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ABSTRACT
Background. Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage
with an extensive and complex biogeographic history, yet no large-scale study has
reconstructed the ancestral range of early squamate lineages. The fossil record indicates
a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g.,
Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus,
the origin and occupancy of extant radiations is unclear and may have been localized
within Pangaea to specific plates, with potential regionalization to distinct Laurasian
and Gondwanan landmasses during the Mesozoic in some groups.
Methods. We used recent tectonic models to code extant and fossil squamate distribu-
tions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous
fossil constraints from three extinct lineages. We modeled ancestral ranges for crown
Squamata from an extant-only molecular phylogeny using a suite of biogeographic
models accommodating different evolutionary processes and fossil-based node con-
straints from known Jurassic and Cretaceous localities. We hypothesized that the best-
fit models would not support a full Pangaean distribution (i.e., including all areas) for
the origin of crown Squamata, but would instead show regionalization to specific areas
within the fragmenting supercontinent, likely in the Northern Hemisphere where most
early squamate fossils have been found.
Results. Incorporating fossil data reconstructs a localized origin within Pangaea, with
early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan
regionalization did not occur until the middle Cretaceous for Alethinophidia, Scole-
cophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant
squamate biogeography can be summarized as a Eurasian origin with dispersal out
of Laurasia into Gondwana, their Cenozoic history is complex with multiple events
(including secondary and tertiary recolonizations) in several directions. As noted by
previous authors, squamates have likely utilized over-land range expansion, land-
bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold
more ancient lineages than the Holarctic (Rhineuridae being a major exception), and
some asymmetries in colonization (e.g., to North America from Eurasia during the
Cenozoic through Beringia) deserve additional study. Future studies that incorporate
fossil branches, rather than as node constraints, into the reconstruction can be used to
explore this history further.
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INTRODUCTION
The oldest stem-group squamates (lizards, snakes, and amphisbaenians) date back ∼240
million years ago to theMiddle Triassic Period of Europe (Simoes et al., 2018). After an early
radiation dated to the middle Jurassic in Eurasia (Rage, 2013), crown squamates underwent
worldwide diversification, leading to one of themost diverse groups of terrestrial vertebrates
with over 11,000 extant species (Uetz, Freed & Hošek, 1995) and over 1,000 extinct
species described (Caldwell, 2005). Today, squamates have a nearly global distribution,
excluding Antarctica (Vitt & Caldwell, 2014). Numerous studies have examined the recent
biogeographic history of lineages such as amphisbaenians, anguimorphs, dibamids, geckos,
skinks, and snakes (e.g., Barley et al., 2015; Chen et al., 2017; Fuller, Baverstock & King,
1998; Gamble et al., 2011; Longrich et al., 2015; Noonan & Sites Jr, 2010; Poe et al., 2017;
Townsend, Leavitt & Reeder, 2011; Vidal et al., 2010). However, there is a distinct paucity
of biogeographic analyses of Squamata as a whole.

Crown Squamata dates to the Jurassic ∼180–190 Ma (Jones et al., 2013; Tonini et al.,
2016; Title et al. 2024), around the final breakup of Pangaea (Dietz & Holden, 1970a;
Dietz & Holden, 1970b). Many extant lineages (e.g., Pleurodonta, Boidae) show a classical
Gondwanan origin (Noonan & Chippindale, 2006a;Noonan & Chippindale, 2006b;Noonan
& Sites Jr, 2010), though other lineages exhibit recent trans-oceanic dispersal (Vidal et al.,
2008; Townsend, Leavitt & Reeder, 2011; Longrich et al., 2015). Unlike amphibians, a group
that shows high endemism in former Laurasian subcontinents including temperate North
America and Europe (Duellman, 1999; Pyron, 2014a), few ancient relict squamate lineages
share this endemism, with a major exception being Rhineuridae in Florida. Instead,
most ancient endemics are restricted to tropical regions such as Amazonia (Aniliidae),
Sundaland (Anomochilidae, Lanthanotidae), Madagascar and the Mascarene Islands
(Bolyeriidae, Xenotyphlopidae), and Southeast Asia (Shinisauridae). Finally, the most
diverse lineages (e.g., Colubridae, Gekkota, Scincidae) are nearly cosmopolitan, suggesting
complex patterns of dispersal and vicariance within and among most major continental
regions (Carranza & Arnold, 2003; Gamble et al., 2008; Vidal et al., 2008; Chen et al., 2013;
Pereira & Schrago, 2017).

