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Fibres and cellular structures preserved
in 75-million-year-old dinosaur specimens
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Exceptionally preserved organic remains are known throughout the vertebrate fossil record,
and recently, evidence has emerged that such soft tissue might contain original components.
We examined samples from eight Cretaceous dinosaur bones using nano-analytical
techniques; the bones are not exceptionally preserved and show no external indication of soft
tissue. In one sample, we observe structures consistent with endogenous collagen fibre
remains displaying ~67 nm banding, indicating the possible preservation of the original
quaternary structure. Using ToF-SIMS, we identify amino-acid fragments typical of collagen
fibrils. Furthermore, we observe structures consistent with putative erythrocyte remains that
exhibit mass spectra similar to emu whole blood. Using advanced material characterization
approaches, we find that these putative biological structures can be well preserved over
geological timescales, and their preservation is more common than previously thought. The
preservation of protein over geological timescales offers the opportunity to investigate
relationships, physiology and behaviour of long extinct animals.
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he preservation of vertebrate soft tissue has long been

recognized and documented in exceptionally preserved

fossils! 12, Recent research has suggested that original
components of soft tissues such as skin"!?, feathers and other
integumentary structures’™, and muscle fibres'"!? may be
preserved in these exceptional fossils. For example, still-soft,
flexible material was recovered after demineralization of well-
preserved bones from the Late Cretaceous dinosaur
Tyrannosaurus'>, whereas proteinaceous material was found to
be preserved in another dinosaur, Brachylophosaurus'®.
Haemoglobin fragments were found in the abdomen of a
beautifully preserved Eocene mosquito'®>, and degraded
eumelanin was recovered in the integument of an Eocene turtle!®,

Models proposed to account for such preservation indicate that
it should be the exception rather than the rule!b217-19 In
particular, it has long been accepted that protein molecules decay
in relatively short periods of time and cannot be preserved for
longer than 4 million years'®2°, Therefore, even in cases where
organic material is preserved, it is generally accepted that only
parts of original proteins are preserved!>'® and that the full
tertiary or quaternary structure has been lost.

Here, we examined eight dinosaur bones from the Cretaceous
period, none of which are exceptionally preserved. We used
electron microscopy and a focused ion beam (FIB), as part of a
novel method to prepare samples for mass spectrometry. First,
with a scanning electron microscope (SEM), we observed, in four
different samples, structures resembling calcified collagen fibres
from modern bone; in three other samples, structures enriched in
carbon; and in two of our samples, structures that resemble
erythrocytes from birds. Serial sectioning of one sample presenting
fibres and of one presenting the erythrocyte-like structures revealed
that these fibres are less dense than the matrix surrounding them
and that an internal structure is present inside the erythrocyte-like
structures. With a transmission electron microscope (TEM) we
observed that the fibres show ~67nm banding, which could
possibly be considered collagen fibre remains. Finally, using mass
spectrometry, we found peaks that are consistent with fragments of
amino acids present in collagen. The spectra obtained from the
erythrocyte-like structures are surprisingly similar to the spectra
obtained from the whole blood of an extant emu.

This synergistic approach to the application of the state-of-the-
art materials analysis has therefore demonstrated utility in the
study of fossils. A better understanding of the preservation of soft
tissues and the discovery of these in ordinary, unexceptionally
preserved fossils, could pave the way for biochemical and cellular
investigations of the remains of extinct animals, shedding light on
aspects of their physiology and behaviour that have been
previously inaccessible to palacontologists.

