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Abstract

Predator confrontation or predator evasion frequently produces bone fractures in potential
prey in the wild. Although there are reports of healed bone injuries and pathologies in non-
avian dinosaurs, no previously published instances of biomechanically adaptive bone
modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous
dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We
show that these outgrowths are cases of biomechanically adaptive periosteal bone model-
ing resulting from overstrain on the tibia after a fibula fracture. Histological and biomechani-
cal results are congruent with predictions derived from this hypothesis. Histologically, the
outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high
growth rates, as expected in a process of rapid strain equilibration response. These out-
growths show greater compactness at the periphery, where tensile and compressive bio-
mechanical constraints are higher. Moreover, these outgrowths increase the maximum
bending strength in the direction of the stresses derived from locomotion. They are located
on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old indi-
vidual, and in the posterior position of the tibia, as expected in a presumably quadrupedal
individual at least four years of age. These results reinforce myological evidence suggesting
that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal con-
dition when young to a derived quadrupedal posture when older.

Introduction

Intensive paleontological fieldwork over the last three decades has produced a rich collection of
non-avian dinosaur fossils permitting detailed ontogenetic descriptions and paleobiological
estimations of life history traits using bone histology (e.g., Maiasaura [1], Tyrannosaurus [2],
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Allosaurus [3]). These collections also allow analyses on the incidence of healed skeletal inju-
ries, or bone abnormalities. Moderate to high incidences of healed skeletal injuries have been
reported in natural populations of extant species: e.g., 64% (n = 61) in the Virginia opossum
[4]; 36% (n = 118) in gibbons [5]; 15% (n = 308) in African viverrids [6]. We have found two
cases of exostoses (4%; n = 50) in the tibiae belonging to an ontogenetic sample of Maiasaura
peeblesorum. This study is aimed at testing hypotheses on the proximal causation of these bone
outgrowths.

Bone periostitis is a common bone abnormality easily recognized by the expansion of
diaphyseal contours (outgrowths) and involving an alteration in bone surface texture [7]. Such
features are the outcome of three groups of aetiologies: trauma, local infection, and collateral
effects of other diseases including neoplasms and metabolic diseases [8]. Our comparisons
with modern vertebrates suggest that the reported exostoses in the tibiae of Maiasaura are the
outcome of trauma (fibula fracture). Moreover, the topological position of these outgrowths is
interpreted as evidence for an ontogenetic shift from a bipedal to a quadrupedal posture in
Maiasaura.

Material and Methods

Over more than thirty years, the Museum of the Rockies (MOR; Bozeman, MT) has prepared
disarticulated Maiasaura peeblesorum fossils collected from a rich, monodominant bonebed in
the Campanian sediments of the Two Medicine Formation [9]. Fifty tibiae from that bonebed
were used in a population histology analysis, representing individuals from one year of age
through skeletal maturity (Repository: Museum of the Rockies, Montana State University, 600
West Kagy Boulevard, Bozeman, Montana 59717 USA). The minimum number of individuals,
based on the number of right tibiae, is 32. If each tibia represents a distinct individual, then the
maximum number sampled is 50. Two tibiae (MOR 005-T9 and MOR 005-T42) exhibited
exostoses. No permits were required for the described study because the fossils were collected
on land owned by the Museum of the Rockies Inc.

Thin sections were prepared from 0.3 cm thick wafers of bone removed transversely from
either side of the minimum diaphyseal circumference of Maiasaura tibiae. Thin section slides
were processed using a Buehler Ecomet 4 variable speed grinder, using the following sequence
of grit papers: 60, 180, 320, 600, and 800. Completed slides were analysed using a Nikon Opti-
phot-Pol polarizing microscope at either 10 X or 40 X total magnification, and photomicro-
graphs were taken incrementally using a Nikon DS-Fil digital sight camera. The software
package NIS-Elements BR 3.0 was used to create a single image from multiple photographs, so
that composite images of the tibia thin sections have a mosaic appearance. Minimum age of
Maiasaura individuals was determined by counting the number of annually deposited lines of
arrested growth (see [10-12] for descriptions of skeletochronology methods). High resolution
images of tibiae examined in this report can be downloaded from Morphobank (www.
morphobank.org; project P2136).