There have been several attempts to reconstruct the Squamate Tree of Life to better
understand their evolutionary history from a phylogenetic perspective, incorporating
species-level sampling and fossil data (see Simões & Pyron, 2021). In contrast, few studies
have attempted to study the complex early biogeographic history of squamates (see Evans,
2003), unlike other diverse global radiations like amphibians (Pyron, 2014a) or birds
(Field & Hsiang, 2018; Selvatti et al., 2022). No studies have performed a comprehensive
estimation of squamate biogeography using a fully sampled phylogeny (e.g., Tonini et al.,
2016) and spatial dataset (e.g., Roll et al., 2017) with explicit ancestral range estimation
(Matzke, 2014), in part due to difficulty defining spatially homologous regions that are
coherent across the timescale of squamate evolution. Recent discoveries such as gekkotans
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preserved in amber (such as Cretaceogekko; Daza et al., 2016) and fossil-tip-based analyses
may imply older diversification times for some clades (see Simões & Pyron, 2021) but this
is beyond the scope of our study. We therefore utilize a published, dated, species-level
phylogeny as the basis for our comparative analyses.

We also emphasize the difference between an ‘‘area’’ and a ‘‘range’’, with an area being
the single biogeographic unit (i.e., the North American plate) and a range being the
combination of one or more areas (i.e., an ancestral reconstruction of North America +
Eurasia). The delineation of biogeographic areas is a difficult problem with a long history
of attempts and without clear solutions in many cases (see Nelson, 1978 for a historical
perspective;Morrone, 2018). Some proposed solutions include spatial homology (Escalante,
2017) and network approaches (Vilhena & Antonelli, 2015). Even well-known transition
zones such as Sundaland-Oceania have myriad lines (Wallace’s, Weber’s, Lydekker’s,
etc.) demarcating their boundaries for different taxa in ways that are difficult to integrate
(see Simpson, 1977) and reflect differing historical responses to climatic, biotic, and
geological forces. Some systems lend themselves well to discrete classifications, such as
presence or absence on islands (Ree & Smith, 2008). At global scales, one might choose
classifications based on traditionally defined ecoregions (e.g., Pyron, 2014a; Pyron, 2014b),
typically delimited from empirical distributions of taxa based on bioregionalization (Kreft
& Jetz, 2010). For widely distributed, ancient taxa with distribution patterns driven by
paleogeographic processes (e.g., tectonic vicariance), continental or plate-level endemism
appear the most appropriate coding scheme (e.g., Bossuyt et al., 2006).

Consequently, compiling distributional data for squamate biogeography presents several
hurdles. First, there aremany squamate fossils in regions where they are not currently found
(Crisp, Trewick & Cook, 2011). Fossil localities throughout the world show extralimital
Cenozoic distributions for clades such as Elapidae, Teiidae, Tropidophiidae, and Varanidae
in Europe (Szyndlar, Smith & Rage, 2008; Ivanov et al., 2018; Georgalis et al., 2019; Louis
& Santiago, 2020), or tropical iguanians from central North America (Conrad, Rieppel &
Grande, 2007; Conrad, 2015). In addition, Mesozoic lineages such as Paramacellodidae
(Pangaea), Polyglyphanodontidae (North America and Asia), Mosasauroidea (marine
environments worldwide), and Madtsoiidae (Gondwana) reveal historical dynamics
invisible to analyses of extant taxa (Evans, 2003; Longrich, Bhullar & Gauthier, 2012;
Bittencourt et al., 2020), especially for groups more deeply nested within the tree. A growing
literature of amber-preserved fossils may expand our understanding of paleobiogeography
(Wang & Xing, 2020). An example is Cretaceogekko, a proposed gekkotan (Daza et al.,
2016) that would shorten the current ghost lineage of Gekkota by about 25 Ma from the
previously oldest gekkotan, Gobekko (Daza et al., 2016). However, no amber squamates
fossils exist before the late Cretaceous (Wang & Xing, 2020) and amber fossils often lack
osteological features needed for a phylogenetic analysis, limiting their use. Furthermore,
shifting tectonic plates have corresponded with shifting climates and ecosystems (Lomolino,
Lomolino & Lomolino, 2010). As a result, historical ecoregions may not be equivalent to
their present-day counterparts.

