangia with in situ spores (figure 4b–d) is not typically seen in sediment samples and supports
interpretation of the mass as a cololite. The sporangia also allowed for some narrowing of our taxonomic
identification of remains (the dominant source of leaf material in the samples) to leptosporangiate ferns
(subclass Polypodiidae; [76]) such as Schizaeaceae, but excluding Osmundaceae (e.g. Osmunda), and
excluding eusporangiate ferns such as Marattiaceae (e.g. Angiopteris). Sporangium type C (figure 4a)
contained Echinatisporis grains, indicating a clubmoss (cf. Lycopodiaceae or Selaginellaceae).

The plant fragments counted on the slides (figure 6b,c; electronic supplementary material, S3) showed a
dominance in the nodosaurid’s gut contents of leaf tissue (88%), composed of 9% recognizable leaf cross-
sections (figure 4h) and 69% undifferentiated plant material that was interpreted as primarily leaf
mesophyll owing to the predominance of parenchyma in this tissue, with some differentiation into likely
densely packed palisade and spongy-mesophyll tissues (figure 4h). About 1% of the counted leaf
fragments included prominent multi-cell-thick sclerenchyma tissue (figure 4k). Rare cuticle fragments
(4%) preserved the pattern of the underlying leaf epidermis cells, with some of these fragments (1%)
bearing stomata with distinctive flanges at the poles of the guard cells (figure 4i,j) that are diagnostic of
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some extant cycads [77,78]. While at very low counts, some cuticle fragments bore stomata comparable to

conifers, ferns or angiosperms (e.g. Figure 4l ). Non-leaf plant fragments were composed of stem cross-
sections (3%) sometimes showing annual growth rings (figure 4m), rare other plant structures (e.g.
strobili), and woody twig cross-sections and highly fragmented wood material (4%) (figure 6).

At least five different isolated leptosporangiate fern sporangia morphotypes were recognized (table 3
and figure 4b–d), but were only 4.3% of the total count and were often in the same grid square as the
cuticle types 1 and 2. While not taxonomically diagnostic, fern epidermis is often composed of cells
with highly sinuous lateral walls; 3% from the total of 4% cuticle counted possessed this trait, with
three morphotypes (types 1–3) recognized on the basis of the differing frequencies of the sinuosity
(figure 4g,i).

Of interest was the presence (6%) of blackened plant fragments that sometimes preserve anatomical
detail (figure 4e). These fragments we interpret as burnt plant material (charcoal, inertinite or fusinite).

Although variation exists, the relative abundance of major plant tissue types is consistent across the
slides (electronic supplementary material, figure S3), suggesting that the inclusions within the cololite
matrix are fairly homogeneous, and the results are reflective of the overall pattern and not highly
influenced by isolated concentrations.

3.4. Lower Albian Gates Formation, Grand Cache Member macroflora
Representative examples of the plant taxa from the Grand Cache Member are shown in figure 3. Ferns (class
Polypodiopsida) were well represented in the macroflora, with five genera present: Acanthopteris and
Coniopteris (Dicksoniaceae s.l.); Gleichenites (Gleicheniaceae); and Cladophlebis (Osmundales) and
Pseudophlebis (fam. indet.). The seed fern Sphenopteris was also present. Dicksoniaceae and Gleicheniaceae
are leptosporangiate ferns and Osmundales are basal leptosporangiate ferns (subclass Polypodiidae),
while the others are of uncertain taxonomic placement. Equisetites (cf. Equisetum) was prevalent in the
Grand Cache Member [74]. Gymnosperms such as Caytoniales (e.g. Sagenopteris) were numerous and
conifers (Cupressales–Pinales) were diverse, with the most abundant conifers Pityophyllum (Pinaceae),
Athrotaxites and Elatides (Cupressaceae), and Elatocladus (incertae sedis). Cycads (Cycadales) were rare,
with three genera (Chilinia, Ctenis and a newly proposed genus [74]) from only 13 specimens; however,
cycadophytes (Bennettitales) were well represented in the flora, with 11 species identified by Wan [74]
and numerous specimens recorded of Ptilophyllum s.l., Pseudocycas and Pterophyllum. Ginkgo and
Ginkgoites (Ginkgoales) and Taeniopteris (incertae sedis) were relatively abundant. Czekanowskiales
(extinct ginkgophytes) also made up a small portion of the flora, with only 1 genus and 12 specimens.
Angiosperms were scarce in the Grand Cache Member with perhaps only three species represented by
four unidentified angiosperm leaves [74].
4. Discussion
4.1. Attribution of abdominal mass to dietary stomach contents (cololite)
Multiple independent lines of evidence support the interpretation of the abdominal mass of the
Borealopelta markmitchelli specimen TMP 2011.033.0001 as a cololite (ingested stomach contents), and
not peri- or postdepositional sediment infill. Of the 16 criteria developed to evaluate putative stomach
contents, the specimen meets 14 (table 2; electronic supplementary material, table S1).