Three types of analyses were performed on these sections: histological (identification of
bone tissue types and qualitative comparisons of bone compactness), biomechanical (quantifi-
cation of the maximum second moment of the area, proportional to the bending strength, and
its orientation using Bone] [13])), and paleopathological (analysis of possible explanatory
aetiologies).

Results and Discussion

The ontogenetic series of fifty tibiae of Maiasaura peeblesorum analyzed contains two tibiae
(MOR 005-T9 and MOR 005-T42) exhibiting exostoses (Figs 1 and 2). On tibia MOR 005-T9,
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Fig 1. Overall views of the bones showing outgrowths. (A) Right tibiae of a one year old Maiasaura specimen and (B) a four year old specimen. The red
lines indicate where the histological sample was taken. Proximal is to the left, distal to the right. Scale bar equals 10 cm.

doi:10.1371/journal.pone.0131131.9001

there is no visual indication of any lesion or outgrowth on the diaphysis (Fig 1). On MOR
005-T42, there is a distinct bulge in the bone, approximately 20 cm in length, but again the
diaphyseal surface is smooth (Fig 1). Because many of the bones from this bonebed are tectoni-
cally distorted or deformed, the unusual appearance of this specimen went unnoticed until his-
tologically sectioned.

Experimental work (osteotomy) simulating the effects of a fracture in a zeugopodial bone
(the ulna) produces increased strains in the adjacent zeugopodial element (the radius), promot-
ing bone modeling (bone formation occurs over primary bone) and/or remodeling (bone for-
mation occurs on a surface previously resorbed by osteoclasts, intracortically, at the
periosteum or at the endosteum) [14-16]. In adult sheep, ulnar osteotomy produces both intra-
cortical remodeling and periosteal modeling in the radius [14, 15], whereas in still-growing
young pigs ulnar osteotomy produces endosteal remodeling and periosteal “explosive” growth
(modeling) in the radius [16]. Consistently, the exostoses found in the two Maiasaura tibiae
are hypothesized to be cases of biomechanically adaptive periosteal bone modeling resulting
from overstrain on the tibia after a fibula fracture.
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Fig 2. Bone cross-sections showing the general histological aspect of the outgrowths. (A) Right tibiae of a presumably bipedal Maiasaura specimen
and (B) a presumably quadrupedal specimen. Scale bar for bone sections equals 1 cm. Abbreviations: Ant., anterior; Lat., lateral; Med., medial; Post.,
posterior.

doi:10.1371/journal.pone.0131131.g002

(a) Histological analyses

The cortex of Maisaura tibia is mainly formed by laminar fibrolamellar bone tissue interrupted
by lines of arrested growth (Figs 2 and 3). Fibula fracture may have produced instantaneous
biomechanical overstrain on the adjacent tibia, necessitating rapid cortical compensation via
directional outgrowths. So we expect to find a bone tissue formed at very high growth rates.
The histological architecture of the Maiasaura tibial outgrowths consists of directional radial
fibrolamellar periosteal bone tissue, involving two layers of periosteal growth in the small tibia
(38.4 cm length) from a one year old specimen (MOR 005-T9) and a single layer in a larger
tibia (90.5 cm length) from an immature individual at least four years of age (MOR 005-T42)
(Fig 3). According to uniformitarianism, the same natural laws and rules (e.g. Amprino’s rule)
that operate now have operated in the past. Amprino’s rule suggests a relationship between
bone growth rates and bone tissue types [17]. Radial fibrolamellar bone tissue type is found in
vertebrates under natural (up to 171 pm/day in the King Penguin [17]) and artificial (47 pm/day
in the Chicken [18]) selection for very high bone growth rates. Thus the observation of radial
fibrolamellar bone tissue in the outgrowths of Maiasaura suggests that they were formed at very
high bone growth rates. Physical activity may stimulate rapid bone growth, particularly in young
individuals. However, the discontinuity observed between the cortical bone and the outgrowths
in both specimens (MOR 005-T9 and MOR 005-T42) suggests an abrupt change in mechanical
constraints compatible with fibula fracture. Always in the context of uniformitarianism, the
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Fig 3. Detailed histological aspect of the outgrowths. Outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high bone
growth rate [12, 13], to compensate the overstrain presumably produced by a fibula fracture. These outgrowths involve two pulses of periosteal growth in the
one year old specimen (A) and a single pulse in the four years old specimen (B). Considering that the further from the neutral plane of bending, the higher the
biomechanical constraints [14, 15], we expect higher compactness on the periphery of bone outgrowth to compensate for the increased constraints on the
bone surface. Our observations support these predictions in both the first and second bursts of growth of the one year old specimen (A) and in the single
burst of growth of the four years old specimen (B). Scale bar equals 1 mm.