What, then, can we hope to infer accurately from available phylogenetic (Tonini et
al., 2016) and spatial (Roll et al., 2017) data? We use fine-scale maps for tectonic plate
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boundaries (Bird, 2003) to classify squamates into nine major plates involved in Pangaean
vicariance to decrease ambiguity associated with delimiting terrestrial ecoregions. While
these data were generated in 2003, the definition of continental divisions has remained
relatively consistent across recent studies (Seton et al., 2012; Hasterok et al., 2022). We also
include node constraints based on fossil occurrences that can be confidently assigned
to early squamate lineages (e.g., Evans, 2003). With a suite of model-based inferences,
we ask an overarching question: is there a discernable biogeographic signal for ancestral
range estimation and endemic regionalization in early Squamata, particularly when fossil
geographic occurrences of crown squamates from the Jurassic and early Cretaceous are
including as geographic constraints? We find support for this hypothesis regarding a
Eurasian origin, and characterize several major patterns in Mesozoic and early Cenozoic
squamate biogeography that can be tested in future studies.

MATERIALS & METHODS
Ranges & areas
Bird (2003) provided a high-resolution boundary dataset for 54 major, minor, and
microplates. These are highly correlated (and causally linked) with terrestrial zoogeographic
regions in many respects (Holt et al., 2013; Ficetola, Mazel & Thuiller, 2017), and by
extension, previous global area classifications for groups such as amphibians (Bossuyt et al.,
2006; Pyron, 2014a; Vilhena & Antonelli, 2015). First, we aggregated these 54 boundaries to
the 8 major plates: Africa, Antarctica, Australia, Eurasia, India, North America, Pacific, and
South America. We then separated three minor plates that intersect continental areas with
endemic or transitional faunas: Arabia, Caribbean, and Sunda (Fig. 1; Appendix S1). We
included these as distinct plates for area coding so that their faunas were not artifactually
linked to the adjacent continental plates, which had formed distinct areas prior to the
emergence of those three landmasses. Alternatively, Caribbean species occurring on
recently emerged landmasses such as the Bahamas would be characterized as ‘‘North
American,’’ which does not reflect reality in the Mesozoic.

These 11 plate categories describe most of the major qualitative biogeographic
regionalizations (see Lomolino, Lomolino & Lomolino, 2010) and of squamate diversity
(see Vitt & Caldwell, 2014), while also reflecting an objective paleogeographic reference.
Antarctica contains no extant species and very few (primarily marine) fossils and was
therefore omitted from further analyses (Legendre et al., 2020). Additionally, the Pacific
plate currently contains substantial landmasses (e.g., Baja California, eastern Melanesia,
and southern New Zealand) for which the biogeographic history of their squamate fauna is
linked closely to the proximal zoogeographic region (e.g., the Nearctic, Oceania). Therefore,
we assigned all Pacific species to their nearest major continental plate. We also opted to
lump Madagascar in with Africa for this analysis. Usually, Madagascar is counted as its
own plate, as it has a unique tectonic history (e.g., Bossuyt et al., 2006). However, the
plate has remained relatively close to Africa since the middle Jurassic, so we argue that
treating it as a separate unit is less redundant for our analysis given its exceptional level of
squamate endemism, unlike groups such as frogs. This has the added benefit of decreasing
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Figure 1 Fossil localities of Jurassic squamates.Map of earth with major plate boundaries adapted from
Bird (2003). Red stars indicate the present-day localities of Jurassic squamate fossils (see Table 1), blue
represent earliest Cretaceous records (Bittencourt et al., 2020), and purple indicate records across both
horizons (Sigogneau-Russell, Monbaron & Russell, 1988; Lasseron et al., 2020).

Full-size DOI: 10.7717/peerj.17277/fig-1

the complexity of our models. This resulted in nine major global tectonic ecoregions
encompassing nearly all extant, described squamate diversity (Fig. 1; Appendix S1).

