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Abstract

Background: It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but
the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of
interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob.

Methodology/Principal Findings: Computed tomographic (CT) scans of several ankylosaurid tail clubs referred to
Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to
estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which
mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had
limited vertical flexibility, but the tail could have swung through approximately 100u laterally. Muscle scars on the pelvis
record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT
scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of
the tail club and made it easier to wield as a weapon.

Conclusions/Significance: Large knobs could generate sufficient force to break bone during impacts, but average and small
knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for
interspecific defense, intraspecific combat, or both.
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Introduction

The tail club (Fig. 1) of ankylosaurid dinosaurs is composed of

tightly interlocking distal caudal vertebrae, forming the handle, and

large terminal osteoderms, forming the knob [1]. Parks [2] described

the first ankylosaurid tail club (ROM 784, Dyoplosaurus acutosquameus

Parks, 1924), but did not comment on its potential function. Maleev

[3] interpreted the tail club of Talarurus plicatospineus Maleev, 1952 [3]

as the ‘striking end’ of the tail, and referred to it as a mace. He later

described a tail club of Pinacosaurus grangeri Gilmore, 1933 [4] as a

double-edged axe, and suggested that the robust neural and haemal

arches and presence of long ossified tendons indicated that strong

muscles would have been employed in tail-swinging [5]. Coombs

[6,7,1] discussed possible muscles associated with tail-swinging, and

the possible range of motion. Thulborn [8] suggested that the tail club

may have acted as a ‘dummy head’, drawing predators away from the

head and neck, but this hypothesis is difficult to test. Ankylosaurids

were capable of swinging the tail laterally, and the large knob and

interlocking handle vertebrae suggest reinforcement against impacts.

However, the biomechanics of the tail and tail-swinging in

ankylosaurids have not been studied in detail.

What were the maximum force and stress that an ankylosaurid

could deliver with its knob? Would the force be sufficient to

damage muscle or bone in an opponent? This study examines tail

club function in clubs referred to Dyoplosaurus acutosquameus Parks,

1924 [2], and Euoplocephalus tutus Lambe 1910 [9], from the

Campanian of North America [10]. Functional morphology and

biomechanics are examined through osteological description,

computed tomography (CT) scans of several partial clubs, muscle

reconstruction, and mathematical modeling of the functional

dynamics of the tail.

Institutional Abbreviations—AMNH–American Museum

of Natural History, New York, New York, USA; CMN–Canadian

Museum of Nature, Gatineau, Quebec, Canada; ROM–Royal

Ontario Museum, Toronto, Ontario, Canada; TMP–Royal

Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada;

UALVP–University of Alberta Laboratory for Vertebrate Paleon-

tology, Edmonton, Alberta, Canada.

Results

Ankylosaurid Tail Osteology and Musculature
Ankylosaurid pelves are characterized by broad, horizontal ilia

and a synsacrum composed of dorsosacral, sacral, and sacrocaudal

vertebrae. The ilia diverge from the midline anteriorly and have a

long preacetabular process and short postacetabular process. The
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ischia are directed ventrally or ventromedially. There are no

complete pubes known for Dyoplosaurus or Euoplocephalus, but

fragmentary specimens indicate that the pubis is a small, blocklike

bone similar to that of nodosaurid ankylosaurs [7] and basal

ankylosaurids such as Gargoyleosaurus (DMNH 27726).

Ankylosaurid caudal vertebrae are here divided into three

categories (Fig. 1): free caudal vertebrae, which make up the

anterior third to half of the tail, handle vertebrae with tightly

interlocking prezygapophyses and neural spines (terminology sensu

[1]), and a transitional vertebra intermediate in morphology

between the two. Ankylosaurid free caudal vertebrae typically

have centra that are approximately as wide as tall. In

Euoplocephalus, centrum shape varies from circular or subcircular

in anterior view; centra are subcircular in anterior view in

Dyoplosaurus. In both taxa, neural spines are dorsoposteriorly

directed, haemal spines are ventroposteriorly directed, and

transverse processes are anterolaterally directed. Neural spines,

haemal spines, and transverse processes are blade-like and taper

distally. Neural spines, transverse processes, and postzygapophyses

decrease in size posteriorly. Postzygapophyses are absent on the

transitional free caudal vertebra. Transverse processes are found

on all of the free caudal vertebrae.

Handle vertebrae are highly modified compared to the free

caudal vertebrae (Fig. 1). The centra are anteroposteriorly

elongate. Neural spines are long and low and are embraced by

the elongate prezygapophyses of the successive vertebrae. Post-

zygapophyses are absent in the handle. Transverse processes are

generally absent, but some specimens exhibit small knobs or ridges

on the first few handle vertebrae that correspond to the location of

the transverse processes. Ossified tendons are only found

associated with the handle vertebrae and can be grouped into at

least two distinct sets, which will be discussed along with the

muscle reconstructions.

Tail clubs are composed of both the handle vertebrae and the

large terminal osteoderms that surround and partially enclose the

distalmost vertebrae, forming the knob (Fig. 1). All knobs include

two major osteoderms, one on each side of the handle vertebrae,

as well as a variable number of minor osteoderms that form the

distal end of the knob. Knob shape is highly variable, both among

and within taxa. Knobs range in width from small (,200 mm), to

average (200–500 mm), to large (.500 mm) [11] (Fig. 2). Many

major osteoderms have distinct longitudinal keels at the midheight

or higher, with a laterally or dorsolaterally-directed axis (Fig. 2).

Major osteoderms extend closer to the midline on the dorsal side

than on the ventral side of the knob (Fig. 2).

Description of Club Internal Morphology from CT Scans
CT scans provide information about the internal structure of

the handle vertebrae, the knob osteoderms, and the relationships

between the vertebrae, ossified tendons, and knob, as well as

information about the differences between small and large clubs.

UALVP 47273 (Euoplocephalus) provided the best data, because of

the quality of the scan and because it is relatively complete. ROM

788 (Euoplocephalus) was scanned in two pieces (knob and handle).

The knob width was only slightly smaller than the aperture of the

scanner, and was slightly larger than the field of view. As a result,

the lateral edges of both major osteoderms were partially excluded

from the scan. Most of the knob was obscured by artifacts resulting

from beam hardening and the partial volume effect [12], possibly

caused by ferrous minerals infilling the pore spaces in the knob, or

because the knob was too large for the X-rays to penetrate

uniformly. Even with the artifacts, the borders of the specimen can

Figure 1. Diagram of tail terminology used in this paper. Ankylosaurid tail reconstructed from ROM 784; ROM 784 lacks the transitional caudal
vertebra and the anterior portion of the pelvis. Scale bar equals 1 m. Modified from Arbour et al. (in press).
doi:10.1371/journal.pone.0006738.g001
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usually be determined, except for the dorsal border of the vertebra

in the centre of the knob. Some artifacts are present in the scan of

UALVP 16247 (Euoplocephalus), but these are not prominent and

are easily distinguished from the bone.

In UALVP 47273 and ROM 788, the centra are comprised of

low density cancellous bone, whereas the neural and haemal

arches are dense compact bone (Fig. 3). The ossified tendons are

similarly dense. The neural and haemal canals are radiolucent in

the scans, indicating that they have been infilled with minerals.

Transversely, the neural canal is circular to oval. The haemal

canal is always completely enclosed by bone. The centra are at

times difficult to discern in the knob, but the neural and haemal

canals are visible until near the terminus of the knob. In UALVP

47273, the neural canal seems to end at approximately the

Figure 2. Morphology of ankylosaurid tail clubs. A) UALVP 47273, dorsal view. B) ROM 784 dorsal view and C) posterior view, D) UALVP 16247
dorsal view, E) AMNH 5245 dorsal view, and F) ROM 788 ventral view.
doi:10.1371/journal.pone.0006738.g002
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anterior border of the minor plates that comprise the distal end of

the knob (Fig. 4).

In UALVP 16247, the shape and number of the vertebrae in the

knob is best viewed in coronal view (Fig. 5). Three vertebrae are

preserved in the knob, and the last vertebra extends almost to the

posterior terminus of the knob. The posterior two vertebrae are

completely enclosed laterally by the major osteoderms. The

anterior two vertebrae are partially exposed dorsally, but the

terminal vertebra is dorsally covered by the minor plates. In dorsal

view, the two anterior vertebrae have the characteristic elongate

hourglass shape found in handle vertebrae. The terminal vertebra

is abbreviated in length, with a length of less than one third that of

the penultimate vertebra. The terminal vertebra is roughly

triangular in dorsal view, rather than hourglass-shaped.

In some tail clubs (e.g. AMNH 5245, Euoplocephalus), successive

tail club centra are not fused at the anterior and posterior ends.

However, in sagittal view of UALVP 47273, bright zones at the

articular ends of the centra, and a lack of distinct spaces between

the centra, seem to indicate fusion of successive handle vertebrae

(Fig. 4). Alternately, this may result from mineralization of the

space between vertebrae. Vertebrae appear fused in ROM 788,

although the specimen has been partially reconstructed and

painted. The CT scan of the ROM 788 handle does not clarify

whether or not the vertebrae are fused at the centra.

Ossified tendons are preserved alongside the handles in all CT

scanned specimens. In UALVP 16247 and UALVP 47273, the

ossified tendons are visible between the osteoderms and vertebra

(Fig. 6). Tendons along handle appear bright, but tendons

enclosed by the knob osteoderms are dark.

In UALVP 47273, the osteoderms each have a relatively thin

compact cortex, and are predominantly cancellous (Fig. 6). The

cortex is slightly thicker on the right major plate than on the left,

especially at the keel. This compact bone is absent on the dorsal and

ventral medial edges of the major plates. The minor plates at the

distal tip of the knob are somewhat denser than the major plates.

Neurovascular channels are approximately radially oriented near the

outer edges of the osteoderms, and have a more random distribution

medially. Some large pores can be traced several centimeters dorsally

from the ventral border of the knob osteoderms. In transverse sections

through the major plates, there are patches of low density (Fig. 6).

These change shape anteroposteriorly, but remain symmetrical

between the osteoderms.

Figure 3. CT scan images of transverse slices through UALVP 47273 handle vertebrae in anterior view, dorsal is up. A) Midlength of a
vertebra, with B) position in specimen, oblique view, anterior is to the left. C) Posterior to midlength of vertebra, with D) position in specimen. Scale
bar in A and C equals 5 cm. Three-dimensional reconstructions in B and D created in Mimics. Abbreviations are as follows: c, centrum; ha, haemal
arch; hc, haemal canal; na, neural arch of the centrum in the slice; na1, neural spine of the anterior vertebra; na2, prezygapophyses of the posterior
vertebra; nc, neural canal; o, ossified tendon.
doi:10.1371/journal.pone.0006738.g003
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Muscle Reconstructions
The intrinsic vertebral muscles Mm. interspinales and Mm.

interarcuales, which connect the anterior and posterior edges of

successive neural spines, and Mm. interarticulares superiores,

which connect the zygapophyses of successive vertebrae, are

present in both crocodilians and birds [13], and were probably

present in ankylosaurids as well. M. multifidus may or may not

have been present in ankylosaurids, because its presence in other

ornithischians is neither supported nor refuted [13].