In total, the B. markmitchelli abdominal mass presents more criteria supporting the cololite
interpretation (14) than any other purported dinosaur stomach remains (electronic supplementary
material, table S1). Relative to the well-supported cololite of the Kunbarrasaurus ieversi specimen QM
F18101 [55,56] which meets 10 criteria, the present specimen scores for these same 10, and
additionally scores for association with gastroliths, distinct margins, distinct palynomorphs internal
and external to the cololite, and unusual concentrations (intact sporangia).

In all aspects, the position of the cololite in the present specimen is nearly identical to that of
the Kunbarrasaurus ieversi specimen QM F18101 [55,56]. In both cases, the cololite is located at the
thoracosacral transition, even with the anterior margin of ilium, positioned to the left of the midline, and
appressed dorsally near or on the ribs (figure 1c,f ). Independently, these two cases provide unequivocal
evidence of a cololite, and the similarity of the positions of these masses provided further supporting
evidence. That abdominal masses of Kunbarrasaurus and Borealopelta are preserved on the left side of the
body is not a trivial detail, as asymmetry in visceral organs, with the stomach positioned on the left, is
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both ancestral and highly conservedwithin vertebrates [79,80]. The position of the cololite inB.markmitchelli

is also broadly similar to that seen in the Isaberrysaura mollensis specimen MOZ-Pv 6459, although few
details of the position and extent of this mass in that specimen were reported [57].

Both extant birds and crocodilians show a developmental regionalization of the stomach into an
anterior glandular stomach (proventriculus), and a posterior muscular stomach (ventriculus/gizzard),
with the extant phylogenetic bracket predicting a similar regionalization in the stomach of non-avian
dinosaurs [80–82]. The abundance and concentration of gastroliths associated with the cololite in B.
markmitchelli therefore not only allow for inferences that the putative gut contents belong to the
stomach but specifically to the posterior stomach, which was probably modified into a muscular gizzard.

4.2. Previous hypothesis of Ankylosauria diet
Historically, the diet of Ankylosauria was considered to be dominated by, or exclusively composed of,
plant material [83–85], although see [60,86,87] for alternative interpretations. Due to a combination of
skull morphology and relatively small and simple teeth, many authors also proposed that this diet
was restricted to soft, non-abrasive plant material [88–90]. This paradigm was altered by a
combination of dental microwear and biomechanical work, which suggested ankylosaurs had more
complex chewing mechanics [28,91–95] and may have been able to handle tougher vegetation.

Despite the research into their palaeoeocology, relatively few hypotheses about the specifics of
ankylosaur diet have been put forward. Weishampel [96] suggested fleshy components of cycad
inflorescences as well as cycadophyte (e.g. Nilssonia), seed-fern (Caytoniales: e.g. Sagenopteris), and (in the
Late Cretaceous) angiosperm fruits. Farlow [97], suggested the foliage of conifers and ferns. Tiffney [40]
suggested the tough foliage of conifers and cycadophytes, and softer foliage of seed ferns, pteridophytes,
and other gymnosperms, as well as cycad and conifer seeds, and (in the Late Cretaceous) angiosperms.