To determine species occupancy in the nine regions, we first intersected the 10,064
polygon range shapefiles from the Roll et al. (2017) dataset with the plate boundaries for
the 11 major plates, removed Antarctica and reassigned the Pacific species. We inspected
these assignments for obvious errors, such as recent human-mediated transplant between
continents and a few geometry problems. We then matched these species to the 9,755
taxa in the Tonini et al. (2016) phylogeny, for which 9,569 matched natively and 13
were matched to synonyms, for a total of 9,582 species coded using the Roll et al. (2017)
maps. We downloaded range-map shapefiles for a further 64 seasnake taxa (Elapidae:
Aipysurus, Emydocephalus, Ephalophis, Hydrelaps, Hydrophis, Kerilia, Kolpophis, Laticauda,
Parahydrophis, and Thalassophis) from the 5 February 2020 update of the IUCN RedList (
http://www.iucn.org/) and classified them similarly. The 109 remaining species were verified
manually using the Reptile Database (http://www.reptile-database.org/) or estimated from
the literature. We thereby classified all 9,755 species in the Tonini et al. (2016) phylogeny to
the nine plates (Appendix S1). Species were limited in their ranges to a maximum of four
plates, as almost no species has a range exceeding four. The exceptions were a few species
from the marine sea snake genus Hydrophis. We constrained those that exceed four plates
to the ancestral range of Hydrophis (Australia, Eurasia, India, and Sunda) as estimated
from the literature (Ukuwela et al., 2017). This was done to reduce the amount of both
computational and analytical complexity (seeMatzke, 2014).

No biographic coding scenario can account for all possible processes, and some recent
Cenozoic patternsmay be obscured by our scheme. Examples include the boundary between
southeastern Eurasia and Sundaland or between Sundaland and Australasia (Oceania) and
the corresponding faunal ‘‘lines’’ discussed by Simpson (1977). Similar criticisms may be
leveled at the grouping of most of Central America with Jamaica, Puerto Rico, and the
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Lesser Antilles on the Caribbean plate, while grouping Cuba and Hispaniola on the North
American plate (Fig. 1). The biogeographic history of Caribbean herpetofauna is complex,
and this paleogeographical approach accounts for only a portion of recent historical
processes (Rosen, 1975; Hedges, 1982; Crother & Guyer, 1996). Regardless, we suggest that
this framework is a solid foundation for understanding early squamate biogeography.
We anticipate future researchers will refine and revise these classifications using other
quantitative methods such as network-based bioregionalization (Vilhena & Antonelli,
2015), incorporating spatial occurrence data and paleogeography to estimate finer-scale
processes of recent dispersal and vicariance. Ultimately, we recorded 2,104 species in Africa,
344 in Arabia, 1,529 in Australia, 951 in the Caribbean, 1,202 in Eurasia, 702 in India, 1,173
in North America, 1,953 in South America, and 1,326 in Sundaland. This sums to 1,898
species in landmasses from Laurasian North America and 2,271 in Laurasian Eurasia, and
6,381 in Gondwanan continents and subcontinents.

Note that with nine areas and four allowed in a range, there are 256 possible states—too
many to be visualized individually. Only 66 of these were occupied by squamates in our
estimates. For visualization purposes, we primarily present our results summarized into
fourmajor synthetic, post-hoc ranges based on the ancestral estimates. These are Gondwana
(Australia, Africa, Arabia, India, and South America), Laurasia (Eurasia, Caribbean, North
America, and Sunda), Pangaea (anyGondwanan+ Laurasian range), andNorthern Pangaea
(Laurasia + Africa). These areas are descriptive and not meant to be exclusive of each other
or restricted to landmasses from which their names originated. Consequently, if a clade
is reconstructed to have a ‘‘Laurasian’’ origin, that does not necessarily mean the clade
originated during the Jurassic while Laurasia was still a united supercontinent; rather, it
means that the lineage originated in an area arising from the paleocontinent (i.e., North
America, Eurasia, Sunda, and the Caribbean), even if the lineage postdates fragmentation
in the Cenozoic. If an ancestral range reconstructs areas belonging to both Gondwana and
Laurasia, then it is considered to have a ‘‘Pangaean’’ distribution. The full 9-area results
can be seen in Appendix S1. Therefore, while we collapse many Cenozoic biogeographic
patterns into ‘‘Gondwana’’ and ‘‘Laurasia’’ for ease of illustration (Fig. 2), complex patterns
among the 9 areas are present, particularly since the K–Pg boundary (Appendix S2).