doi:10.1371/journal.pone.0131131.g003

finding of rapidly formed radial fibrolamellar bone tissue in the young pig radius after ulnar
osteotomy [16] is congruent with our hypothesis. The observed cortical response in the growing
pigs [16] provides an appropriate modern analogue to the condition observed in the fossil tibiae.
We compared the fibrolamellar complex of mammals and dinosaurs on the basis of their similar-
ities in terms of histological structure, developmental mechanisms and function. However we do
not know whether they are homologous (i.e., acquired by the last common ancestor of amniotes)
or the outcome of convergent evolution (as occurs with many physiological and morphological
traits linked to endothermy).

The second moment of the area (I), proportional to the bending strength of a long bone, is
computed as:

I:ZyQZéy

where z dy is the cross-sectional area of a thin layer at a distance y from the neutral axis [19]. It
is obvious that, all other things being equal, a compact layer of bone (i.e., with primary osteons
filled by centripetal bone apposition) may produce a higher increase of the second moment of
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the area of a bone section (and a higher increase of the bending strength of the long bone),
than a layer with low compactness (i.e., with primary osteons still unfilled by centripetal bone
apposition). Moreover, we deduce from the same equation that the farther from the neutral
axis, the higher the contribution of a thin layer to the second moment of the area of a bone sec-
tion (and to the bending strength of the long bone [20]). Thus, considering that biomechanical
constraints (i.e., tensile or compressive) acting on bone tissue during bending increase away
from the neutral plane in a transverse section [19, 20], and that stresses should concentrate in
the periphery of bone cortex, we expect to find greater compactness at the periphery of each
outgrowth. Our histological results also agree with this prediction: both layers of localized peri-
osteal growth observed in MOR 005-T9, and the single layer observed in MOR 005-T42, show
higher bone compactness near the surface than deeper within the radial tissue of these out-
growths (Fig 3). In strong contrast, during normal long bone development, deep primary
osteons are filled by centripetal bone apposition before the more recently formed, peripheral
primary osteons (see for instance Fig 1E in [21]).