Ossified tendons are useful for interpreting the presence of

muscles in fossil skeletons because they represent part of this soft

tissue complex [13], and their presence in ankylosaurid tail clubs

can be used to infer the presence of some caudal musculature.

Ossified tendons are known from all ankylosaurid taxa with

Figure 4. CT scan images of sagittal slices through UALVP 47273 handle in left lateral view, dorsal is up. A) Mid-width of the club. Most
of the centra appear to be fused at the anterior and proximal faces (arrow with open head), although one joint does not appear fused (arrow with
closed head), with B) position in specimen, oblique dorsal view, anterior is to the right. C) Mid-width of the left half of the club, with D) position in
specimen. The neural canal extends to the anterior terminus of the minor plates at the distal end of the knob (arrow). The three narrow, vertically
stacked structures at the anterior of the handle are ossified tendons. Scale bar equals 10 cm. Three-dimensional reconstructions in B and D created in
Mimics.
doi:10.1371/journal.pone.0006738.g004

Figure 5. Internal anatomy of a tail club knob. A) CT scan image of coronal slices through UALVP 16247 in dorsal view, at knob mid-height,
posterior is up. B) Interpretive illustration of (A), showing the shapes of the vertebrae, highest density areas (white), medium density areas (light grey),
and lowest density areas (dark grey). The neural canal and vascular canals in the osteoderms are indicated by black. Scale bar equals 5 cm.
doi:10.1371/journal.pone.0006738.g005
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Figure 6. CT scan images of transverse slices through knobs, dorsal is up. A) UALVP 47273, with B) position in specimen. The arrowhead marks
three vertically stacked ossified tendons between the left major osteoderm and the vertebra. C) UALVP 47273, with D) position in specimen. E) UALVP
16247, with F) position in specimen. G) ROM 788, with H) position in specimen; artifacts obscure most fine details. The arrowhead marks the CT scanning
tray. Scale bars in A, C, and E equal 5 cm, scale bar in G equals 10 cm. Three-dimensional reconstructions in B, D, F, and G created in Mimics (not to scale).
doi:10.1371/journal.pone.0006738.g006
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preserved tail clubs, but are best preserved in ROM 784,

Dyoplosaurus (Fig. 7). Ossified tendon arrangement is similar across

ankylosaurid taxa, and that muscles of the tail of Dyoplosaurus and

Euoplocephalus were probably similar. Parks [2] recognized three

series of tendons on the dorsolateral sides of the handle, and four

on the distal, ventral side of the tail. Observation of the specimen

indicates that the tendons are more readily grouped into two sets

on the dorsolateral sides. The ventral side of the specimen is not

exposed. The inner set of tendons has an imbricated appearance,

whereas the tendons of the outer layer are parallel with a braided

appearance. The inner tendons are shorter in length compared to

the long outer tendons, and have smaller diameters. The inner set

of tendons is slightly dorsal to the outer set. Posteriorly, the inner

and outer sets converge towards the knob, whereas anteriorly the

two sets are distinctly separated. The tendons are posterodorsally

oriented, and the inner set more strongly so. The anteriormost

outer tendons are parallel and vertically stacked. The inner set of

tendons inserts at either the midpoint of the centrum or the neural

arch.

Coombs [1] briefly discussed ossified tendons in ankylosaurids,

and suggested that caudal ossified tendons represented M.

iliocaudalis, M. caudofemoralis, and various intrinsic axial

muscles. Based on comparisons with the work of Organ [13]

and Holmes and Organ [14], the dorsoposteriorly-oriented, inner

set of ossified tendons alongside the handle probably represents M.

spinalis. Organ [13] considered parallel bundles of tendons along

the transverse processes as representing M. longissimus dorsi or M.

iliocostalis. Because M. iliocostalis is not present along the caudal

vertebrae, it is likely that the parallel, outer set of tendons in ROM

784 represents M. longissimus caudae. M. transversospinalis was

present, and is represented in the distal portion of the tail by

ossified tendons from the M. spinalis subunit. It is unknown

whether M. semispinalis was present, and if so, how large it was in

the caudal region.

Symmetrical ridges located approximately halfway along the

lateral edge of the ilium of AMNH 5409 (Fig. 8) likely correspond

to the origin of M. longissimus caudae, based on comparisons with

extant crocodilians [15]. These ridges are more .5 cm long, and

suggest that M. longissimus caudae was large, at least proximally.

Coombs [7] suggested that the rugose lateral edges of ankylosaurid

ilia corresponded to the origin of M. longissimus dorsi, although

this would have resulted in an unusually long M. longissimus dorsi.

The transverse processes are not large or robust in ankylosaurids,

and these would have limited the size of M. longissimus caudae

posteriorly along the tail. The handle vertebrae lack transverse

processes, although there are occasionally bumps or ridges along

the lateral sides of the centra (e.g. ROM 784), which may

represent the insertion of M. longissimus caudae.

Coombs [7] reconstructed ankylosaur pelvic muscles with

separate M. iliocaudalis and M. ischiocaudalis. According to

Coombs [7], M. iliocaudalis originated from a massive blunt knob

at the caudal end of the ilium and inserted only along the proximal

caudals, and this interpretation is accepted here (Fig. 8). M.

ischiocaudalis originated from the distal terminus of the ischium,

and Coombs [7] suggested that this muscle was probably not

involved in tail swinging, due to the vertical orientation of the

ischium (Fig. 8). M. caudofemoralis longus (Fig. 8) inserted onto

the distally located fourth trochanter of ankylosaurids [7].

Ankylosaurid tail musculature is reconstructed in cross section

in figure 9 based on crocodilian tail anatomy as described in the

literature. Because the morphology of various subunits of M.

transversospinalis is uncertain, and because there is little

osteological evidence for the size of these divisions, the entire M.

transversospinalis system is depicted rather than its components.

In the free caudal vertebrae, M. transversospinalis would have

occupied the area closest to the neural spine. M. longissimus

caudae is here reconstructed as a large muscle occupying the area

lateral to M. transversospinalis to the distal terminus of the

transverse process.

Ventrally, M. caudofemoralis longus is the largest muscle

(Fig. 9). It is reconstructed here occupying an area between the

transverse process and the stout portion of the haemal arch. Cong

et al. [15] shows M. ilioischiocaudalis of Alligator sinensis forming

the outer boundary of the ventral tail musculature, between the

transverse process and the distal portion of the haemal spine.

Ankylosaurids likely had a small M. ischiocaudalis [7], which is

here reconstructed occupying the area near the ventral terminus of

the haemal spine. Cong et al. [15] also shows that there is a

varying amount of fat between the M. caudofemoralis longus and

M. ilioischiocaudalis in the anterior portion of the tail, which

reduces in size posteriorly. These fat deposits leave no correlates

for reconstruction in ankylosaurids, and so are excluded here. In

Figure 7. Ossified tendons in ROM 784, oblique right lateral view. M. spinalis is represented by the inner set of imbricated tendons, and M.
longissimus caudae is represented by the outer set of parallel to braided tendons. The ossified tendons continue underneath the knob osteoderms
(arrowhead). Scale bar equals 10 cm.
doi:10.1371/journal.pone.0006738.g007
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Figure 8. Origins of tail muscles on the pelvis. A) AMNH 5409 (Euoplocephalus) pelvis, posterior right dorsolateral view. M. ischiocaudalis
originates at the distal terminus of the ischium. The origin of M. longissimus caudae is marked by a long, pronounced ridge and rugose area on the
lateral aspect of the ilium. The posterior terminus of the ilium is partially reconstructed. B) AMNH 5337 (Euoplocephalus) pelvis, dorsal view, anterior
up, showing the posterior terminus of the left ilium. M. iliocaudalis originates from a large knob. C) AMNH 5409, same view as (A), with reconstructed
musculature. The muscles are cut posteriorly to show their relationships in cross-section. M. caudofemoralis longus originates on the transverse
processes of the free caudal vertebrae, and inserts on the fourth trochanter of the femur (not shown). M. transversospinalis originates and inserts on
the neural spines. Scale bars equal 10 cm. Abbreviations are as follows: ca = M. caudofemoralis longus, il = M. iliocaudalis, is = M. ischiocaudalis, lo = M.
longissimus caudae, tr = M. transversospinalis.
doi:10.1371/journal.pone.0006738.g008
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crocodilians, the musculature of the tail is to a certain extent

limited by the vertebrae, but the cross-sectional profile of the tail

changes greatly from anterior to posterior [15]. A conservative

reconstruction of the muscles of the tail of ankylosaurids would

have an elliptical cross-sectional outline, with none of the muscles

bulging past the transverse processes, or neural and haemal spines.

There are fewer osteological correlates for muscle attachments

in the handle vertebrae, and it is even more difficult to estimate the

cross-sectional outline of the muscles than in the free caudal

vertebrae. However, one clue that may indicate muscle area is the

amount of space between the knob osteoderms. Their bumpy or

dendritic texture suggests that they were covered by a keratinous

sheath, and not muscle. In crocodilians, the epaxial musculature is

firmly connected to the dermis [16], and tendons of M. spinalis

insert on the basal sides of osteoderms [13]. The width between

the two major knob osteoderms in dorsal view must have been the

maximum width of the handle muscles. M. transversospinalis is

represented by ossified tendons in the handle, and probably

occupied the area dorsal and lateral to the neural arch. The outer

set of ossified tendons in ROM 784 may represent M. longissimus

caudae, which would have occupied the space lateral to the

centrum. In crocodylians and lizards M. caudofemoralis longus

originates on the transverse processes of the anterior caudal

vertebrae, and inserts tendinously on the fourth trochanter of the

femur and to the shank [17,18]. As such, M. caudofemoralis

longus was likely absent along the handle vertebrae, because these

lack transverse processes. It is unknown whether or not M.

ischiocaudalis was present in this region. In these reconstructions,

M. iliocaudalis occupies the space ventral and lateral to the haemal

arch.

All of the epaxial musculature would function to bend the tail

laterally, and an anteriorly large M. longissimus caudae might

imply that the tail could be swung quite forcefully. A problem with

trying to understand which muscles may have contributed the

most to tail-swinging actions is the lack of understanding of tail

muscle function in extant analogues. Further research on the

Figure 9. Cross-sectional reconstructions of ankylosaurid caudal musculature. A) Anterior free caudal vertebra, modified from TMP
85.26.70 (Euoplocephalus). M. transversospinalis is not divided into its subunits. The relative sizes of all muscles are speculative, especially M.
iliocaudalis and M. ischiocaudalis. B) More muscular reconstruction, with muscles bulging past neural spine, haemal spine, and transverse processes.
This reconstruction is 43% larger than the reconstruction in A. C) Posterior free caudal vertebra, reconstructed from TMP 2007.20.100. M. iliocaudalis
may not have extended very far posteriorly along the tail, in which case M. ischiocaudalis may have occupied the area reconstructed as M.
ischiocaudalis here. D) Musculature of the handle, reconstructed from a CT scan image of UALVP 47273 at the midlength of the club. M.
transversospinalis and M. longissimus caudae are represented by ossified tendons in many tail club specimens. The size of M. iliocaudalis is
speculative. The width of M. longissimus caudae is equivalent to the maximum space between the major osteoderms of the knob. Scale equals 5 cm.
doi:10.1371/journal.pone.0006738.g009
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function of large muscles in crocodilian tails would help clarify the

reconstructed musculature of ankylosaurid tails.