Results and Discussion

SEM analysis. We examined fossilized bones samples using SEM
from eight dinosaur specimens (Supplementary Table 1) that
show no external indication of soft tissue. Density-dependent
colour SEM?! obtained from the surface of minute pieces broken
off from samples with tweezers revealed numerous low-density
structures suggestive of soft tissue in sample NHMUK (Natural
History Museum, London, UK) R12562, an ungual claw of an
indeterminate theropod dinosaur (Fig. 1 and Supplementary
Figs 1,3,4). Among these structures ovoid structures highly
reminiscent of avian erythrocytes®?* (Fig. 1a,b) were imaged and
ranged in length from 1.2 to 3.2 um (average 1.8 + 0.4, n=35). In
addition to the erythocyte-like structures, in four other specimens
the SEM analysis also showed fibrous structures similar to
calcified collagen fibres found in modern bone?*2® (Fig. 1c,d,
Supplementary Table 1 and Supplementary Fig. 5).
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Figure 1 | Density-dependent colour scanning electron micrographs of
samples of NHMUK R12562, an ungual claw of an indeterminate
theropod dinosaur, and NHMUK R4493, ribs from an indeterminate
dinosaur. (a) Amorphous carbon-rich material (red) surrounded by dense
material (green). Scale bar, 5 pum. (b) Erythrocyte-like structures composed
of carbon surrounded by cement. Scale bar, Tum. For comparison, fixed
blood from an emu (Dromaius) is shown in Supplementary Fig. 2c, d.
Fibrous structures. Scale bar, 5pm in (¢) and Tum in (d).

Elemental analysis using energy dispersive X-ray spectroscopy
(EDS) established that all these structures are enriched in carbon,
in contrast with the surrounding denser tissue/cement, which is
composed of carbon, oxygen, iron, silicon and aluminum
(Supplementary Fig. 6). Martill and Unwin?’ suggested that
iron might be expected when looking for blood in fossils, and in a
recent study, Greenwalt et al!'®> found haemoglobin-derived
porphyrin in the abdomen of a blood-engorged Eocene mosquito.
Analysis of the material from the mosquito abdomen suggested it
is 9% iron by weight. Given that red blood cells ordinarily contain
only around 0.3% iron by weight, Greenwalt et al. suggested the
unusual high percentage of iron measured may be due to a
taphonomic concentration’>. Our EDS analysis of the
erythrocyte-like structures in sample NHMUK R12562 shows
that iron is present in higher quantities in areas of the fossilized
bone where no erythrocyte-like structures are preserved. This is
to be expected because an iron concentration of only 0.3% by
weight typical of a red blood cell is below the detection limit of
EDS?8. To confirm this hypothesis, we carried out EDS on emu
blood and also did not detect iron, thus confirming the detection
limit of the technique (Supplementary Fig. 7).

Internal structures investigated by FIB. To evaluate the internal
structure of the features imaged by SEM, we initially used a FIB to
section the erythrocyte-like structures from NHMUK R12562 and
fibrous structures present in NHMUK R4493, rib fragments from
an indeterminate dinosaur (Supplementary Fig. 1). Interestingly,
denser structures (as imaged by the backscattering detector)
were observed inside the erythrocyte-like structures (Figs 2a,b).
To further investigate these features, three-dimensional (3D)
reconstruction of serial sections of an agglomeration of
erythrocyte-like structures (Fig. 2c and Supplementary Movie 1)
showed that each was concave, whereas the dense internal fea-
tures resembled nuclei and could be clearly distinguished within
each of them.

The serial sections from NHMUK R4493 showed less dense
linear zones surrounded by a denser matrix within the samples
(Fig. 2d). 3D reconstruction of the less dense zones (Fig. 2e and
Supplementary Movie 2) clearly showed that these are 3D fibres
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Figure 2 | Scanning electron micrographs and 3D reconstructions from
serial sections of erythrocyte-like structures and fibrous material.

(a, b) SEM using a backscattering detector showing cross-sections of
erythrocyte-like structures ¢ in NHMUK R12562; arrows indicate dense
internal material; scale bar, 0.5 um. (¢) 3D reconstruction of serial sections
of an agglomeration of erythrocyte-like structures showing: |, upwardly
concave external morphology and Il, dense structures observed in the
interior of the erythrocyte-like structures. (d) SEM using a backscattering
detector from section of fossilized bone of NHMUK R4493; arrows
indicate less dense zones inside bone matrix; scale bar, Tum. (e) 3D
reconstruction of the less dense zones in d, showing elongated, fibre-like
morphology and alignment. Random colours assigned to individual fibres to
differentiate between them.

with an average diameter of 54+9nm (n=30) and are
preferentially aligned in a specific direction (Supplementary
Fig. 8).