(b) Biomechanical analyses

Because the tibia naturally experiences bending moments during locomotion, the exostoses
observed in Maiasaura tibiae would increase the diaphyseal second moment of the area (I, pro-
portional to the bending strength [22]). Experimental strain recordings in the sheep tibia show
that, during peak loading, this bone withstands craniocaudal bending with maximal tensile
strains located on the anterior surface, and maximal compressive strains located on the poste-
rior surface [23]. Data on tibia deformation obtained using an in vivo optical approach in
humans suggest that this bone mainly withstands craniocaudal bending, but also mediolateral
bending and torsion [24]. Summarizing, it has been shown that tibia withstands craniocaudal
bending in a quadruped (sheep [23]), whereas this bone withstands craniocaudal bending but
also mediolateral bending in a biped (humans [24]). Myological evidence suggests that Maia-
saura underwent an ontogenetic shift from a bipedal condition to a quadrupedal posture [25].
So we expect to find the outgrowths in a more or less medio-lateral axis in the tibia of the pre-
sumably bipedal, one year old, specimen MOR 005-T9, and in an antero-posterior axis in the
tibia of the presumably quadrupedal, at least four years of age, individual MOR 005-T42. Our
results are congruent with these predictions. Before fibula failure, tibia Imax was oriented at
38° relative to the antero-posterior axis in MOR 005-T9 (Fig 4B). After fibula failure, the first
burst of localized periosteal growth in the tibia produced a 13.8% increase in the maximal sec-
ond moment of area towards the medio-lateral axis (from 38° to 49°counterclockwise relative
to the antero-posterior axis), as expected considering the strain measurements obtained in a
bipedal tetrapod [24] (Fig 4C). The second outgrowth pulse produced a further Imax increase
(of 34.6%), also towards the medio-lateral axis (from 49° to 58°) (Fig 4D). Maiasaura tibia
MOR 005-T42 reveals a single outgrowth, increasing Imax by 39.6% but in the antero-posterior
axis (as expected, considering the strain measurements obtained in a quadrupedal tetrapod
[23]). This interpretation is based on empirical data obtained in two species, so it should be
accepted with caution pending additional experimental data. Moreover, relationships between
patterns of bone loading and sites of periosteal bone formation are complex [23, 26, 27]. Our
interpretation relies on the classic assumption that functional loading promotes bone forma-
tion in regions that experience the highest strains [28, 29]. However, an increasing number of
studies have found evidence for a different mechanism: functional loading stimulates bone for-
mation at sites experiencing small strain magnitudes (e.g. [23, 26]). These last results are con-
gruent with the load predictability hypothesis according to which bone curvature and elliptic
cross-sectional shape with a minor axis aligned with the direction of bending may decrease
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Fig 4. Biomechanical analysis of the outgrowths of the one year individual MOR 005-T9. Entire bone
cross-section (A) and biomechanical analyses of bone areas (white surfaces) before fibula failure (B), after
the first outgrowth subsequent to fibula failure (C), and after the second outgrowth (D). The black lines
represent antero-posterior and latero-medial axes for reference. The blue line represents the maximum
second moment of the area (Imax), which is proportional to the bending strength of the bone. The red line is
the neutral plane. Before fibula failure, tibia Imax was oriented at 38° relative to the antero-posterior axis (B).
After fibula failure, tibia Imax increased 13.8% towards the mediolateral axis (from 38° to 49°), as expected in
a presumably bipedal, one year old specimen (C). The second burst of growth further increased tibia bending
strength (34.6% relative to the situation before the trauma) towards the mediolateral axis (from 49° to 58°)
(D). Scale bar equals 1 cm. Abbreviations: Ant., anterior; Lat., lateral; Med., medial; Post., posterior.

doi:10.1371/journal.pone.0131131.9004

bone strength but may increase load predictability by promoting a preferred bending direction
[30]. Moreover, during sheep ontogeny, increased functional loading promotes periosteal
modeling in proximal midshafts, whereas it induces cortical Haversian remodeling in distal
midshafts [31]. Periosteal modeling decrease and intracortical Haversian remodeling increase
with age [31]. In our view, all these hypotheses are not mutually exclusive: (i) Moderate func-
tional loadings may stimulate bone formation at sites experiencing small strain magnitudes to
increase load predictability, provided that a sufficient safety factor to withstand unexpected
loads is preserved. (ii) Extreme functional loadings (e.g., following trauma) involving small
safety factors and a risk of fracture may stimulate bone formation at sites experiencing the
highest strains. Experimental data obtained in the sheep radius are congruent with our view
and support our interpretation for the functional causation of Maiasaura outgrowths. Sheep
radius shows bone curvature in the sagittal plane (see Fig 1 of [15]), and an elliptic cross-sec-
tion with a major axis in the latero-medial direction (see Fig 2A of [15]), so that the preferred
bending direction (determined by the plane of curvature and the direction of the minimum
second moment of the area of the bone cross-section) is craniocaudal. Experimental strain
recordings agree with this prediction and show that sheep radius withstands craniocaudal
bending, with the concave caudal surface under longitudinal compression and the convex cra-
nial surface under longitudinal tension [15]. After ulnar osteotomy, radius withstands higher
functional loadings involving reduced safety factors. As expected, bone formation occurs at the
caudal surface of the radius, where the highest strains were recorded [15]. Similarly, Maiasaura
outgrowths may indicate the regions experiencing the highest strains after fibula fracture.