Estimated Impact Forces
ROM 784/UALVP 47273 (Dyoplosaurus/Euoplocephalus).

Estimates of volume, mass, torque, and rotational inertia are found

in Tables 1–4 and are based on methods by Carpenter et al. [19],

described in the materials and methods section. Using these

estimates, the angular rate of movement of the ROM 784/

UALVP 47273 club (vclub) was between 4.75 rad/s and 9.38 rad/

s. The length of the tail from the anterior end of the first free

caudal vertebra, to the posterior end of the knob, is 216 cm. If a

tail club was swung laterally, the impact site would not be at the

posterior end of the knob, but somewhere along the lateral edge of

one of the major plates of the knob. These osteoderms are sharply

keeled laterally, and the maximum width is at approximately

16 cm from the posterior tip of the knob. Using this as an impact

site, the impact site is 201 cm from the anterior face of the first free

caudal. With this, the impact velocity of the club can be calculated:

Vimpact~vclubr

~ 4:75 rad=sð Þ 2:01 mð Þ~ 6:63 rad=sð Þ 2:01 mð Þ~ 9:38 rad=sð Þ 2:01 mð Þ

~9:55 m=s ~13:3 m=s ~18:9m=s

ð1Þ

These three calculations represent the three angular momentum

results using different muscle specific tension estimates. Using the

mass of the club segment (19.94 kg, Table 1), the impulse

delivered by the club can be calculated:

Jclub~mclubVimpact

~ 19:94 kgð Þ 9:55 m=sð Þ~ 19:94 kgð Þ 13:3 m=sð Þ~ 19:94 kgð Þ 18:9 m=sð Þ

~190 kgm=s ~266 kgm=s ~376 kgm=s

ð2Þ

Carpenter et al. [19] assumed a stopping time of 1/3 s. Snively

and Cox [20] estimated stopping times for Pachycephalosaurus head-

butting impacts in the range of 0.05 to 0.1 s. In the case of

Pachycephalosaurus, the stopping time could be estimated based on

the mass and velocity of the impacting and impacted bodies (in this

case, both Pachycephalosaurus). Stopping time cannot be estimated as

easily because tail clubs could be used to impact a variety of

objects of different masses and velocities. Therefore, a stopping

time of 0.333 s is a reasonable estimate. Using this, the maximum

force exerted on the target can be calculated, as the impulse/

interval.

Fmax~
Jclub

tstop

~ 190 kgm=sð Þ= 0:333sð Þ~ 266 kgm=sð Þ= 0:333sð Þ~ 376 kgm=sð Þ 0:333 sð Þ

~571 N ~797 N ~1127N

ð3Þ

The stress exerted by the impacting club is Fmax over the area of

impact. The site of impact is the lateral keel of one of the major

knob osteoderms. The amount of area involved in the impact can

vary. If the sharpest part of the keel is the site of impact

(height = ,0.20 cm), and 1 cm of length is involved, then the area

of impact is 0.20 cm2.

simpact~
Fmax

Aimpact

~571 N
�

0:20 cm2~797 N
�

0:20 cm2~1127 N
�

0:20 cm2

~2900 N
�

cm2 ~4000 N
�

cm2 ~5600 N
�

cm2

~29 MPa ~40 MPa ~56 MPa

ð4Þ

Sensitivity analyses (Tables 5–7) examined the effects of

changing variables such as mass, impact area, and flexibility of

the tail. Reducing the mass of the tail club segment by 15%

reduced the rotational inertia of this segment, and therefore

increased the angular rate of movement and impact velocity by

8%. However, the reduction in tail club segment mass also

reduced both the impact force and stress by 9%. Increasing the

Table 1. Summary of volumes, areas, and masses for the ROM 784/UALVP 47273 composite tail. Muscle and bone mass are after
Carpenter et al. (2005).

Segment
Muscle Cross-
Sectional Area (cm2)

Muscle
Volume (cm3)

Muscle Mass (g)
(r = 1.0 g/cm3)

Bone
Volume (cm3)

Bone Mass (g)
(r = 1.98 g/cm3)

Total
Mass (g)

Length
(cm)

Mass per unit
length (g/cm)

1 2526 18070 18070 1514 2998 21070 7.59 2776

2 2239 15880 15880 1447 2864 18740 7.56 2479

3 1965 13810 13810 1381 2734 16550 7.53 2197

4 1706 11860 11860 1317 2607 14470 7.50 1929

5 1460 10030 10030 1255 2484 12520 7.47 1675

6 1228 8321 8321 1194 2364 10680 7.44 1435

7 1011 6724 6724 1135 2247 8972 7.42 1210

8 807 5243 5243 1078 2134 7377 7.39 999

9 617 3874 3874 1022 2024 5898 7.36 802

10 441 2699 2699 968.2 1917 4616 7.33 630

11 300 2089 2089 915.9 1813 3902 7.30 535

Club 273 9357 9357 5346 10580 19940 134 148

Segment numbers refer to each free caudal vertebra and associated muscle, with the final club segment composed of the handle vertebrae, knob, and associated
muscle.
doi:10.1371/journal.pone.0006738.t001
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cross-sectional area of each segment by 43% increased the mass of

all segments, and increased the cross-sectional area of muscle in

each segment, which in turn increased the torque of each segment.

Impact force and stress each increased by 27%.

Reducing the angle of articulation reduced the angular

acceleration, which resulted in lower impact velocities, impulses,

impact forces, and impact stresses, whereas increasing the angle of

articulation increases these variables. Decreasing the angle of

articulation posteriorly along the tail also reduces these variables.

The absence of a handle increased angular acceleration, impact

velocity, impulse, and maximum force, and ultimately increased

impact stress by 25%. These increases would likely be even greater

if a more accurate tail with lengthening distal caudals could be

reconstructed.

Moving the impact site anteriorly by 7% decreased the impact

velocity, impulse, and maximum force, and decreased impact stress

by 7%. Moving the impact site posteriorly by 2.5% increased impact

stress by 3%. The area of impact only affected the impact stress,

because impact stress is Fmax/Aimpact. The larger the area of impact,

the greater the area over which the force is distributed, and the lower

the impact stress. Reducing the area of impact from 0.20 cm2 to

0.10 cm2 increased the impact stress by 99%. An impact area of

2 cm2 decreased the impact stress by 90%. Altering the stopping time

did not affect the impact velocity or impulse, but did affect maximum

Table 2. Rotational inertias for each segment of the ROM 784/UALVP 47273 composite tail.

Seg-ment Itail Itail-1 Itail-1-2 Itail-1-2-3

Itail-1-2-

3-4

Itail-1-2-

3-4-5

Itail-1-2-

3-4-5-6

Itail-1-2-

3-4-5-6-7

Itail-1-2-3

-4-5-6-7-8

Itail-1-2-3-

4-5-6-7-8-9

Itail-1-2-3-4

-5-6-7-8-9-10

Itail-1-2-3-4-5

-6-7-8-9-10-11

1 4.043e5 n/a

2 2.511e6 3.570e5

3 5.996e6 2.200e6 3.127e5

4 1.017e7 5.204e6 1.909e6 2.714e5

5 1.445e7 8.734e6 4.467e6 1.639e6 2.329e5

6 1.834e7 1.225e6 7.399e6 3.784e6 1.388e6 1.973e5

7 2.141e7 1.528e7 1.020e7 6.164e6 3.153e6 1.157e6 1.644e5

8 2.333e7 1.747e7 1.247e7 8.324e6 5.029e6 2.572e6 9.437e5 1.341e5

9 2.387e7 1.851e7 1.386e7 9.892e6 6.605e6 3.990e6 2.041e6 7.487e5 1.064e5 n/a

10 2.324e7 1.853e7 1.438e7 1.076e7 7.682e6 5.129e6 3.099e6 1.585e6 5.813e5 8.2630e4

11 2.390e7 1.949e7 1.555e7 1.206e7 9.028e6 6.443e6 4.302e6 2.599e6 1.329e6 4.876e5 6.931e4

Club 4.735e8 4.295e8 3.880e8 3.489e8 3.121e8 2.778e8 2.458e8 2.162e8 1.888e8 1.637e8 1.408e8 1.202e8

Total (g/cm2) 6.411e8 5.475e8 4.685e8 4.018e8 3.453e8 2.973e8 2.564e8 2.212e8 1.908e8 1.643e8 1.409e8 1.202e8

Total (kg/m2) 6411 5475 4685 4017 3453 2973 2564 2212 1908 1643 1409 1202

Segment numbers refer to each free caudal vertebra and associated muscle, with the final club segment composed of the handle vertebrae, knob, and associated
muscle.
doi:10.1371/journal.pone.0006738.t002

Table 3. Muscle cross-sectional areas, muscle forces, and torques for each segment of the ROM 784/UALVP 47273 composite tail.

Segment

Muscle cross-
sectional area at
proximal end of
segment (cm2)

Force (half of muscle
cross-sectional
area multiplied by
20 N/cm2)

Force (half of
muscle cross-
section multiplied
by 39 N/cm2)

Force (half of
muscle cross-
section multiplied
by 78 N/cm2)

Link
half
width
(m)

Torque
at base of
link, 20 N
/cm2 (Nm)

Torque
at base
of link, 39
N (Nm)

Torque
at base
of link, 78
N (Nm)

1 2526 25260 49260 98520 0.1476 3728 7269 14540

2 2239 22390 43650 87310 0.1361 3047 5942 11880

3 1965 19650 38320 76640 0.1247 2450 4777 9555

4 1706 17060 33260 66520 0.1132 1931 3765 7530

5 1460 14600 28470 56940 0.1017 1485 2897 5793

6 1228 12280 23950 47910 0.0903 1109 2162 4325

7 1011 10110 19710 39410 0.0788 797 1553 3106

8 807 8067 15730 31460 0.0674 543 1060 2119

9 617 6167 12030 24050 0.0559 345 672 1344

10 441 4407 8593 17190 0.0444 195 382 763

11 300 2995 5841 11680 0.0347 104 203 405

Club 273 2731 5325 10650 0.0337 92 179 359

Segment numbers refer to each free caudal vertebra and associated muscle, with the final club segment composed of the handle vertebrae, knob, and associated
muscle.
doi:10.1371/journal.pone.0006738.t003
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force (because this represents impulse over the stopping time) and

stress. Decreasing the stopping time from a third to a tenth of a

second increased impact force and stress each by 232%.

AMNH 5245/ROM 788 (Euoplocephalus). The angular

rate of movement of the AMNH 5245/ROM 788 club (vclub) is

between 4.7569 rad/s and 9.3942 rad/s. The length of the tail

from the anterior end of the first free caudal vertebra, to the

posterior end of the knob, is 348.66 cm. If the impact site is

located at approximately the maximum width of the tail (located

roughly 20 cm anterior to the posterior terminus of the knob), then

Table 4. Cumulative moment of inertias and segment angular rate of movement.