TEM analysis. To evaluate the ultrastructure of these fibres, TEM
was carried out on sections from NHMUK R4493, NHMUK
R4243, an astragalus of a hadrosaurid, NHMUK R4249, an
ungual phalanx of a hadrosaurid and NHMUK R4864, a hadro-
saurid tibia (as a control, rabbit bone (Supplementary Fig. 9) was
also prepared using the same method). All samples were prepared
by FIB, a method that would preserve the mineral and organic
material?!. The sections were obtained from the interior of each
sample, ruling out modern surface contamination. Unexpectedly,
from three of the samples (NHMUK R4493, NHMUK R4249 and
NHMUK R4243) TEM micrographs showed obvious fibrous
structures (Fig. 3a,b,c and Supplementary Fig. 10) containing
carbon (Fig. 3c,d). One sample (NHMUK R4493) also showed,
for the first time in a dinosaur bone, a clear ~67nm banding,
that is typical of the banding observed in collagen (Fig. 3e), for
the length of the preserved fibre.

In modern day bone collagen, the ~67nm banding is
considered a diagnostic ultrastructure characteristic and arises

from the arrangement of fibrils to form the quaternary structure
of the collagen protein?*4! (Fig. 3f). Although 67 nm banding
can be considered, in some cases, a finger print of specific
proteins, this method is not able to show the chemical
composition of the structures imaged. If collagen is completely
degraded, this banding is no longer seen, due to loss of the
quaternary structure of the protein. Therefore, the observation of
a ~67-nm banding in the fibrous structures of fossilized samples
here is very exciting, as it is consistent with a preservation of the
ultrastructure of putative collagen fibres over a time period of 75
million years. Before this finding, the oldest undegraded collagen
recorded (based on mass spectrometry sequencing and peptide
fingerprinting) was about 4 million years old’.

Mass spectrometry analysis. Finally, a thick section (~20 x 15
x 5um’) of samples was extracted using FIB (see Fig. 4 for
details of sample preparation) and analysed with Time-of-Flight
Secondary Ion Mass Spectrometry (ToF-SIMS) to probe for
the presence of amino acids. Sections were obtained from
an agglomeration of erythrocyte-like structures and cement
surrounding these from specimen NHMUK R12562, fixed emu
blood, three fossils showing calcified fibres (NHMUK R4493,
NHMUK R4249, NHMUK R4864), rabbit bone and a fossil not
presenting sign of calcified fibres (NHMUK R12562). As a con-
trol, a mass spectrum from the copper grid holding the samples
was also obtained.

Extraction of a fresh surface for ToF-SIMS analysis by the FIB
placed inside the electron microscope guarantees correct
localization of sampling and provides a clean, smooth surface
for analysis that eliminates topographical artefacts common to
ToF-SIMS measurements*2. Moreover, in the case of the cement
from specimen NHMUK R12562 and NHMUK R4493 (where the
bone was directly sampled), this method rules out the possibility
of modern contamination, as the surface exposed is inaccessible
to any contaminant.

The positive mass spectrum obtained from NHMUK R4493
showed peaks corresponding to fragments of the amino
acids glycine, alanine, proline and others'#*34* (Fig. 5 and
Supplementary Fig. 11; for attribution of peaks see
Supplementary Table 2). Moreover, several peaks present in the
spectrum from rabbit bone and the fossil samples showing
calcified fibres are not present in the results for the fossil without
calcified fibres or on the negative control from the copper grid
holding the samples (Supplementary Figs 12 and 13). Detection of
fragments of the amino acids normally found in collagen supports
the results obtained from TEM analysis where the ~67nm
banding is consistent with potential preservation of the original
quaternary structure of the protein.

The positive mass spectra obtained from the erythrocyte-like
structures of NHMUK R12562 were compared with spectra
obtained from emu blood fixed in paraformaldehyde and with the
cement surrounding the structures (Fig. 6). The spectra obtained
from four different regions of the dinosaur bone containing
erythrocyte-like structures are surprisingly similar to the spectra
obtained from emu blood.