Ancestral range estimation
We used the BioGeoBEARS package (Matzke, 2018) in R 3.6.0 to test several candidate
models of biogeographic inference incorporating dispersal, extinction, cladogenesis, and
founder-event speciation (Matzke, 2012). We tested the commonly used biogeographic
models DEC (Ree & Smith, 2008), DIVA (Ronquist, 1997), and BAYAREA (Landis et al.,
2013) with and without the addition of the free ‘j’ parameter, which allows for founder-
event-speciation as a possible explanation for range expansion during cladogenesis (Matzke,
2014). Despite criticisms surrounding the ‘j’ parameter (Ree & Sanmartín, 2018), recent
results demonstrate the validity of this approach (Matzke, 2021) when modeled and
interpreted appropriately, as we are mindful to do here. We did not evaluate other possible
parameters such as ‘x’ and ‘n’ (dispersal probability as a function of physical or ecological
distance; see (Dam &Matzke, 2016)), or trait-based dispersal models (Klaus & Matzke,
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a) Early Jurassic
Toarcian (180Ma)

b) 145Ma
Jurassic/Cretaceous

c) K-Pg, 66Ma

Laurasia

Gondwana

Northern Pangaea

Pangaea

Figure 2 The abbreviated geographic regions in theMesozoic.Map of Jurassic and Cretaceous paleo-
continents from Scotese (2016) drawn at the (A) Early Jurassic (Toarcian, 180Ma), with the three areas of
Laurasia (yellow) and Gondwana (purple), Northern Pangaea (green; the boundary of which is Laurasia
plus the area designated by the dashed line), and Pangaea (blue) indicated with their transition bound-
aries; (B) Jurassic/Cretaceous boundary (145 Ma), at which time fossil squamates are known from all three
combined areas (Fig. 1; Table 1; Evans, 2003); and (C) K-Pg boundary (66 Ma), after which we see a signif-
icant decrease in relative dispersal probabilities between areas (Table 2; Fig. 4).

Full-size DOI: 10.7717/peerj.17277/fig-2
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Figure 3 Ancestral state reconstruction of Mesozoic squamates. Reduced representation of the squa-
mate backbone tree (Tonini et al., 2016), showing the best-fit estimates from the DEC+J model (see Ap-
pendix S1 for full results and uncertainty) for the geographic origins of early squamate lineages. Named
clades of particular interest are discussed in the Results section. The nodes that were constrained are high-
lighted in red. The color scheme for the major combined areas is consistent throughout the rest of the
article.

Full-size DOI: 10.7717/peerj.17277/fig-3
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2020), as these are less relevant to the questions here and difficult to optimize for a dataset
of this size.

Ancestral range estimates typically produce partial support for multiple possible models.
For example, an ancestral range of ‘‘Africa’’ may have 70% support, with 25% for ‘‘Africa +
Arabia,’’ and 5% for ‘‘Arabia’’ alone for a given node. Consequently, ‘‘Africa’’ as an ancestral
area occurs in 95% of the model space for that node. As we had nine geographic areas
included in our analysis, we tested differences in total contribution to the ancestral range
estimation from each area. A higher total probabilitymeans that the area is included across a
greater proportion of estimated potential ancestral ranges. Using thismethod, we calculated
the proportions for all nine areas for 11 major nodes (Squamata, Unidentata, Episquamata,
Toxicofera, Dibamidae, Gekkota, Scincomorpha, Lacertoidea, Anguimorpha, Iguania,
Serpentes; Fig. 3). From this, we can identify geographic areas of outsized importance in
early squamate evolution.