Segment Cumulative moment of inertia v (rad/s) (20N) v (rad/s) (39N) v (rad/s) (78N)

1+2+3+4+5+6+7+8+9+10+11+club 6411 0.55 0.77 1.09

2+3+4+5+6+7+8+9+10+11+club 5475 0.54 0.76 1.07

3+4+5+6+7+8+9+10+11+club 4685 0.52 0.73 1.03

4+5+6+7+8+9+10+11+club 4017 0.50 0.70 0.99

5+6+7+8+9+10+11+club 3453 0.47 0.67 0.94

6+7+8+9+10+11+club 2973 0.44 0.62 0.88

7+8+9+10+11+club 2564 0.40 0.57 0.80

8+9+10+11+club 2212 0.36 0.50 0.71

9+10+11+club 1908 0.31 0.43 0.61

10+11+club 1643 0.25 0.35 0.50

11+club 1409 0.20 0.28 0.39

Club 1202 0.20 0.28 0.40

Total 4.75 6.63 9.38

Segment numbers refer to each free caudal vertebra and associated muscle, with the final club segment composed of the handle vertebrae, knob, and associated
muscle. The angle of articulation is 15 degrees, or 0.2618 radians.
doi:10.1371/journal.pone.0006738.t004

Table 5. Summary of results of sensitivity analyses for ROM 784/UALVP 47273– angular accelerations, velocities, and impulses.

v low
(rad/s)

v med
(rad/s)

v high
(rad/s)

V low
(m/s)

V med
(m/s)

V high
(m/s)

J low
(kgm/s)

J med
(kgm/s)

J high
(kgm/s)

Baseline 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

Mass

Lighter 5.12 7.15 10.12 13.4 14.4 20.3 225 241 341

Muscles

Larger 5.08 7.09 10.0 10.2 14.3 20.2 242 337 477

Articulation

5u 2.74 3.83 5.41 5.51 7.70 10.9 110 153 217

10u 3.88 5.41 7.66 7.79 10.9 15.4 155 217 307

20u 5.48 7.66 10.8 11.0 15.4 21.8 220 307 434

15u-0u 3.66 5.11 7.23 7.36 10.3 14.5 147 205 290

Free caudals

No handle 5.95 8.31 11.75 11.9 16.7 23.6 236 330 467

Impact site (m)

1.87 4.75 6.63 9.38 8.88 12.4 17.5 177 247 350

2.06 4.75 6.63 9.38 9.78 13.7 19.3 195 272 385

Impact area (cm)

0.1 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

0.75 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

2 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

Stopping time (s)

0.033 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

0.1 4.75 6.63 9.38 9.54 13.3 18.8 190 266 376

doi:10.1371/journal.pone.0006738.t005
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the impact site is 328.66 cm from the anterior face of the first free

caudal vertebra. This is used to calculate the impact velocity (Eq.

1). The mass of the club segment (154.97 kg) is used to calculate

the impulse delivered by the club (Eq. 2). The maximum force (Eq.

3) is calculated using a stopping time of 1/3 s, and the impact

stress (Eq. 4) is calculated assuming an impact area of 0.20 cm2 as

for ROM784/UALVP 47273. The results are summarized in

Table 8.

UALVP 16247 (Euoplocephalus). The same method for

calculating velocity, impulse, force and stress (Table 9) use the

same equations (Eqs. 1–4) as for ROM 784/UALVP 47273, and

AMNH 5245/ROM 788.

Discussion

The gross and internal morphology of ankylosaurid tail clubs

suggests that these structures evolved for delivering forceful impacts.

Muscle scars on the pelvis suggest that a large M. longissimus

caudae was present, which may have resulted in a powerful swing.

Ankylosaurid caudal vertebrae are lightly constructed, resulting in a

slender tail. However, ankylosaurids with average to large knobs

were able to generate large impact forces.

The angular accelerations of ROM 784/UALVP 47273,

UALVP 16247, and AMNH 5245/ROM 788 were similar

because the proportions of the tail were all modeled from ROM

784/UALVP 47273. However, there was a great difference in

impact velocities and forces because of the differences in mass and

length of the tail club segment in each tail. The composite AMNH

5245/ROM 788 tail could impact with 970% more force than the

ROM 784/UALVP 47273 tail.

Ankylosaurids with large knobs could deliver more forceful

blows than ankylosaurids with small knobs. Impact stress results

for small clubs are similar to those found for Stegosaurus spikes.

Carpenter et al. [19] determined that a Stegosaurus spike could exert

360–510 N of force when swung, which they argue was more than

enough to damage tissue and bone. They estimated a spike-tip

impact area of 0.28 cm2, which would create an impact stress of

1300–1800 N/cm2. In contrast, ROM 784 could exert a force of

797–1127 N, using the specific tensions used by Carpenter et al.

[19], and 571 N using a more realistic specific tension, creating an

impact stress of 2900–5600 N/cm2 (29–56 MPa). Carpenter et al.

[19] use ,100 MPa (104 N/cm2) as the maximum shear strength

of living cortical bone; Currey [21] summarizes several papers

which give values between 64 and 84 MPa for shear strength. The

likelihood that an impacted bone would break also depends on its

morphology and the way that impact stresses are transmitted

through the bone (for example, a thin plate may be more likely to

break than a femur). It does not appear that a Stegosaurus spike

could puncture bone, nor could the tail club in ROM 784. This

seems reasonable, as the knob in ROM 784 is small in comparison

to others. UALVP 16247 represents average knob width, and

could impact with a force of 962–2014 N, and exert an impact

stress of 4811–10 070 N/cm2 (48–100 MPa). However, these

results may actually underestimate impact forces and stresses in

average-sized knobs, because these estimates are based on the

most fragmentary specimen in this study. Average-sized knobs

may have been able to break bone during impacts. An

ankylosaurid with the proportions of AMNH 5245/ROM 788

could create an impact force of 7281–14 360 N, an impact stress of

36 400–71 810 N/cm2 (364–718 MPa), and would very likely

Table 6. Summary of results of sensitivity analyses for ROM 784/UALVP 47273– forces and stresses.

F low (N) F med (N) F high (N) s low (N/cm2) s med (N/cm2) s high (N/cm2)

Baseline 571 797 1127 2900 4000 5600

Mass

Lighter 675 725 1030 3370 3630 5130

Muscles

Larger 726 1.01e3 1430 3629 5067 7167

Articulation

5u 330 461 652 1650 2300 3260

10u 467 652 922 2330 3260 4610

20u 660 922 1300 3300 4610 6520

15u-0u 441 616 871 2200 3080 4350

Free caudals

No handle 710 991 1400 356 4960 7010

Impact site (m)

1.87 532 743 1050 2660 3710 5250

2.06 586 818 1160 2930 4090 5780

Impact area (cm)

0.1 572 798 1130 5720 7980 11300

0.75 572 798 1130 762 1060 1500

2 572 798 1130 286 399 564

Stopping time (s)

0.033 5.72e3 7.98e3 11300 28600 39900 56400

0.1 1.90e3 2.66e3 3760 9520 13300 18800

doi:10.1371/journal.pone.0006738.t006
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break bone during a tail club impact. Future studies could use

finite element modeling to examine tail club strikes on potential

targets, such as ankylosaur ribs (for intraspecific combat) or

theropod tibiae and metatarsals (for interspecific defense).

Sensitivity analyses for the functional calculations show that the

bone and muscle mass, the location of the impact site, the area of

impact, and the stopping time influence the impact force and stress

for each tail club. Changing these parameters within biologically

reasonable bounds produced increases and decreases of 5–20% for

impact force and stress and indicates that the baseline results are

relatively robust. Altering the muscle mass, angle of articulation,

impact area, and stopping time affected the results more than

altering bone mass and impact site.

Decreasing the tail club segment mass decreased the rotational

inertia of the club, making it easier to wield. Reducing the mass of

the tail club also increased the impact velocity, which would have

allowed for a more rapid tail strike. However, there is a trade-off

between reducing the mass of the tail club and increasing impact

velocity, and increasing the mass of the tail club and increasing

impact force and stress.

The interlocking neural spines and prezygapophyses of the

handle stiffened the distal portion of the tail, providing a support

for the large terminal osteoderms. The handle reduces the

maximum angular acceleration of the terminal tail segment, in

comparison to a tail composed of free caudal vertebrae. As such, a

flexible distal tail would be able to deliver more forceful blows than

a rigid tail. It may be that the handle is necessary for postural

reasons, to keep the knob elevated above the ground; Coombs [1]

suggested that the tail club did not drag. Or, the handle may be

necessary for absorbing the shock of impact. Handles may

represent a structural trade-off between maximum velocity and

strength.

The haemal arch of the handle is unique among dinosaurs as a

robust, nearly continuous tube of bone on the ventral side of the

centra. The anterior projection has a ventral groove which

receives the posterior projection of the preceding arch. This

groove becomes ventrally enclosed posteriorly, and the posterior

projection of the preceding arch becomes completely surrounded

by the subsequent haemal arch. The haemal arch appears to be

adapted to resist vertical bending of the club, and may play a role

in maintaining the neutral posture of the tail (in addition to

housing the caudal artery). Although in some specimens the centra

are fused in the handle, in many specimens the centra are unfused,

and the tube-like, robust neural arches may act as a strut which

would have kept the knob held off of the ground without requiring

additional muscular effort. This tube of bone would act to keep the

handle from sagging, and would therefore keep the neural arches

properly aligned to resist lateral bending.

In some specimens, the knob osteoderms are sharply keeled (e.g.

ROM 784), whereas in others, the knob osteoderms are blunt (e.g.

ROM 788). Knob osteoderms were likely covered in a keratinous

sheath, which may or may not have closely matched the

underlying bone in morphology. A blow from the sharp keel of

an ankylosaurid knob would be more destructive than a blow from

the more rounded distal end of the knob, or from the rounded

faces of the knob osteoderms.

This study modeled tail club impact forces with the assumption

that the lateral movement of the tail begins only at the anterior

free caudal vertebra, and does not incorporate movement of the

body using the hips and hindlimbs. This simplified model almost

certainly underestimates the impact force of a tail club, and if

ankylosaurids engaged in this behaviour then the hips and

hindlimbs would probably have played an important role in tail

swinging.

Table 7. Percentage difference between the baseline
analyses and each sensitivity analysis for angular acceleration,
impact velocity, impulse, impact force, and impact stress.

v (rad/s) V (m/s) J (kgm/s) F (N) s (N/cm2)

Mass

Lighter 8 8 29 29 29

Muscles

Larger 7 7 27 27 27

Articulation

5u 242 242 242 242 242

10u 218 218 218 218 218

20u 15 15 15 15 15

15u-0u 223 223 223 223 223

Free caudals

No handle 25 25 25 25 25

Impact site (m)

1.87 0 27 27 27 27

2.06 0 3 3 3 3

Impact area (cm)

0.1 0 0 0 0 99

0.75 0 0 0 0 273

2 0 0 0 0 290

Stopping time (s)

0.033 0 0 0 901 901

0.1 0 0 0 232 232

doi:10.1371/journal.pone.0006738.t007

Table 8. Impact velocities, impulses, forces, and stresses for
the AMNH 5245/ROM 788 composite tail.

vclub = 4.76 vclub = 6.64 vclub = 9.39

Velocity (m/s) 15.66 21.85 30.89

Impulse (kgm/s) 2427 3387 4788

Force (N) 7281 10160 14360

Stress (N/cm2) 36400 50800 71810

Stress (MPa) 364 508 718

doi:10.1371/journal.pone.0006738.t008

Table 9. Impact velocities, impulses, forces, and stresses for
the UALVP 16247 reconstructed tail.

vclub = 4.76 vclub = 6.64 vclub = 9.39

Velocity (m/s) 9.45 13.20 18.67

Impulse (kgm/s) 321 475 671

Force (N) 962 1424 2014

Stress (N/cm2) 4811 7119 10070

Stress (MPa) 48 71 101

doi:10.1371/journal.pone.0006738.t009
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ROM 784 and UALVP 47273 represent smaller individuals

than ROM 788 and AMNH 5245, but not proportionately to

knob width [11]. ROM 784 and UALVP 47273 probably

represent almost fully mature individuals. This suggests that

ankylosaurid knobs were not primarily used as defensive weapons:

a weapon that is not functional until very late in life would

probably not have a selective advantage over a weapon that is of

use earlier in life. Small juvenile Pinacosaurus did not have knobs at

all [22]. Life history curves similar to those created for

tyrannosaurids [23] would be useful in plotting growth of the

knob in relation to growth of the individual, although these results

may not be possible to obtain in dermal ossifications.