In the broader context of dinosaur megaherbivory, several authors have analysed the digestibility and
energy content of modern relatives of potential Mesozoic dinosaur food plants [12,17,19]. Hummel et al.
[17] suggested that horsetails, the non-leptosporangiate ferns Angiopteris (Marattiaceae) and Osmunda
(Osmundaceae), the conifer family Araucariaceae and other non-podocarpaceous conifers, and Ginkgo/
ginkgophytes would have been good to excellent sources of food energy for herbivorous dinosaurs, while
cycads, conifers of the family Podocarpaceae (e.g. Podocarpidites multesimus; electronic supplementary
material, appendix 1) and ferns of the family Dicksoniaceae (e.g. Coniopteris; figure 3) would have been
the least attractive. Combining these results with palaeobotanical and co-occurrence data, Gee [18]
suggested Araucaria, Equisetum, the Cheirolepidiaceae and Ginkgo would have been the most likely food
sources for sauropod dinosaurs, while conifers such as the Podocarpaceae, Cupressaceae and Pinaceae
would be less optimal, but still viable food. Ferns such as Angiopteris and Osmunda, as well as cycads and
cycadophytes (Bennettitales: e.g. Pterophyllum; figure 3), were considered less likely for fully grown
sauropods. Regardless of their poor energetic and nutritional content, Dodson [98] suggested the ubiquity
of ferns means they probably formed a major component of herbivorous dinosaur diet. Although largely
in the context of sauropod diet, many of these results are also probably applicable to megaherbivorous
ornithischian taxa, including ankylosaurs, other than distinctions due to feeding height limitations.

Very little data are available concerning the vegetation ofAlberta contemporaneouswithBorealopelta. The
Lower Albian Grand Cache Member of the Gates Formation [74], however, provides a picture of the local
vegetation potentially available to Borealopelta and other herbivorous dinosaurs (figure 3). This macroflora
is rich in leptosporangiate ferns (15 species; e.g. Osmundales, Dicksoniaceae and Gleicheniaceae),
horsetails (Equisetites), conifers (eight species; principally Cupressaceae and Pinaceae) and other
gymnosperms such as Caytoniales (six species), ginkgophytes (Ginkgoales–Czekanowskiales; three
species) and cycads–cycadophytes (Cycadales–Bennettitales; 13 species). The Grand Cache Member of the
Gates Formation also preserves abundant dinosaur tracks, with the ichnotaxon Tetrapodosaurus borealis
(Ankylosauria) being most common, further strengthening the potential association with the
contemporaneous Borealopelta [99]. Additionally, the mollusk Murraia naiadiformis (Unionidae), previously
only known from the upper McMurray Formation [100], has also been found in the Gates Formation [101]
(e.g. TMP 1997.070.0015), also suggesting a link between these two depositional environments.

When assessing the plant groups found in the Grand Cache Member of the Gates Formation, based
on their desirability as food sources, this assemblage appears to be of relatively low diet quality. Gee [18]
suggested that Araucaria, Equisetum, Cheirolepidiaceae and Ginkgo are plants of high dietary desirability.
Of these only Ginkgo/Ginkgoites and Equisetites were present, while Araucariaceae and Cheirolepidiaceae
were absent. The less attractive, but still desirable food sources, Cupressaceae and Pinaceae (two species
each) and Elatocladus (fam. indet., three species) are the principal conifers in the Gates Formation
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macroflora. Lastly, the food sources least preferred [18] are the non-leptosporangiate fern Angiopteris and

the basal leptosporangiate fern Osmunda (although based on the presumed limited accessibility of closed
forests to large sauropods), as well as cycads, and Bennettitales. Of these groups, only Cycadales and
Bennettitales were present in the Gates Formation flora, although Cladophlebis is often placed in the
Osmundales [102] together with Osmunda (Osmundaceae).

4.3. Direct evidence of Ankylosauria diet based on Borealopelta
Any discussion of dietary reconstruction based on this specimen requires two caveats. Firstly, the data are
based on a single specimen, which may not be representative of the species, or larger taxonomic groups
as a whole. Secondly, the data represent a single brief event, probably of the order of hours, and at the
end of one individual animal’s life, and may not accurately reflect the typical or average diet of the
individual nor the taxon, especially in the context of seasonal changes and landscape variation in
food availability. These caveats aside, these data do represent the best available direct evidence of diet
in an herbivorous non-avian dinosaur.

The diet of the Early Cretaceous nodosaurid ankylosaur Borealopelta markmitchelli was dominated
(approx. 88%) by leaf material, with only a minor stem/twig component (approx. 7%) (figure 6;
electronic supplementary material, table S2). This is consistent with the hypothesis that nodosaurs were
selective feeders [103,104], analogous to extant large mammal herbivores such as cervids, which crop
leaves and ingest only a minor fraction of smaller diameter twigs [105], and indicating feeding choices at
the scale of individual plants or bites. Conifer and cycad–cycadophyte leaf fragments were rare
(although potentially under-recognized), with the leaf fraction dominated by ferns (greater than 80%).
There was no definitive evidence of angiosperm leaf material, although some rare cuticle fragments bore
stomata resembling those seen in ‘dicot’ angiosperms. Angiosperms were probably rare in the local
landscape at this time, as only two angiosperm pollen species were recorded in the stomach content
sample (electronic supplementary material, appendix 1), and only three, potentially dubious, species of
angiosperm leaves are present as rare components in the Albian Gates Formation flora [74].