As expected, spectra obtained from emu blood (Fig. 6a)
indicate the presence of several components, as the spectra were
obtained from sections that comprised whole blood. Some of the
main peaks could be tentatively assigned to components present
in whole blood such as: 318 m/z to folic acid*>; 462 m/z to
hydroxycholesterol*®*’ and the peak at 572 m/z to ceramide
(usually present in cell membranes*®). The same pattern of peaks
can be seen from the spectra obtained from the erythrocyte-like
structures (Fig. 6b) and this is clearer when a higher
magnification is applied to those spectra (Fig. 6ab inset).
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Figure 3 | Scanning transmission electron microscopy (STEM) analysis of NHMUK R4493. (a) Bright-field STEM micrograph depicting fibre fragments
showing a banded pattern consistent with banding typically observed in collagen fibrils. The arrow indicates the fibre analysed in e and f. Scale bar, 200 nm.
(b) Dark-field STEM micrograph showing detail of fibres in a. Scale bar, 100 nm. (¢) STEM of fibre analysed by electron energy loss spectroscopy (EELS)
indicating spectra locations. Scale bar, 50 nm. (d) EELS spectra showing a carbon peak on the fibre. A smaller peak is seen on the adjacent material.
(e) Grey intensity distribution over fibre (indicated by the arrow) in a. Vertical lines in red are spaced 67 nm apart and generally correspond with peaks in
grey intensity. (f) Periodicity characterization of e confirming the ~67 nm banding. (g) Diagram representing the structure of a generic collagen molecule
that produces 67 nm banding; | banded collagen fibrils surrounded by bone mineral matrix; Il individual fibrils are composed of numerous collagen
molecules arranged to produce 67 nm banding; Il the canonical collagen triple helix.
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Figure 4 | Sample preparation by focused ion beam (FIB) for mass spectroscopy analyses of NHMUK R4493, NHMUK R12562 and fixed emu blood.
(@) NHMUK R4493 with sampled location. (b) SEM of FIB sample preparation sequence: |, sample surface; Il, platinum protecting layer; lll, trench milling;
IV, sample on copper grid holder ready for mass spectra acquisition. (¢) NHMUK R12562 with sampling location. Scale bar, 5 um. (d) Sample on grid holder
before mass spectra acquisition. Scale bar, 5 um. (e) SEM image of fixed emu blood with sampling location. (f) Sample on grid holder before mass spectra
acquisition. Scale bar, 5pum. The mass spectrum was obtained from the fresh surface in IV (d and f).
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Figure 5 | Mass spectra detail of NHMUK R4249 (sample with banded fibres), NHMUK R4493 (sample with 67 nm banded fibres) and NHMUK
R12562 cement. (a, d and g) Peaks are associated with glycine fragments. (b, e and h) Peaks are related to alanine fragments. (¢, f and i) Peaks are related

to proline fragments.
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Figure 6 | Mass spectra of fixed emu blood, erythrocyte-like structures present in NHMUK R12562 and cement surrounding these erythrocyte-like
structures, all prepared by FIB. (a) Mass spectrum of emu blood with inset detailed region between 460 and 475 m/z. (b) Mass spectrum of erythrocyte-
like structures present in NHMUK R12562, with inset detailed region between 460 and 475 m/z. (¢) Mass spectrum of cement surrounding the
erythrocyte-like structures, with inset detailed region between 460 and 475 m/z. Blue arrows indicate the regions of main peaks in each spectrum that are
present only in the mass spectra of fixed emu blood and erythrocyte-like structures. Red arrows indicate the regions of main peaks in each spectrum that
are present only in the mass spectra of erythrocyte-like structures and cement surrounding erythrocyte-like structures.
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Moreover, it is clear that the mass spectrum from the cement
surrounding erythrocyte-like structures (Fig. 6¢) is different from
both the spectrum from erythrocyte-like structures and that from
emu blood. It is particularly interesting that the mass spectrum
from the erythrocyte-like structures has some features of both the
mass spectra from emu blood and cement (Fig. 6b).