An alternative hypothesis is that tail clubs evolved for use in

intraspecific combat, although this is difficult to test directly. Knobs

may have grown only at reproductive maturity, and may have been

used during courtship battles. The two competitors may have swung

tail clubs at the flanks of the opponent, which can be compared with

flank-butting in bovids such as Bison bison [24], and head-clubbing

(necking) in Giraffus camelopardalis [25]. Flank butting in bison often

results in goring and rib fractures [24], and giraffe necking can result

in leg fractures, opponents being knocked unconscious, and death

[25]. If ankylosaurids engaged in a similar behaviour using tail

clubs, we might expect to see a larger number of rib injuries in

ankylosaurids compared to other groups of dinosaurs. A survey of

the occurrence of healed ribs in ankylosaurid specimens, compared

to other groups of dinosaurs, could provide some indirect evidence

for this possible behaviour. Tail clubs may have also been used as a

display feature. Tail clubs with large knobs were undoubtedly

effective deterrents against bipedal predators. However, the

exclusive use of tail clubs as a defensive weapon is not supported

(nor refuted) by the results of this study.

Materials and Methods

Osteology
This study examines tail swinging in specimens that have been

referred to the most common North American ankylosaurid,

Euoplocephalus tutus, and Dyoplosaurus acutosquameus, also from North

America and similar in caudal morphology. Specimens of

ankylosaurid pelves, caudal vertebrae, and tail clubs were

photographed and measured using digital calipers and measuring

tape. Each measurement was made three times and averaged. Some

measurements were obtained using photographs and ImageJ [26].

Computed tomography
Three ankylosaurid tail clubs were scanned using computed

tomography (CT), to provide information on their internal

structure, and to derive three dimensional models for use in volume

estimates (Fig. 2). UALVP 47273 and ROM 788 have substantial

portions of the handle preserved, and represent examples of small

and large knobs, respectively. UALVP 16247 and does not preserve

much of the handle and have average-sized knobs. UALVP 16247

and UALVP 47273 were scanned at the University of Alberta

Hospital Alberta Cardiovascular and Stroke Research Centre

(ABACUS), on a Siemens Somatom Sensation 64 CT scanner, at

1 mm increments. ROM 788 was scanned at CML Healthcare

Imaging in Mississauga, Ontario, at 2 mm increments. All CT scans

were viewed using the software programs OsiriX [27] and Mimics

[28], and interpreted using a grayscale colour palette for density

values. CT scans are reposited at the host institutions.

Muscle reconstructions
In order to understand the mechanics of tail swinging, the

muscles of the tail and pelvis in ankylosaurids must be

reconstructed. Of particular interest are the caudal epaxial and

hypaxial muscles, and some muscles of the hindlimb, in particular

the M. caudofemoralis longus and M. caudofemoralis brevis. Crocodilians

are used as the main comparative analogue, and are suitable for

two reasons: 1) crocodilians represent one pole of the extant

phylogenetic bracket for nonavian dinosaurs [29], and 2)

crocodilians have long, muscular tails, which are capable of

generating large forces; crocodiles use their tails actively during

swimming [30], and to propel themselves into a ‘death roll’ for

rotational feeding [31]. Although birds share a more recent

common ancestor with ankylosaurs than do crocodilians, croco-

dilian tails more closely resemble those of ankylosaurs in relative

length, number of vertebrae, and size of processes for muscle

attachment. Muscle reconstructions in this paper use previously

published studies of crocodilian anatomy [15–17,32] and dino-

saurian muscle reconstructions [13,14], and comparisons with

lizards and birds [18,33] that complete the phylogenetic bracket

for ankylosaurs.

Mathematical Derivation of General Ankylosaur Tail
Dynamics

Alexander et al. [34], Carpenter et al. [19], and Snively and

Russell [35] have investigated the dynamics of vertebral flexion in

fossil vertebrates: Alexander et al. [34] estimated tail blow energy

in glyptodonts, Carpenter et al. [19] calculated impact force in

Stegosaurus spikes, and Snively and Russell [35] investigated

tyrannosaurid necks. A method similar to method 2 employed

by Carpenter et al. [19] is used here, as this method is the most

detailed, and using this method allows the mechanics of stegosaur

and ankylosaur tail impacts to be compared Stegosaurs and

ankylosaurs are both thyreophorans, yet have evolved very

different putative tail weapons. Carpenter et al. [19] measured a

large mounted Stegosaurus and modeled the tail as a series of five

rigid links, with the anterior and posterior boundaries of the links

defined by the large plates that occur above the vertebrae of

Stegosaurus. Ankylosaurids were not limited by such large plates in

the tail region, although many ankylosaurids (e.g. Dyoplosaurus)

have laterally-oriented, wedge-shaped osteoderms along the lateral

sides of the tail [2]. The complete caudal armour is not confidently

known in Euoplocephalus. Therefore, osteoderms other than the

knob osteoderms of the tail club are ignored, for both mass

estimates and possible limits on the range of motion of the tail.

ROM 784 (Dyoplosaurus) has eleven free caudal vertebrae, eleven

visible handle vertebrae, and a transitional free caudal vertebra

was not preserved [11]. A similar number of free caudal vertebrae,

including the transitional free caudal vertebra, is found in ROM

1930 (Euoplocephalus). No movement would have been possible

between the transitional free caudal vertebra and the first handle

vertebra, because the prezygapophyses of the first handle vertebra

embrace the neural spine of the transitional caudal vertebra.

Therefore, there would have been twelve free caudal segments and

one tail club segment, for a total of thirteen segments to model in

the tail. The ossified tendons are not included in this analysis,

because their role in tail club swinging and impacts is unresolved.

The impact force of the knob is related to the acceleration and

mass of the tail club segment. Actual acceleration and mass cannot

be directly measured, and so must be calculated and inferred using

other properties. Properties that can be directly measured on fossil

specimens include length, width, and height of each vertebral

segment. From these, the volume of each bone segment can be

calculated, and the mass of the bone can be calculated using

estimates of modern bone density. Muscle height, length, and

width can be estimated for each segment, which provides

approximations of muscle cross-sectional area, volume, and mass.

Ankylosaurid Tail Club Strikes
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Another property that can be directly estimated from the fossils is

the angle of articulation of each segment, 2h (where h represents

the half angle of articulation of each segment). The half angle of

articulation is the maximum amount of lateral deflection from the

neutral position (Fig. 10). Some specimens are incomplete or

mounted in such a way that not all measurements could be taken.

As such, in this study specimens of similar size are combined into

composite specimens (Fig. 11). In one instance, this involves

combining specimens that belong to different taxa (ROM 784,

Dyoplosaurus, and UALVP 47273, referred to Euoplocephalus). The

caudal vertebrae of Dyoplosaurus are very similar to those of

Euoplocephalus in both size and overall morphology [11], so it is

reasonable to create a composite tail for the purposes of examining

general tail function in ankylosaurids.

From these properties, rotational inertia and torque can be

calculated and used to calculate impact velocity, force, and stress.

Carpenter et al. [19] use the following equation for rotational inertia, I:

I~

ðL2

L1

x2rdx~x3 L2

L1

r

3

��� ~
r L2

3{L1
3

� �
3

ð5Þ

Where L1 is the distance from the proximal end of the segment

to the base of the tail, L2 is the distance from the distal end of the

segment to the base of the tail, r is the average mass density per

unit length, and x is the variable of integration between L1 and L2.

Muscles pull on one half of the width of each link at the

proximal end, which generates torque in each segment.

T~r\F

F~ Axsð Þ Pmuscleð Þ

In these equations Axs (in cm2) is the cross-sectional area of

muscle at the proximal end of the segment, and Pmuscle is the

specific tension of the muscle, the force the muscle can exert per

unit of cross-sectional area (N/cm2). Axs is determined by

calculating the total cross-sectional area of the tail (represented

by an ellipse), and subtracting the ellipse representing the cross-

sectional area of the centrum. If the rotation axis is in the centre of

the segment, thenr\ is the distance from the centre of the segment

to the line of force, or the outside of the segment; this is equivalent

to half of the width of the segment (w/2). Therefore:

T~
Axsð Þ Pmuscleð Þ wð Þ

2
ð6Þ

The impact velocity and impulse are related to v, rotational

velocity, and a, rotational acceleration. v is additive along the tail,

Figure 10. Diagram showing the approximate right lateroflexion of the tail in Euoplocephalus, and the definition of the half angle of
articulation h.
doi:10.1371/journal.pone.0006738.g010
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so the velocity increases from segment to segment (summation of

velocities, [36]). v and a can be related to I, T, and the angle

through which each segment moves, h.

v~
dh

dt
~

ð
dv

dt

� �
dt~t

dv

dt

� �

h~

ð ð
dv

dt

� �
dt~

ð
t

dv

dt

� �
~

t2 dv

dt

� �
2

~
tv

2

Rearranging for v gives v~
2h

t
.

v~t
dv

dt

� �
, so t

dv

dt

� �
~

2h

t

dv

dt
~a , so ta~

2h

t

Figure 11. Diagrammatic representation of composite tails used in this study. A) ROM 784 (Dyoplosaurus)/UALVP 47273 (Euoplocephalus)
composite tail. ROM 784 elements indicated by light grey. UALVP 47273 elements indicated by dark grey. The black vertebra represents the
transitional vertebra in ROM 1930. Its presence is inferred by the gap at this location in ROM 784. The light purple area represents the free caudal tail
frustum, and the dark purple area represents a single free caudal tail segment. The orange area represents the transitional tail frustum, and the pink
area represents the handle volume. B) UALVP 16247 reconstructed tail. Only the knob is preserved (dark grey); the rest of the tail is reconstructed
from measurements of ROM 784 (black). C) AMNH 5245/ROM 788 composite tail. AMNH 5245 elements are light grey, ROM 788 elements are dark
grey, and elements reconstructed from ROM 784 are black.
doi:10.1371/journal.pone.0006738.g011
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Rearranging for t gives t2~
2h

a

T~Ia, a~
T

I

So t2~
2hI

T
, and t~

ffiffiffiffiffiffiffiffi
2hI

T

r
:

Then t can be substituted into v= 2h/t to express v in terms of

h, I, and T.

v~
2hffiffiffiffiffiffiffiffi
2hI

T

r

v~2h

ffiffiffiffiffiffiffiffi
T

2hI

r

v2~2h2 T

2hI

v~

ffiffiffiffiffiffiffiffiffi
2hT

I

r

Because v is additive along the tail segments, vclub is:

vclub~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hATA

Itail

s
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hBTB

Itail{FC1

s

z:::

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hLTL

Itail{FC1{FC2{FC3{FC4{FC5{FC6{FC7{FC8{FC9{FC10{FC11

s ð7Þ

Analysis of a small knob and tail, ROM 784/UALVP 47273
Determining tail volumes and masses for calculating

rotational dynamics. Calculating rotational inertia and

angular acceleration requires mass estimates, which are derived

from estimates of bone and muscle density and volume. ROM 784

includes all free caudals (except for the final, transitional free

caudal) and the entire tail club. UALVP 47273 is a partial tail club

with similar proportions to ROM 784. Calculating the volume of

bone and muscle in the tail requires three steps: 1) calculating the

volume of the moveable, free caudal portion of the tail, 2)

calculating the volume of the handle, and 3) calculating the

volume of the knob. For this study, each vertebra and the

subsequent disk space represent a segment (Fig. 11). Ankylosaurid

vertebrae each have an approximately circular centrum in anterior

view, with width exceeding height slightly in ROM 784. The

neural spine and haemal spine are approximately equal in height.