Limitations on biogeographical analyses are not usually related to size of the tree used,
but rather the number of areas in the model (Matzke, 2012; Landis et al., 2013). We used
the 9,755-taxon tree from Tonini et al. (2016), pruned to the 5,415 species which had
molecular data. This includes most described, extant genera, over 50% of all known, extant
species, and covers the full range of biogeographic diversity in the group.While some of the
calibration for the phylogeny may be updated in the future (see Simões & Pyron, 2021; Title
et al., 2024), that concern is beyond the scope of our current study. We also considered
the use of the backbone topology of 5,415 species with molecular data superior to the use
of the fully sampled posterior distribution with imputed species. The latter would have
required us to integrate ancestral area estimates across a sample of trees, a procedure of
unclear statistical and biological validity (NJ Matzke, pers. comm.). We compared model
fit using the likelihood-ratio test along with AICc to estimate relative likelihoods and select
the best-fit model from the set of candidate models (Wagenmakers & Farrell, 2004). Future
analyses may incorporate correspondence classes and fossil geographic occurrences to
qualify area connectivity due to plate tectonics more finely in ancestral range estimation
(e.g., Landis, 2017), particularly for trees including extinct or fossil lineages (e.g., Pyron,
2017; Simoes et al., 2018).

Fossil area constraints
In order to explore the intricate biogeographic history of Squamata, we must first
interpret their early fossil record (see Evans, 2003) with respect to recent advances in
phylogenetic understanding (Simões & Pyron, 2021). We compiled all verified records
of Jurassic and early Cretaceous species from Pangaean landmasses, ranging from the
Toarcian to Barremian (Table 1). Recent literature suggests that ancestral range estimation
using extant-only datasets may fail to accurately reconstruct ancestral ranges for ancient
nodes (Silvestro et al., 2016; Wisniewski, Lloyd & Slater, 2022). To address this issue, we
ran models utilizing constraints from geographic occurrences derived from the Jurassic
and early Cretaceous fossil record, referred to as ‘‘nodal constraints’’ hereafter. Nodal
constraints match fossils of a specific clade to the ancestral lineage for that clade in the
phylogeny. Once the fossil taxon has been matched to a node, the node is constrained so
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that its ancestral range must include the range of which the fossil is located. For instance,
if fossil A, located in North America, is used to constrain node 3, then the ancestral range
for node 3 must contain ‘‘North America’’ along with any other estimated areas.

This method hinges on the proper identification of fossils and assumes robust
phylogenies, which are not always available. For instance, within Squamata, the lizard
Jeddaherdan aleadonta was originally thought to be an iguanid from the middle Cretaceous
of Africa. However, upon reexamination, morphological evidence suggested that
Jeddaherdan was from the late Quaternary and was a member of the genus Uromastyx
(Vullo et al., 2023). To help address this uncertainty, we chose fossil taxa based on three
consistent criteria: (1) the taxon must be from the Jurassic Period or early Cretaceous, (2)
the taxon must be close in temporal proximity to a branch in the squamate phylogeny
occurring in the Jurassic or early Cretaceous, and (3) the taxon must be confidently
assigned to the specific clade designated by the node based on an explicit phylogenetic
or character-based hypothesis. This excludes earlier, stem-squamates (i.e., Megachirella;
Simoes et al., 2018), as they can only be assigned to the base of Squamata, negating the
purpose of an ancestral range estimation, or to earlier, non-squamate groups (which would
be the rhychocephalian Sphenodon) which would be outside of the questions possible using
molecular phylogenies of Squamata.

Four taxamet these criteria for use as nodal constraints. The first was the early stem snake
Eophis underwoodi, discovered in the Kirtlington Cement Works Quarry, in Oxfordshire,
United Kingdom from the Bathonian epoch (Middle Jurassic, 167.7–164.7Ma) (Caldwell et
al., 2015). While Eophis is considered stem-Serpentes (Caldwell et al., 2015), it is temporally
closer to the base of Toxicofera. As all stem and crown Serpentes are toxicoferans, we
therefore used this fossil occurrence to constrain the Toxicoferan node to include Eurasia.
The next was the iguanid Introrsisaurus pollicidens, located in the Guimarota Mine and
Alcobaca formation, Portugal from the Kimmeridgian epoch (Late Jurassic, 155.7–150.8
Ma; (Hoffstetter, 1967)). We used this to constrain the Iguania + Anguimorpha node to
include Eurasia. The third was Dalinghosaurus longidigitus (Paleoanguimoprha), found in
the Yixian Formation in the early Cretaceous of Liaoning, China (Barremian, 130–125.5
Ma; (Evans & Wang, 2005)). We used this to constrain Paleoanguimorpha branch to
include Eurasia. The final fossil wasMeyasaurus diazromerali, an early member of Laterata
located in the Calizas de la Huérguina Formation in Cuenca, Spain (Early Cretaceous,
129.4–126.3 Ma; (Evans & Barbadillo, 1997)). We used this to constrain the Laterata node
to the Eurasian plate. A complete list of the fossil history of Squamata in the Jurassic is
included in Table 1.