The presence of several protein residues preserved in the
erythrocyte-like structures of NHMUK R12562 could explain
differences between the spectra obtained by us and previous
spectra obtained from fossilized blood samples such as that
obtained by Greenwalt et al.'®, where only haemoglobin-derived
porphyrin was preserved in the fossil record. Finally, it is clear
that the spectrum from cement is different from the spectra
obtained from emu blood and from erythrocyte-like structures.
Similarities between cement and the erythrocyte-like structures
are expected because the cement is also present in the sample of
the erythrocyte-like structures and fragments of the putative
proteins are likely present in the cement, even if they cannot be
visualized by electron microscopy. The mass spectra obtained
from emu whole blood are slightly different in comparison with
those of the erythrocyte-like structures, which is to be expected
because of the presence of organic components derived from
additional blood proteins that have not degraded in the emu
sample, but are absent in the erythrocyte-like structures, and also
because the emu blood was fixed with paraformaldehyde.

Partial least square—discriminant analysis (PLS-DA) of mass
spectra from four dinosaur regions presenting the erythrocyte-
like structures samples and four emu samples, collected from
different regions and from a cement sample was carried out. The
cross-validated PLS-DA were carried out in the region between
300 and 700 m/z (stressing, any organic differences between the
components of the samples (Supplementary Figs 14 and 15)). The
spectra from emu blood samples and those from areas of
NHMUK R12562 containing erythrocyte-like structures are
enclosed within the 95% confidence ellipse and, as a group,
may be compared with the cement sample, which falls outside the
ellipse. This is another indication that the biochemical finger-
prints of the spectra of emu blood samples and of areas of
NHMUK R12562 containing erythrocyte-like structures are very
much alike.

Within the dinosaur samples on average, the erythrocyte-like
structures are ~2um in length. This is somewhat smaller than
erythrocytes of birds, which range from 9 to 15 um in length?>4°;
emu blood cells in our sample were 9+2um (n=17). The
structures consistent with putative erythrocytes in the fossil could
well have been deformed and it is quite probable that these
structures have undergone some shrinkage during fossilization.

Red blood cell size is known to correlate with metabolic rate in
many vertebrate clades, including reptiles and birds*°. Discoveries
of red blood cells in a range of dinosaur taxa offer a potential
independent method of assessing relative metabolic rates and may
help to ascertain when and how the transition from ectothermy to
endothermy took place on the avian stem lineage.

The potential for future research into the metabolic rate of
extinct animals based on erythrocytes is promising because in this
study, putative soft tissue (either erythrocyte-like structures,
collagen-like, fibrous structures or amorphous carbon-rich
structures (Supplementary Fig. 7)) was observed in six of our
eight dinosaur specimens (Supplementary Table 1). Incredibly,
none of the samples showed external indicators of exceptional
preservation and this strongly suggests that the preservation of
soft tissues and even proteins is a more common phenomenon
than previously accepted.

These results show that to determine the presence of soft tissue
in fossils a new synergistic approach needs to be applied where
micro/nano-analytical methods are utilized to their full potential.

6

The common preservation of soft tissues could pave the way
for cellular investigations of extinct animals, shedding light on
aspects of physiology and behaviour that have been previously
inaccessible to palaeontologists and inaugurating a new and
exciting way to do paleontology.

Methods

Sample collection and preparation. Eight dinosaur specimens were selected for
sampling (Supplementary Table 1). Specimens from the Dinosaur Park Formation
and Lance Formation were selected because pore spaces in the trabecular bone
tissue were not infilled with matrix or cement, making the removal of minute
(~0.5 x 0.5 mm?) samples of bone easier. Specimens representing both major
dinosaurian clades (Ornithischia and Saurischia) and different osteological
elements were chosen. Finally, specimens with broken edges were chosen to avoid
contamination from glues and consolidants that may have been applied to the bone
surface. Samples were taken using tweezers, with which a small piece of the original
sample was broken off, providing a newly exposed surface for analysis.