Centrum height and width, neural spine and haemal spine height,

and transverse process length decrease posteriorly, whereas

centrum length increases posteriorly.

Based on the above reconstruction of ankylosaur caudal

muscles, the volume of these muscles was much greater that those

of their associated neural and haemal arches. The volumes of these

osseous structures are difficult to estimate and will be ignored, and

only the volume of the centra will be used for calculating

segmental and total muscle volume. The shape of each segment

(centrum+subsequent disk space) can be represented by a

truncated cone with an elliptical base (an elliptical frustum). The

equation to determine the volume of any pyramidal frustum is:

V~
1

3
h A1zA2z

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p� 	

Where A1 is the area of the base of the pyramid, A2 is the area

of the plane truncating the pyramid, and h is the height from A1 to

A2. The area of an ellipse is:

A~pD1D2

Where D1 and D2 are the major and minor axes of the ellipse.

To calculate the volume of the vertebral segment, segment length l

(centrum length+length of disk space), width D1, and height D2

must be known; D3 and D4 are the major and minor axes of the

more posterior ellipse. Volume is then calculated as:

V~
1

3
pl D1D2zD3D4z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D2D3D4

p� 	
ð8Þ(from [37])

Unfortunately, not all of these parameters are known for every

segment in ROM 784. Some of the vertebrae are crushed and

distorted, which yields measurements that do not necessarily

decrease from one vertebra to the next. To compensate for these

problems, an ‘ideal’ ROM 784 is constructed. Measurements of

centrum height, width, and length were plotted as a scatterplot

and slope of the lines of best fit calculated. The slope of each line is

then used to calculate new heights, lengths, and widths, which are

then used to calculate volume (Table 10).

Calculating the volume of muscle in the flexible portion of the

tail is more complicated. In crocodilians, the musculature of the

tail is to a certain extent limited by the vertebrae, but the cross-

sectional profile of the tail changes greatly from anterior to

posterior [15]. A conservative reconstruction of the muscles of the

tail of ankylosaurids would have an elliptical cross-sectional

outline, with none of the muscles bulging past the transverse

processes or neural and haemal spines. If this is the case, the shape

of the tail as a whole would mimic the shape of the centra, and the

tail can be modeled as a series of truncated elliptical cones just like

the centra. This reconstruction ignores the muscles of the pelvis

that continue caudally.

The heights of the neural and haemal spines, and lengths of the

transverse processes, were measured in ROM 784. Neural spine

height was measured from the bottom of the neural canal to the

distal tip of the spine, perpendicular to the anteroposterior axis of

the centrum. Haemal spine height was similarly measured from

the top of the haemal canal to the distal tip of the spine. As before,

measurements for all elements could not be obtained as some

vertebrae were missing some or all of these elements. The ‘ideal’

neural spine, haemal spine, and transverse process values were

calculated as above. The height of a tail segment is the sum of the

heights of the haemal spine, centrum, and neural spine. The width

of a tail segment is the sum of the width of the centrum and the

length of both transverse processes. The volumes were calculated

as for the centra (Table 11). To obtain the volume of the muscles,
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the volume of the centra is subtracted from the total volume of the

tail.

The handle vertebrae are not as easily represented geometri-

cally, and measurements of the heights, widths, and lengths of the

centra were not possible in ROM 784 because the specimen is

partially embedded in matrix. However, a partial tail club with

similar vertebra and knob proportions (UALVP 47273) has been

CT scanned. This specimen can be scaled to the size of ROM 784,

and measurements of the volume of this specimen can be

substituted for ROM 784.

Volume is estimated using ImageJ to trace areas of interest in

CT slices, then multiply by slice thickness [38]. CT scan data was

imported in OsiriX, and then individual slices were exported as

TIFF files at 10 mm intervals (plus an additional slice representing

5 mm), totaling a length of 475 mm. These images were analyzed

using ImageJ. Regions of interest (ROIs) were traced manually

based on density contrasts in the image. ROIs for the handle

vertebrae included the total cross-sectional areas, and the areas of

the neural arch plus neural canal, neural canal, centrum, haemal

arch, and haemal canal. The total cross-sectional area is multiplied

by slice thickness to find the volume of each slice, and these results

are then summed to find the volume of the club. Volumes of the

compact neural and haemal arches, cancellous centra, and ‘empty’

neural and haemal canals can be calculated in the same manner.

Using this method, the total volume of the handle vertebrae in

UALVP 47273 is 1025 cm3.

ROM 784 is slightly larger than UALVP 47273. The

proportions of the knob cannot be used to scale UALVP 47273

to ROM 784, because knob size does not seem to be correlated

with vertebra size [11]. Measurements of the length of the neural

spine on each handle vertebra were plotted on a scatterplot, and

the slope was calculated using a linear regression. The slope was

similar for both ROM 784 (24.01) and UALVP 47273 (24.56),

and so the length of the neural spine was chosen as an appropriate

scaling measure (Fig. 12). ROM 784 is 109% the length of

UALVP 47273 using this measure (Table 12). The width of the

knob of ROM 784 is 107% that of UALVP 47273.

The length of the club of ROM 784, from the anterior of the

first handle vertebra to the posterior terminus of the knob, is

127 cm. The measured length of the handle, plus the length of the

knob, in UALVP 47273 is 71 cm. Scaling by 1.09 gives a length of

77 cm. Scaling the measured volume by 1.093 gives a volume of

1330 cm3. UALVP 47273 is an incomplete club; subtracting

77 cm from a total length of 127 cm gives a missing length of

50 cm. The average cross-sectional area of each slice is 21 cm2,

which scaled to ROM 784 is 25 cm2. Multiplying this average by

50 cm provides an estimate of 1260 cm3 for the volume of the

missing area in UALVP 47273. This actually underestimates the

likely missing volume, because in ROM 784 the centra of the first

two handle vertebrae are slightly larger than the rest of the centra.

Summing the scaled up volume of the measured portion of

UALVP 47273 (1220 cm2), and the estimated volume of the

missing portion (1260 cm3), yields a bone volume of 2470 cm3.

ROM 784 is probably missing a vertebra in the middle of the

series [11]. To model this vertebra, an additional, twelfth ‘ideal’

vertebra was constructed using the ‘ideal’ free caudal equations,

and the volume was calculated as 865 cm3.

Calculating the total volume of the handle, with muscles

reconstructed, is more difficult than with the free caudals. There

are fewer osteological correlates for muscle attachments in the

handle vertebrae. As discussed previously, the width between the

medial sides of the two major knob osteoderms in dorsal view must

have been the maximum width of the handle muscles. A CT scan

cross-sectional slice of the handle of UALVP 47273 provided the
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basis for reconstructing the musculature. This reconstruction was

then measured using ImageJ, giving a cross-sectional area of

60 cm2 (71 cm2 scaled to ROM 784).

The first two handle vertebrae in ROM 784 are larger than the

more posterior handle vertebrae, and have small bumps where the

transverse processes are located in the more anterior caudals. To

approximate the musculature of the free caudals tapering onto the

handle, a frustum from the anterior of the transitional free caudal

vertebra to the posterior of the second handle vertebra was

calculated. The length of the first two handle vertebrae in ROM

784 is 19 cm. Using this length, the ‘ideal’ dimensions for the

transitional free caudal musculature, and an area of 71 cm2 as the

top of the frustum, a volume of 7640 cm2 was calculated. The

remaining length of the club is 108 cm. Subtracting the length of

the knob (23 cm in UALVP 47273, scaled to 25 cm) gives the

remaining length of handle for which total volume must be

calculated. The handle vertebrae do not taper much posteriorly,

and for the purposes of this study it is assumed that the total

volume of the tail in the handle did not taper posteriorly either.

Therefore, the cross-sectional area of 71 cm2 can be multiplied by

the length to obtain a volume of 4970 cm2.

With the total volumes of the various tail segments, and the

volumes of the vertebrae, the volume of muscle can be calculated.

The total volume of the tail (excluding the knob) is 12610 cm3,

and the total volume of the vertebrae is 3250 cm3. Subtracting the

volume of the vertebrae from the total volume gives a muscle

volume of 9360 cm3.

The knob of ROM 784 is not easily modeled using simple

geometry, and measurements of all dimensions could not be

obtained because the knob is partially embedded in matrix.

Instead, the volume of UALVP 47273 was calculated by tracing

the area of CT scan slices in ImageJ and multiplying by slice

thickness (1 mm). Traced areas included the total area of the knob,

and cancellous area of each osteoderm. The volume of the knob of

UALVP 47273 is 1550 cm3, and the scaled volume is 2010 cm3.
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Figure 12. Graph comparing the length of the neural spine of
the handle vertebrae in ROM 784 and UALVP 47273. ROM 784 is
represented by the solid line and squares. UALVP 47273 is represented
by the dashed line and diamonds. Source data are in Table 12.
doi:10.1371/journal.pone.0006738.g012
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It is difficult to reconstruct with certainty the size and shape of

the probable keratinous sheath that would have covered each of

the knob osteoderms. In many horned ungulates, the morphology

of the horny sheath does not closely match the size and shape of

the inner bony horn core [39]. Keratinous coverings in Alligator

mississippiensis osteoderms appear to conform more closely to the

shape of the underlying osteoderm, and particularly augment the

shape of the keel, if present [40]. A specimen of the basal

thyreophoran Scelidosaurus with preserved integument indicates

that thyreophoran osteoderms were covered in a thin layer of skin

or horny keratin [41]. The size of the keratinous sheath probably

does not greatly affect the rotational inertia of the tail, and is not

included in the following calculations. However, the size and shape

of the sheath would play a role in absorbing stress and strain upon

impact: Snively and Cox [20] found that the thickness of keratin

covering a pachycephalosaur dome reduced the strain in the bone

during impacts.

Determining the angle of articulation between free caudal

vertebrae: range of motion and angular deflections of the

tail. An important variable for determining forces, velocities,

and impulses is the amount of rotation possible between each free

caudal vertebra. Based on manual manipulation of articulated

ankylosaurid vertebrae (ROM 1930), free caudals appear to have

had limited vertical motion, but were capable of lateral motion.