RESULTS
Biogeographic history
Based on the fossil-constrained analysis described above, DEC+J received overwhelming
support (AIC_wt ≈1; Table 2). We use this model as our best estimate of squamate
biogeography. Ancestral-range estimates (see Appendix S1 for full results) show support for
a localized Pangaean origin (Africa, Australia, Eurasia, and Sunda) of extant Lepidosauria
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Table 1 List of Jurassic and Early Cretaceous Fossil Squamates. Fossil squamate species from Jurassic and early Cretaceous localities (see Evans, 2003; Xing et al., 2018
for similar compilations).

Species Age Locality Depositional
environment

Source

Ardeosaurus brevipes Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Estes (1983)

Ardeosaurus digitatellus Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Hoffstetter (1964)

Balnealacerta silvestris Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Evans (1998)

Bavarisaurus macrodactylus Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Estes (1983)

Becklesius hoffstetteri Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Lagoon Seiffert (1975)

Bellairsia gracilis Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Evans (1998)

Bharatagama rebbanensis Toarcian, Early Jurassic
(183.0–171.6 Ma)

Kota Formation,
Paikasigudem, India

Terrestrial: clay-
stone and sand-
stone

Evans, Prasad & Manhas (2002)

But see: Conrad (2018)
Changetisaurus estesi Bathonian,

Middle Jurassic
(167.7–164.7 Ma)

Balabansai formation,
Jalal-Abad, Krygyzstan

Terrestrial: red
claystone

Federov & Nessov (1992)

Diablophis gilmorei Kimmeridgian,
Late Jurassic
(150.8–145.5 Ma)

Morrison Formation,
Colorado USA

Fluvial Evans (1996)

(continued on next page)
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Table 1 (continued)

Species Age Locality Depositional
environment

Source

Dorsetisauridae sp. Kimmeridgian,
Late Jurassic
(155.7–145.5 Ma)

Morrison Formation,
Como Bluff, Wyoming

Fluvial Prothero & Estes (1980)

Dorsetisaurus purbeckensis Kimmeridgian,
Late Jurassic
(155.7–145.5 Ma)
Middle Berriasian, Early
Cretaceous (145–140.2
Ma)

Alcobaça
Formation, Portugal
Lulworth Formation,
England, United
Kingdom

Lagoon
Marine

Hoffstetter (1967)

Durotrigia triconidens Oxfordian, Late Jurassic
(161.2–155.7 Ma)

Cordebugle, Lisieux,
Basse-Normandie,
France

coarse channel
fill; concretionary,
ferruginous, con-
glomeratic sand-
stone

Hoffstetter (1967)

Eichstaettisaurus schroederi Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Hoffstetter (1964)

Eophis underwoodi Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Caldwell et al. (2015)

Eoscincus ornatus Tithonian, Late Jurassic
(150–145 Ma)

Morrison Formation,
Dinosaur National
Monument, Utah

Fluvial Brownstein et al. (2022)

Hongshanxi xiei Oxfordian, Late Jurassic
(161.2–155.7 Ma)

Tiaojishan Formation,
Guanchaishan, China

Lacustrine Dong et al. (2019)

Introrsisaurus pollicidens Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Lagoon Hoffstetter (1967)

Microteras borealis Tithonian, Late Jurassic
(150–145 Ma)

Morrison Formation,
Dinosaur National
Monument, Utah

Fluvial Brownstein et al. (2022)

(continued on next page)
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Table 1 (continued)

Species Age Locality Depositional
environment

Source

Oxiella tenuis Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Evans (1998)

Palaeolacerta bavarica Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Estes (1983)

Parviraptor estesi Bathonian, Late Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Evans (1994)