SEM analyses and FIB preparation. Samples were secured to an aluminium
sample holder with carbon tape and carbon paste, which was then coated with
5nm carbon (Quorum Technologies Turbo-Pumped Thermal Evaporators model
K975X) and 5nm chromium in a sputter coater (Quorum Technologies Sputter
Coater model K575X).

SEM and EDS analyses. Following the coating procedure, samples were imaged
by SEM (Gemini 1525 FEGSEM) operating at 10 kV. The instrument was equipped
with both an inlens detector, which recorded secondary electrons, and a backscatter
electron detector. Density-dependent colour SEM images were obtained by imaging
a region in inlens mode and subsequently imaging the same region in backscatter
mode. Using Image] software, both images were stacked and the inlens image
was assigned to the green channel, whereas the backscatter image was assigned to
the red channel (for more details, see Supplementary Fig. 3). EDS were obtained in
the regions of interest using the point and shoot mode, which focuses the beam on
the selected region and provides a spatial resolution of 1 pm.

FIB and SEM analyses. Following SEM analysis, samples were transferred to a
SEM/Focused Ion Beam (Carl Zeiss—Auriga) with a gallium ion beam operated at
30kV. Selected regions were milled using 4nA current. Subsequently, the region
exposed to milling was polished with 50 pA current and imaged by a backscattering
detector with the electron beam operating at 1.5V. The serial sections were
obtained by sectioning samples at intervals of 20 nm (erythrocyte-like

structures) or 10 nm (fossilized bone) and reconstructed using the Amira
‘software segmentation editor function.

FIB and TEM sample preparation. Samples were transferred to a FIB (FEI
FIB200-SIMS or a SEM/Focused Ion Beam Helios NanoLa 50 series Dual Beam).
A region of 20 x 2 um? was coated with a 2-pm-thick platinum layer (93 pA at
30kV) to protect the sample surface from the gallium beam during the milling and
polishing processes. Two trenches of 20 x 10 x 10 um?> (length x height x depth)
were made using currents between 2.8 and 21 nA parallel to the platinum pro-
tective layer, creating a section with dimensions of approximately 20 x 15 x 5 pm?>.
The section was then thinned with the beam until it was 1 um thick, using beam
currents between 93 pA and 2.8 nA. After the rough thinning, the base of the
section was cut using a current of 2.8 nA. With a micromanipulator needle, the
resulting section was then attached to a FIB lift-out grid using platinum.

The section was then thinned again, until it was ~100-nm thick using beam
currents between 28 pA and 2.8 nA. Finally, the resulting surface was polished with
a gallium beam operated at 2kV.

Time-of-flight secondary ion mass spectrometry. After sectioning, the FIB
grid and the sample were introduced into a FEI FIB200-SIMS and IONTOF
TOF.SIMS®-Qtac!% LEIS. The mass spectrum was obtained on the face

(~15 x 20 um? area) of the section presented on Fig. 4a panel IV, d and f. High-
resolution mass spectra were obtained from the samples using the analytical Bis"
ion beam. Positive secondary ions were collected at ~0.30 pA and 128 x 128 pixels
were collected in each of the scanned areas for 64 s. Internal calibration of the mass
spectra was carried out using the HT, C™, CH', CH;" and C;H;" ion peaks.

EDS analyses and electron energy loss spectroscopy (EELS). Samples extracted
and prepared by FIB were imaged and analysed at 200kV on a JEOL 2100FX TEM
(JEOL). EDS and EELS elemental analyses were obtained in TEM operating at
200kV.

Partial least squares—discriminant analysis. PLS-DA is an inverse least squares
multivariate discrimination method, which is used for classification. It
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encompasses the PLS regression properties to fine-tune a principal component
analysis model in order to highlight differences between multivariate data sets of
different classes.”® Mass spectra of four samples with erythrocyte-like structures
from dinosaur and four emu blood samples were imported to the PLS tool box
(Eigenvector Research, Inc.) in Matlab for PLS-DA classification. The spectra were
normalized and mean centred before being calculated through the model.>! As
independent validation was not possible, leave-one-measurement-out cross-
validation was used to validate and optimize the PLS-DA model complexity.
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