For the purposes of this study, it is assumed that tail club strikes

occurred through lateral movement of the tail. The maximum

angle of rotation is the maximum left and right divergence from

midline. The maximum half angle of rotation is the maximum

divergence in one direction from the midline. Ideally, a complete

specimen with all or most vertebrae preserved and prepared out of

the matrix could be manipulated to manually measure the

maximum half angle of rotation between each vertebra.

Whereas ROM 784 preserves almost all of the caudal vertebrae,

it is embedded partially in matrix and the vertebrae cannot be

moved to measure angles. Several other specimens have two or

three vertebrae in sequence and prepared out of the matrix (ROM

1930, AMNH 5404), but in these specimens the zygapophyses are

not complete between vertebrae, and so the maximum half angle

of rotation could not be determined. An alternative method for

determining the half angle of rotation is presented here.

Stevens and Parrish [42] found that the synovial capsules of the

pre- and postzygapophyses or extant birds constrained the amount

of movement between each vertebral joint. Zygapophyseal facets

must overlap by approximately 50%. Dzemski and Christian [43]

examined flexibility in ostrich (Struthio camelus) necks and

skeletonized necks of camels (Camelus bactrianus) and giraffes

(Giraffus camelopardalis), and found that maximum lateral flexion is

limited by the overlap between the zygapophyseal joint facets. In

lateral flexion of ostrich necks, the overlap of the joint facets was

equivalent to the rim of one facet covering between one eighth and

one quarter the long diameter of the corresponding facet. Muscles

along the neck reduced the lateral flexion if a long segment of the

neck was flexed. Extreme lateral flexions of the necks of living

ostriches were close to the values obtained from neck skeletons.

Dzemski and Christian [43] found that the maximum interverte-

bral lateral flexions in the necks of the ostrich and camel, which

both have very flexible necks, are below 25u.
The studies by Stevens and Parrish [42] and Dzemski and

Christian [43] provide a guideline by which maximum angles of

rotation can be determined in ankylosaur tails: the amount of

contact between the zygapophyseal joints. TMP 2007.20.80

(Euoplocephalus), an isolated free caudal vertebra, has complete

prezygapophyses and postzygapophyses. In ROM 784 (Dyoplosaurus)

and ROM 1930 (Euoplocephalus), each successive free caudal vertebra

is approximately 3% smaller in width than the preceding vertebra.

A dorsal photograph of TMP 2007.20.80 was rotated by 0u, 5u, 10u,
15u, 20u, and 25u. The axis of rotation follows that of Snively and

Russell [35], at approximately the midpoint between the pre-

zygapophyses. The photograph was scaled by 103% to create a

preceding vertebra. The rotated original photograph and enlarged

photograph were overlain so that the zygapophyses articulated

(Fig. 13). The prezygapophyses of the rotated image and the area

covered by the postzygapophyses of the enlarged image were

measured in ImageJ (Table 13). The original photograph is not

perfectly aligned, so that the non-rotated original photo and

enlarged photo do not articulate perfectly. This explains why the

area in contact in the right zygapophyses is less than 25% when the

angle of rotation is zero. However, this method provides an effective

way to estimate the maximum angle, even if the photograph is not

perfectly aligned, or if the specimen is slightly taphonomically

distorted. The maximum lateral flexion of the caudal vertebrae are

estimated to have been between 5u to 10u from the neutral position,

and would have almost certainly been less than 20u.
Calculating T, I, and v. Table 1 summarizes the volume of

bone and muscle, proximal cross-sectional area of muscle, mass of

bone and muscle, total mass, length, and total mass per unit length

for each segment of the tail.

Rotational inertia (Table 2) for each segment was calculated

using Equation 5, I~
r L2

3{L1
3ð Þ

3
, where r is the mass per unit

length, calculated in Table 6. L2 and L1 change for each segment

and each I.

Torque (Table 3) is calculated for each segment using Equation

6, T~
Axsð Þ Pmuscleð Þ wð Þ

2
. Carpenter et al. [19] used 39 N/cm2 and

78 N/cm2 as the upper and lower bounds for the range of forces

that muscles can exert. Snively and Russell [35] note that the

amount of force a muscle can exert is related to its cross-sectional

area and length, the geometry of muscle fibers, and the

composition of muscle fibers, and that muscle velocity is related

to fibre type and operating temperature. The type of fibers

associated with ankylosaurid tail muscles is difficult to assess,

however, Snively and Russell [35] note that the superficial neck

Table 12. Comparison of handle vertebra neural spine length, and knob width (in mm), in ROM 784 and UALVP 47273.

Handle Vertebra neural spine length Avgas Knob width

1 2 3 4 5 6 7 8 9

ROM 784 101.14 97.27 86.07 89.61 82.65 76.26 77.08 88.31 55.52 83.77 166

UALVP 47273 - - - - 84.16 70.98 59.4 79.11 57.3 70.19 155

UALVP 47273 as a % of ROM 784 - - - - 98.21 107.44 129.76 111.63 96.89 108.79 107.10

ROM 784 as a % of UALVP 47273 - - - - 101.83 93.08 77.06 89.58 103.21 92.95 93.37

doi:10.1371/journal.pone.0006738.t012
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muscles of many archosaurs appear to have fibres that can

contract rapidly, and so it may be possible that ankylosaur tails

had a similar fibre type. The body temperature of ankylosaurids is

unknown: Seebacher [44] suggested that ankylosaurs did not

evolve endothermy, whereas Gillooly et al. [45] provided evidence

that most large dinosaurs were inertial homeotherms. For the

purposes of this study, it is assumed that ankylosaurids had muscle

physiology comparable to those of extant homeotherms.

Muscle volume, fiber length, and pennation angle are used to

estimate the physiological cross-sectional area (PCSA) of a muscle,

which can be related to muscle force. The force a muscle produces

per unit area is its specific tension (ST), and specific tension

multiplied by the PCSA yields the contraction force of the muscle

[46]. It is impossible to estimate most of the factors involved in

calculating PCSA for fossil taxa, but PCSA is probably close to

anatomical cross-sectional area (ACSA) in fusiform muscles [35].

Specific tension can be estimated from studies of extant

vertebrates, as it is relatively uniform in vertebrate muscle that is

shortening by concentric contraction [35]. Specific tension has

been found to range between 15 to 24 N/cm2 in a variety of

extant vertebrates [47–50]. Ankylosaurid muscle forces are

calculated using 20 N/cm2 as a typical specific tension for

concentric contraction. To facilitate comparisons with Carpenter

et al.’s [19] results for Stegosaurus, forces are also calculated using

their values for specific tension (39 N/cm2 and 78 N/cm2).

The v term is calculated using v~
ffiffiffiffiffiffi
2hT

I

q
. The sum of the v

terms (Table 4) is Equation 7,

vclub~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hATA

Itail

s
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hBTB

Itail{FC1

s

z:::

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hLTL

Itail{FC1{FC2{FC3{FC4{FC5{FC6{FC7{FC8{FC9{FC10{FC11

s
:

Ankylosaurids may have initiated a tail swing from the neutral

position of the tail extended straight from the hips and without any

lateroflexion between the caudal vertebrae. However, a more

forceful impact would be achieved if the tail was swung from the

maximum deflection of one side to the maximum deflection on the

other side. Using 7.5u as an average half angle of articulation, the

angle of articulation between each free caudal vertebra was 15u.
Sensitivity Analyses for the ROM 784/UALVP 47273

club. There are several factors that could affect the results in

ROM 784/UALVP 47273 that should be examined:

1. Bone mass. Differences in the density of cancellous and

compact bone can affect the mass estimates for each segment,

and in particular the mass of the tail club segment.

2. Muscle reconstructions. Differences in the amount of muscle

reconstructed can affect the mass of each segment and the

cross-sectional area used to calculate torque.

3. Angle of articulation between free caudal vertebrae. The angle

of articulation is difficult to determine precisely, and may be

too low or too high. The maximum angle of articulation may

also change posteriorly along the tail.

4. Site of impact on club. The site of impact could be more

posterior or anterior on the knob.

5. Area of impact. The area of impact could be greater or smaller,

depending on the shape of the keratinous sheath, and whether

the impact is along a sharp or blunt keel, or on the rounded

surfaces of the knob osteoderms.

6. Stopping time.

Figure 13. Determining the maximum angle of rotation in
ankylosaurid free caudal vertebrae. A dorsal view of TMP
2007.20.80 is on the left, and a 3% larger copy is on the right. The
vertebrae are separated by a 2 cm gap representing the intervertebral
cartilage. The left vertebra is rotated from 0 to 25 degrees, in 5 degree
increments, from A to F. The articular faces of the prezygapophyses in
light grey, and the area covered by the postzygapophyses in darker
grey, are shown for each rotation. Scale bar equals 5 cm.
doi:10.1371/journal.pone.0006738.g013
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Each of these variables was changed systematically with the

composite ROM 784/UALVP 47273 tail. Carpenter et al. [19]

use 1.98 g/cm3 when estimating segment mass. Ankylosaurid

handle vertebrae have cancellous centra and compact neural and

haemal arches, and the knob is predominantly cancellous. To

understand the role that bone mass plays in tail impact forces, a

more accurate estimate of mass is needed. In the baseline analysis,

the neural arch, haemal arch, and transverse processes were not

modeled, and they are again excluded here. Additionally, changes

in mass affect the calculations for rotational inertia and impulse.

Because the tail club segment is so much larger than the rest of the

tail segments, and because only the tail club segment is used to

calculate impulse, it is reasonable to exclude the free caudal

vertebrae from this sensitivity analysis.

The relative proportions of compact vs. cancellous bone in the

handle vertebrae was determined by using ImageJ to calculate the

cross-sectional area of the centrum and the neural and haemal

arches in several transverse sections of the handle. The centrum

was approximately 38% the total cross-sectional area of a handle

vertebra. Extrapolating this to the handle as a whole (including the

transitional vertebra), the volume of cancellous centra was

1251.10 cm3, and the volume of compact neural and haemal

arches was 2090 cm3. Using average density values for cancellous

(1 g/cm3) and compact bone (2 g/cm3), also used by Snively and

Cox [20], yields a mass of 1250 g and 4170 g, respectively. The

knob is varying densities of cancellous bone with a relatively thin

layer of compact bone, and is here modeled as cancellous bone

(1 g/cm3), giving a mass of 2010 g. The bone mass of the tail club

segment is therefore 7430 g, which is less than the estimate using

1.98 g/cm3 as an average. The total mass of the tail club segment

(including muscles) is 16.79 kg.

The amount of muscle that would have powered the tail is

subjective. For the baseline analysis, it was assumed that muscles

did not bulge outwards past the neural and haemal spines and the

transverse processes. Reconstructing the muscles in this way allows

the tail to be modeled as a larger frustum containing the centra

frustum. However, the muscles may have been much larger than

depicted in this reconstruction. The areas of two reconstructions

(Fig. 9) were compared in ImageJ. TMP 85.26.70 was recon-

structed with conservative musculature, and with bulging muscles.

The cross-sectional area of the segment was 1310 cm2 for the

conservative estimate, and 1870 cm2 for the larger estimate. The

larger reconstruction is 143% the size of the conservative estimate.