Stem cross-sections (3%) probably represent small twigs of conifers, some showing evidence of 2–3 years
of wood annual rings (figure 4m). Highly fragmented woody material and tracheids (4%) are probably
derived from twigs processed by the nodosaurid’s gastric mill or by its teeth and rhamphotheca.
Identification of the ‘stem cross-section square’ material (less than 1%) as leaf petioles (cycad–
cycadophyte or conifer), conifer needles or fern rachides—as observed for other records of ankylosaur
gut contents and putative ankylosaur coprolites [45,56]—is possible, as rare specimens have the pattern
of vascular bundles consistent with this interpretation. There is no evidence of horsetails in this
nodosaurid’s diet, as extant Equisetum species have a diagnostic stem anatomy (polygonal in cross-
section with vascular bundles in a ring around a central pith or hollow centre, often displaying
peripheral carinal canals) that was not observed in any of the stem fragments. Nor were Equisetum
spores recognized in any palynological preparations. The absence of Equisetum on the slides is contrary
to some hypotheses about horsetails as well as ferns being an important component of thyreophoran
diets [12]. While Equisetites was recognized in the Gates Formation macroflora (figure 3i) and this group
occurs commonly in floras throughout the Cretaceous, its absence in the cololite may simply reflect a
lack of Equisetites in the area grazed by Borealopelta on the days before its death. Alternatively, the
digestibility of Equisetum is high [17,18], perhaps selectively removing Equisetites from the cololite.
However, as Equisetum fragments were identifiable in the faeces of extant geese and grizzly bears that
fed on Equisetum [106,107], it is unlikely to have been absent from the cololite if ingested.

Leaf fragmentswithmultiseriate sclerenchymabelow the epidermis (figure 4l ) are interpreted as cycads–
cycadophytes, as this sclerenchymatous tissue by location and character is typical of the hypodermis of
extant cycads, for example Cycas circinalis. Conifer leaves can also have a sclerenchymatous hypodermis,
but where present (e.g. Araucaria angustifolia) the hypodermis is only one or two cells thick, even at the
leaf midrib [108]. Possible pollen of the extinct Mesozoic conifer family Cheirolepidiaceae (Classopollis
classoides) was recorded from the external matrix only (electronic supplementary material, appendix 1),
but the distinctive stomata of Frenelopsis [109] were not observed on any of the rare cuticle fragments, and
Cheirolepidiaceae are absent from the Gates Formation macroflora. The occurrences on the slides of
gymnosperm leaf fragments partially correspond to the pollen records from the cololite sample, with
conifer (e.g. Taxodiaceaepollenites vacuipites= a taxodioid Cupressaceae; and the bisaccate grains
Pityosporites spp. and Podocarpidites multesimus =Cupressales or Pinales) and angiosperm pollen present
(e.g. Tricolpites sp. and Tricolporites sp.). Cycad pollen (i.e. Cycadopites formosus), however, was only
present in the external matrix sample (electronic supplementary material, appendix 1).
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The detection of cycad–cycadophyte leaf fragments in the cololite slides, and only a trace of conifer

leaves on the slides, is contrary to previous prediction of diet choice for large herbivorous dinosaurs
(although based on sauropods, animals much larger than Borealopelta), which argued against cycads and
favoured araucarian leaves based on the energetics of their digestion [12,110]. Adult sauropods, however,
would have accessed trees, whereas Borealopelta would have accessed low-stature plants. Conifers and
Ginkgo are common in the Gates Formation macroflora (figure 3d,f,g), and these taxa form medium to tall
trees, elevating the foliage high above ground level, making conifers and Ginkgo less likely food sources
for the low-placed heads of nodosaurids, except when these gymnosperms were present as saplings. By
contrast, cycad–cycadophytes include both tree-like forms and low-statured plants (including trunkless
zamioids) and were also common in the Gates Formation macroflora (figure 3a). The very low counts of
cycad–cycadophytes in the slides (3%) (including both leaf fragments with hypodermis (figure 4k) and
cuticle fragments with stomata) is probably an underestimate, as the undifferentiated plant tissue
category was associated with cuticle with cycad-like stomata (e.g. Figure 4i,j) in very low counts and so
may represent cycad–cycadophyte leaf tissue lacking sclerenchyma. More commonly though, the
undifferentiated plant tissue was associated with likely fern cuticle, often with fern sporangia present,
consistent with fern leaf tissue being the strongly dominant component of the undifferentiated category.
Our interpretation, therefore, is that cycad–cycadophyte leaves were a minor component in the
nodosaurid’s diet (less than 5%) and may represent casual ingestion. Similarly, the significant presence of
plant fragments as charcoal or fusinite (6%) is strongly suggestive of consumption by Borealopelta of
plants that had sent out new shoots after recent local wildfire.