(c) Paleopathology analyses

Describing modified bone structure as resulting from modeling requires that scenarios regard-
ing disease be ruled out. As noted, in MOR 005-T9 and T42, there is a collar of fibro-lamellar
bone lying beneath the periosteal layer of the tibia. This can be observed grossly as an area of
smooth bowed thickened bone on the diaphysis (Fig 1). Although this style of bone forming
beneath the periosteum is characteristic of a number of lesions, it readily becomes clear that
there is no ‘good fit” paleopathologic hypothesis. Perhaps the simplest lesion is a periosteal
reactive lesion, which involves uplift of the periosteum and rapid deposition of benign bone
[32]. Grossly, this can be marked either a smooth thickened area of bone, or the bone texture
can appear irregularly emarginated and have a roughened texture. The appearance of periosteal
reactive bone is not consistent. This is one type of lesion described previously in stegosaurs [8].
These lesions are unlikely to produce a uniform cuff of bone as they must by nature be localized
to the insult. Unlike recent stegosaur work [33], there is no erosive endosteal component
described histologically to suggest osteomyelitis in these specimens. Abscesses, although
known to produce periosteal reactive bone growth in mammalian Brodie’s abscesses [34], are
characterized by pus, which is a neutrophilic fluid not present in archosaurs. Instead, cordoned
off bone infections are characterized by heterophil induced caseous fibriscesses [35] which
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should not present the same impetus for fibrolamellar bone deposition. The outward appearance
of such lesions therefore will lack draining sinuses, but may appear wildly proliferative with an
open cavity that would once have contained caseous necrotic debris. Bone neoplasia such as oste-
omas and osteosarcomas are described in avian wildlife [36], however these lesions are generally
more focal, and in the case of osteosarcoma frequently involve severe alterations to bone density,
underlying structure and integrity. Grossly, osteomas are button-like smooth lesions, sometimes
having a mildly roughened texture but otherwise having very well delineated margins. Osteosar-
comas can arise from the bone margin (parosteal osteosarcoma), or can be have more medullary
involvement and tend to have a very expansile proliferative appearance.

Perhaps the most compelling similarity to a pathologic condition is avian osteopetrosis [37-
41]. This skeletal lesion develops as a consequence of the avian leucosis virus, and differs from
human osteopetrosis in that the human condition involves primarily cartilaginous and medullary
resorption defects rather than periosteal bone deposition targeting [37]. On gross pathology, the
bone may have a latticework collar of bone surrounding the diaphysis and may have very mini-
mal density bone deposits proximal to the metaphysis. Previous papers have described this con-
dition in archaeology era birds from early Britain [39], and alluded to its presence in dinosaurs
[40, 41]. Noticeably absent from the two MOR Maiasaura specimens in this paper is the circum-
ferential deposition of bone around the entire diaphysis that characterizes this condition. Addi-
tionally, both individuals lack evidence of the classic second phase of the disease in which the
trabecular and endosteal bone becomes highly decreased in density [37].

In sum, the known pathologic scenarios fall short of explaining the bone histology observed
in these two specimens. The authors grant that a scenario for a pathologic etiology for which
there is no modern analog [42, 43] or a lesion for which examination of the complete skeleton
would have yielded a different interpretation is always possible. However, the parsimonious
argument for a biomechanical explanation (as supported by this paper) makes this possibility
less likely given that the gross and histopathologic appearance of the bone does not suggest
pathologic novelty.

Conclusions

Paleopathology hypotheses (periosteal reactive lesions [8, 32, 33], osteomyelitis [34], fibris-
cesses [35], bone neoplasia [36], and avian osteopetrosis [37, 41]) fail to explain the presence of
the observed exostoses in the tibiae of Maiasaura. In contrast, the hypothesis according to
which these outgrowths are cases of biomechanically adaptive periosteal bone modeling after
fibula fracture are strongly supported by histological and biomechanical data. The quantifica-
tion of the frequency of (observed or inferred) bone fractures is important in paleontological
population studies. Moreover, by documenting the differences in the compensating bio-
mechanical responses in the tibiae between Maiasaura juveniles and sub-adults, our study
independently supports the hypothesis that Maiasaura underwent an ontogenetic shift from
bipedality to quadrupedality previously suggested by a myological analysis [25]. Evidence for
ontogenetic postural change in turn suggests that immature dinosaurs exhibit ancestral charac-
ter states (in the case of Maiasaura, bipedality), whereas derived character states (i.e., quadru-
pedality) did not develop until late-juvenile or sub-adult stages of growth, further implying the
need to consider that small-bodied dinosaurs with unique combinations of shared and derived
characteristics may in fact be immature morphs of derived taxa.
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