Using this value, the values of the cross-sectional areas of the tail

segments in the baseline analysis can be scaled upwards, and the

maximum force recalculated. The half width of each segment is

left unchanged, because the reconstructed muscles do not

necessarily bulge laterally past the transverse processes.

In the baseline analysis, 15u was selected as a probable

maximum angle of articulation between each pair of the free

caudal vertebrae. Maximum angles of articulation of 5u, 10u, and

20u, and the effects of decreasing the amount of rotation

posteriorly along the tail were examined, starting at 15u and

moving to 0u at the articulation between the intermediate caudal

and first handle vertebra. The degree of rotation between the free

caudal vertebrae was calculated by graphing the rotation between

the pelvis and first free caudal as 15u and the rotation between the

intermediate caudal and first handle vertebra as zero, then taking

the slope of the line (y = 1.25x+16.25) and calculating the amount

of rotation for the vertebrae in between. The variables r, mclub,

tstop, Aimpact, and Iclub are the same as those used in the baseline

analysis.

If the vertebrae of the handle were not fused and rigid, and

instead were able to rotate freely like the free caudal vertebrae,

then impact velocity in the knob would increase, as would impulse,

force, and stress. Following the same procedure as for the baseline

analysis, with the main changes being the calculation of torque

and rotational inertia for the extra segments, the value of vclub is

determined to be 8.31 rad/s to 11.76 rad/s. To examine the role

of the handle in tail swinging, a hypothetical tail composed entirely

of free caudal vertebrae is constructed. In ROM 784, there are at

least eleven, and probably twelve vertebrae in the handle. With

eleven free caudal vertebrae and one missing transitional vertebra,

the total number of vertebrae would have been 24. Even assuming

that all of the vertebrae were free caudal vertebrae, the knob

would still enclose the last two caudal vertebrae. This means there

would be 23 segments (22 vertebrae and the knob). The length of

the knob is 23 cm, which scaled to ROM 784 is 25 cm.

Changing the site of impact on the club changes the value of r,

the distance from the base of the tail to the site of impact. For this

analysis, the club impact points are assumed to be near the distal

tip of the club (10 cm from the distal terminus, r = 2.06 m) and

near the anterior margin of the knob (29 cm from the distal

terminus, r = 1.87).

The area of impact is determined by the shape of the keratinous

sheath that would have covered the knob. Because the shape of the

sheath is unknown, the area of impact is speculative. The area of

impact may have varied greatly depending on where the site of

impact was, and what the knob was impacting. In the baseline

study, an area of 0.20 cm2 was chosen as a reasonable

approximation. The bluntness or sharpness of the keel of the

sheath would also affect the impact area.

Analysis of a large tail and knob, AMNH 5245/ROM 788
Whereas ROM 784 and UALVP 47273 are two of the smallest

tail clubs, ROM 788 and AMNH 5245 (both Euoplocephalus) have

Table 13. Area of overlap between successive zygapophyses, in mm.

Angle

Area of left
prezyg-
apophysis

Area of
right prezyg-
apophysis

Area of left
postzyg-
apophysis

Area of
right postzyg-
apophysis

Left postzyg-
apophysis area/left
prezygapophysis area, %

Right postzyg-
apophysis area/right
prezygapophysis area, %

0 7.12 7.84 2.62 1.39 36.8 17.7

5 7.12 7.84 2.65 1.63 37.2 20.8

10 7.12 7.84 1.85 2.24 25.9 28.6

15 7.12 7.84 1.34 2.34 18.8 29.8

20 7.12 7.84 0.42 3.15 5.89 40.18

25 7.12 7.84 0 4.67 0 59.54

doi:10.1371/journal.pone.0006738.t013
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the widest knobs encountered during the course of this research. A

complete caudal series is not available in either of these specimens.

ROM 788 includes the knob and most of the handle. AMNH

5245 includes the knob, some of the handle, and two anterior free

caudals which may represent the first and second free caudals. An

ideal free caudal series can be constructed in the same manner as

for ROM 784. Measurements of the vertebra were only possible in

the first free caudal, so for the purposes of these estimates the

proportions of the vertebrae in AMNH 5245 are assumed to

decrease in the same manner as ROM 784. This is a reasonable

assumption because the proportions of ROM 1930 (which has

overall larger vertebrae than ROM 784) decrease at the same rate

as in ROM 784. The width of the centrum in the first vertebra

could not be calculated because it is broken. To estimate the

width, the width:height ratio for each ROM 784 free caudal

segment (vertebra and disk space) was determined, then used to

calculate the width in AMNH 5245. To calculate the proportions

of ideal AMNH 5245, the same slope value is used as that

calculated for ideal ROM 784, and the intercept value is changed

to the measurement of the first free caudal vertebra in AMNH

5245. It is also assumed that AMNH 5245 has 11 free caudal

vertebrae and one transitional vertebra, as in ROM 784. The

musculature of the tail in AMNH 5245 is modeled in the same

manner as for ROM 784.

The handle vertebrae of AMNH 5245 are partially embedded

in matrix, but a tail club with similar vertebra and knob

proportions (ROM 788) is available. In this case, AMNH 5245

is the less complete specimen, so it is scaled to the size of ROM

788. ROM 788 was CT scanned and the data analyzed in ImageJ

as for UALVP 47273.

AMNH 5245 is scaled to the size of ROM 788 using the length

of the neural spine. Measurements of the length were plotted on a

scatterplot and the slope was found to be similar in ROM 788

(4.275) and AMNH 5245 (3.426). ROM 788 is 158% the length of

AMNH 5245. The width of the knob of AMNH 5245 is 103% the

width of ROM 788. As such, all of the free caudal vertebrae

segments are scaled 158%.

The length of the preserved part of the club in ROM 788 is

126 cm, and eight vertebrae are visible. Ten vertebrae are visible

in ROM 784. If ROM 788 had the same number of vertebra in

the tail, and the average length of the vertebra is 9 cm (the length

of the club minus the length of the knob, 75 cm, divided by 8

vertebrae), then the length of the tail club (handle+knob+missing

vertebrae) would have been 147 cm. Included in the tail club

segment for modeling purposes is the transitional vertebra, with an

estimated length of 9 cm (scaled to 14 cm), giving a total tail club

segment length of 161 cm.

The average cross-sectional area of each handle CT slice is

45 cm2, which multiplied by the length of the handle (94.58 cm)

gives a bone volume of 4265 cm2. The transitional vertebra has a

volume of 12120 cm2 when scaled to ROM 788. The volume of

the knob was partially measured using ImageJ as for UALVP

47273; however, the knob was wider than the field of view of the

scanner and the lateral edges of the knob osteoderms were not

scanned. The missing portion of the knob osteoderms can be

represented by an ellipsoid, where the volume is:

V~
4

3
pabc ð9Þ

Where a, b, and c are the three axes of the ellipsoid. The axes a

and b (length and width) were measured by overlying a semi-

transparent coronal CT section of ROM 788 over a dorsal

photograph of the specimen, and measuring the length and width

of the missing part of each osteoderm in ImageJ. The height (c) of

the missing portion of each osteoderm was measured from a

transverse CT section in ImageJ. The measured volume of the

knob was 20810 cm3, and the missing volume of the left and right

osteoderms was 14120 cm3 and 18080 cm3, respectively. This

gives a total volume of the knob of 53000 cm3. The bone volume

of the tail club segment (transitional free caudal vertebra+handle

vertebrae+knob) totals 69390 cm3.

The muscle volume is calculated by determining the total

volume of the tail club and subtracting the volume of the

transitional free caudal and handle vertebrae. The maximum

width of the handle muscles is the width between the major

osteoderms of the knob, which for ROM 788 was measured as

19 cm in ImageJ. In UALVP 47273, the average cross-sectional

area of the reconstructed tail (muscles+vertebrae) was 60 cm2, and

the width between the osteoderms was 10 cm. Assuming that the

muscles in ROM 788 are proportionately larger, the average

cross-sectional area of the tail is 117 cm2. Multiplying this by the

length of the handle (95 cm) gives a tail volume of 11100 cm3, and

subtracting the volume of the handle vertebrae gives a muscle

volume of 6790 cm3. The transitional tail segment is 14500 cm3

(scaled to ROM 788), and subtracting the volume of the vertebra

gives a muscle volume of 10780 cm3. Using these volumes, torque,

rotational inertia, and angular acceleration are calculated in the

same manner as for ROM 784/UALVP 47273.

Dynamics of a mid-sized tail and knob, UALVP 16247
ROM 784/UALVP 47273 and AMNH 5245/ROM 788

represent the extreme ends of the range of widths in knobs

measured in this study. Most tail clubs are around 40 cm wide,

and two examples of average-sized tail clubs were CT scanned

(UALVP 16247 and TMP 83.36.120). These are both fragmentary

clubs with only the knob preserved in UALVP 16247 and a small

fragment of the handle in TMP 83.36.120. As such, any estimates

of lengths, volumes and masses will be more tentative for these

clubs compared to ROM 784/UALVP 47273 and AMNH 5245/

ROM 788. Nevertheless, an estimate can be made by ‘extruding’

the handle from the knob, and then reconstructing the free caudal

vertebrae posteriorly to anteriorly using information from the

‘ideal’ ROM 784 vertebrae.

Estimates of bone and muscle mass and volume for

UALVP 16247. UALVP 16247 represents an average-sized tail

club knob. It is the most fragmentary specimen in this study, as it is

an isolated knob lacking a handle. However, a rough estimate of

tail dimensions can be made for UALVP 16247, to provide

estimates of impact forces for the most common knob size.

A CT scan of UALVP 16247 was measured as for UALVP

47273 and ROM 788. The volume of the knob was determined to

be 6486 cm3. Some of the terminal handle vertebrae are visible in

transverse section within the knob. Several cross-sectional areas

were traced and averaged to provide an estimate for the average

cross-sectional area of the handle, which can be compared to the

values obtained for UALVP 47273 and ROM 788 (Table 14).

ROM 784/UALVP 47273 represents a more complete

composite specimen than AMNH 5245/ROM 788. The value

of UALVP 47273 scaled to ROM 784 (144.5%) is thus used as the

scaling factor for UALVP 16247. This can be used to scale the

proportions of the free caudal vertebrae, handle vertebrae, and

muscles in ROM 784/UALVP 47273 to reconstruct the missing

elements in UALVP 16247. The square root of 144.5% is used to

determine the linear proportions of the vertebrae, using the ideal

values of ROM 784, as well as the proportions of the tail segments.
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The volume of the tail club can be calculated using proportions

from UALVP 47273 scaled to ROM 784. The length of the ROM

784 tail club is 127 cm, and the length of the handle (total club

length minus the length of the knob) is 101 cm. The length of the

handle in UALVP 16247 is therefore 121 cm, and multiplying by

the average handle cross-sectional area gives a handle vertebrae

volume of 4430 cm3. The estimated cross-sectional area of the

handle tail segment in ROM 784/UALVP 47273 was 72 cm2,

which scaled to UALVP 16247 is 103 cm2. The volume of the

handle tail segment is therefore 12500 cm3. The same method for

calculating torque and rotational inertia is employed here as for

ROM 784/UALVP 47273 and AMNH 5245/ROM 788. Tables

including the mass, torque, and rotational inertia are not included.
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