Leptosporangiate ferns (identified in the cololite slides through the presence of sporangia with a well-
developed annulus) include the fern orders Cyatheales, Gleicheniales, Polypodiales and Schizaeales
(figure 4b–d). In addition to the leptosporangiate sporangia were isolated sporangia still containing
identifiable trilete grains of a clubmoss, Echinatisporites (figure 4a). Both leptosporangiate (e.g. Cyathidites
spp./Cyatheales, Cicatricosporites spp./Schizeaeales and Laevigatosporites haardti/Polypodiales) and
Osmundaceae (Osmundales) spores (e.g. Baculatosporites comaumensis and Osmundacidites wellmanii) are
recognized in the cololite palynology sample (electronic supplementary material, appendix 1), although no
sporangia were observed with B. comaumensis or O. wellmanii spores in situ. These data are consistent with
the animal not consuming Osmundaceae/Osmunda or non-leptosporangiate fern leaves (e.g. Angiopteris).

Experimental data from the fermentation of living analogues of Mesozoic flora have predicted that
horsetails (Equisetum/Equisetites spp.), the non-leptosporangiate ferns Angiopteris (Marattiaceae) and
Osmunda (Osmundaceae), the conifer family Araucariaceae and other non-podocarpaceous conifers, and
Ginkgo/Ginkgoites would have been good to excellent sources of food energy for herbivorous dinosaurs
such as thyreophorans, while cycads, conifers of the family Podocarpaceae (e.g. Podocarpidites multesimus)
and ferns of the Dicksoniaceae (e.g. Coniopteris) would have been the least attractive ([12] and references
therein). Contrary to this prediction, this ankylosaur individual selected leptosporangiate ferns, including
Biretisporites-producing plants (aff. Matoniaceae–Cyatheaceae–Dicksoniaceae), Schizaeaceae (e.g.
Cicatricosisporites sp.) and probably also Gleicheniales (e.g. Gleicheniidites sp.), over conifers and basal-
leptosporangiate ferns such as Osmunda/Cladophlebis or non-leptosporangiate ferns such as Angiopteris
(figure 4). Our data are equivocal on the importance of cycads–cycadophytes (e.g. Ctenis, Nilssonia,
Pterophyllum) in its diet, but are consistent with cycads–cycadophytes being a minor component at best.
As animals with their head held close to the ground (less than 1 m), a diet rich in ferns, the dominant
low-to-the-ground plants (i.e. less than 50 cm), is not surprising. Based on modern analogues, most
conifers (e.g. Cupressaceae, Pinaceae) and Ginkgo tend to have few branches below 1 m, except for
saplings. If present, low-statured conifers and cycads–cycadophytes appear to have been passed over or
incidentally consumed. These results suggest that flora components that are energetically less favourable
may still make up a significant portion of the diet of large dinosaur herbivores, and that digestive
energetics alone may not predict dietary consumption in non-analogue megaherbivores. The results
further highlight the dramatic, and non-analogue, dietary and ecological differences between Mesozoic
dinosaur megaherbivores and extant mammal megaherbivores.

Thewoodystemcross-section (figure 4m) showsdistinct growth rings,with theoutermost ring incomplete,
consistentwith the twig being consumedmid-growing season, probably in late spring tomid-summer, timing
consistent also with the presence of clubmoss and fern sporangia with mature spores (figure 4a–d).

4.4. Forest fire succession
The presence of burnt plant fragments in the stomach contents, and its abundance (6%) relative to non-
burnt wood tissue (4%), suggest a relatively high amount of charcoal or fusinite was consumed.
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Although charcoal is known to be intentionally consumed by multiple wild animals (see review in [111]),

it may also be incidentally consumed during feeding in an area recently subject to wildfire. In this case, it
is unclear if the consumption is intentional or incidental, but regardless indicates that the environment
occupied by the animal prior to death was recently subject to wildfire.

Growing evidence suggests that forest fire was a common event within Early Cretaceous conifer-
dominated forests globally [112,113]. On a more regional scale, abundant evidence for forest fire in the
form of fossil charcoal also exists for the Lower Albian Gates Formation and Manville Group of
northern British Columbia and Alberta [112–115], which are approximately contemporaneous with,
and in geographical proximity to, Borealopelta. Indeed, wildfire may have been a frequent and regular
occurrence in the depositional environment now represented by the Gates Formation, possibly in the
frequency of once every 20–40 years [115].

Modern ferns often play an important role in post-fire succession in both tropical [116–118] and
temperate [119–121] forests. Due to the scarcity and low diversity of angiosperms at this time and
abundance of conifers, ferns may have played an even larger role in fire succession during the Early
Cretaceous. Given that the animal’s diet was strongly dominated by fern foliage, and the potential for
ferns to dominate distinct phases of post-fire succession, forests recovering from wildfire may have
represented distinct niches ideal for herbivorous, low-browsing dinosaurs, such as ankylosaurs.

Analysis of habitat usage by extant mammalian ungulates has documented regional preferences for
recently burned and recovering areas among many species, both in the context of conifer-dominated forests
([122] and references therein) and grasslands ([123] and references therein). The data from the analysed
stomach contents, and the context from modern analogues, suggest that, like many modern herbivores,
Borealopelta may also have preferred recently burned areas to take advantage of post-fire succession. There
are several factors which may have resulted in these areas being desirable, including abundant low-lying
plants (in this case, ferns), high concentrations of nutrients in palatable regrowth, and a more open and/or
heterogeneous habitat. If this interpretation is correct, the dietary contents of the nodosaur represents the
earliest evidence of a fire succession usage within a large-bodied herbivore. On a wider scale, cycles of
wildfire and post-fire succession in Cretaceous gymnosperm-dominated forests may have been important
palaeoecological factors for many Cretaceous animals, including other herbivorous dinosaurs.

Ethics. The study did not involve humans or live animals, and does not require associated ethics approval.
Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary material.
Authors’ Contributions. C.M.B., D.R.G., D.M.H. and J.F.B. conceived of and designed the study, and D.R.G. and C.M.B.
coordinated the study. C.L.G. collected the primary data from the palaeobotanical histological counting and took
the images with contributions from J.E.K. C.M.B., D.M.H. and D.R.G. participated in data analysis, and drafted the
manuscript with contributions from all of the authors. J.E.K., D.R.G. and J.F.B. collated the data and images from
the Gates Formation leaf fossils with assistance from C.M.B. D.R.B. identified and analysed the palynological
samples. All authors participated in interpretation of the results, gave final approval for publication, and agree to
be held accountable for the work performed therein.
Competing interests. We have no competing interests.
Funding. The Palaeoecology Laboratory microscopy suite at Brandon University was funded from successive grants
from the Canada Foundation for Innovation and Research Manitoba to D.R.G. and in-kind support from Olympus
Canada. Partial funding for this research was through a NSERC Discovery grant to D.R.G., funding from the
University of Saskatchewan to J.F.B., National Geographic Society Grant to C.M.B., and funding from the Royal
Tyrrell Museum of Palaeontology, Royal Tyrrell Museum Cooperating Society to J.E.K. and Suncor Canada.
Acknowledgements. We thank Kirstin Brink, Donald Brinkman, Kentaro Chiba, David Eberth, Paul Johnston, Mark Mitchell,
Dan Spivak, François Therrien and Jakob Vinther for fruitful discussions. François Therrien provided microscope access
for initial examination. Sue Sabrowski, Jakob Vinther and Mike Eklund aided in specimen photography. Raymond Strom
and Stephen Cheung of Calgary Rock and Materials Services prepared histological thin sections. Palynomorph samples
were prepared by Russ Harms and Global Geolab Ltd. Donna Sloan produced the scientific illustration in figure 1b. CT
scans were performed at Western Veterinary Specialist and Emergency Centre, Calgary, with the assistance of Nic
Roussset, Joni Klaassen and Cathy Gaviller. Specimen access and assistance was provided by Tom Courtenay, Heather
Feeney, Warren Nicholls, Rhian Russell, Becky Sanchez and Brandon Strilisky. Carole Gee and Atilla Ősi provided
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