Paramacellodus oweni Kimmeridgian,
Late Jurassic
(155.7–145.5 Ma)
Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)
Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Morrison Formation,
Como Bluff, Wyoming
Dinosaur National
Monument, Utah
Kilmaluag Formation,
Scotland

Fluvial
Lagoon

Hoffstetter (1967)
Evans & Chure (1998)
Waldman & Savage (1972)

Paramacellodidae indet. Upper Jurassic
(161.2–145.5 Ma)

Tendaguru Formation,
Tanzania

Sandstone Broschinski (1999)

Portugalophis lignites Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Coal swamps Caldwell et al. (2015)

Saurillodon marmorensis Bathonian,
Middle Jurassic
(167.7–164.7 Ma)

Kirtlington Cement
Works Quarry, Oxford-
shire, United Kingdom

Mixed coastal lake
and pond

Evans (1998)

Saurillodon proraformis Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Lagoon Estes (1983)
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Table 1 (continued)

Species Age Locality Depositional
environment

Source

Saurillus henkeli Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Lagoon Seiffert (1975)

Saurillus obtusus Kimmeridgian,
Late Jurassic
(155.7–150.8 Ma)

Guimarota Mine,
Leiria, Portugal
Alcobaca formation,
Portugal

Lagoon Seiffert (1975)

Schillerosaurus utahensis Kimmeridgian,
Late Jurassic
(155.7–145.5 Ma)

Morrison Formation,
Dinosaur National
Monument, Utah

Fluvial Nydam, Chure & Evans (2013)

Schoenesmahl dyspepsia Tithonian, Late Jurassic
(150.8–145.5 Ma)

Solnhofen Limestone,
Germany

Lagoon Conrad (2018)

Sharovisaurus karatauensis Oxfordian, Late Jurassic
(161.2–150.8 Ma)

Kerabastau formation,
Kazakhastan

Lacustrine Hecht & Hecht (1984)

Becklesius cataphractus Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Richter (1994b)

Cuencasaurus estesi Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Richter (1994b)

Dalinghosaurus longidigitus Late Barremian,
Early Cretaceous
130–125.5 Ma

Yixian Formation,
Liaoning, China

Fluvial Evans & Wang (2005)

Hoyalacerta sanzi Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Evans & Barbadillo (1999)

Jucaraseps grandipes Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Bolet & Evans (2012)
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Table 1 (continued)

Species Age Locality Depositional
environment

Source

Liushusaurus acanthocaudata Late Barremian,
Early Cretaceous
130–125.5 Ma

Yixian Formation,
Liaoning, China

Lacustrine Evans & Wang (2010)

Meyasaurus crusafonti Late Barremian,
Early Cretaceous
130–125.5 Ma

La Pedrera de Meià, El
Montsec, Spain

Lacustrine Evans & Barbadillo (1996)

Meyasaurus diazromerali Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Evans & Barbadillo (1997)

Meyasaurus faurai Late Barremian,
Early Cretaceous
130–125.5 Ma

La Pedrera de Meià, El
Montsec, Spain

Lacustrine Evans & Barbadillo (1996)

Meyasaurus unaensis Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Alluvial Richter (1994a)

Norellius nyctisaurops Late Barremian,
Early Cretaceous
130–125.5 Ma

Öösh Formation,
Ovorkhangai, Mongolia

Terrestrial Conrad & Daza (2015)

Pseudosaurillus becklesi Middle Berriasian
145.5–140.2 Ma

Lulworth Formation,
England, UK

Marine Hoffstetter (1967)

Purbicella ragei Middle Berriasian
145.5–140.2 Ma

Lulworth Formation,
England, UK

Marine Evans, Jones & Matsumoto (2012)

Scandensia ciervensis Late Barremian,
Early Cretaceous
130–125.5 Ma

Calizas de la Huérguina
Formation, Cuenca,
Spain

Lacustrine Evans & Barbadillo (1998)
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Table 1 (continued)

Species Age Locality Depositional
environment

Source

Yabeinosaurus bicupsidens Late Barremian,
Early Cretaceous
130–125.5 Ma

Yixian Formation,
Liaoning, China

Lacustrine Dong, Wang & Evans (2017)

Yabeinosaurus robustus Late Barremian,
Early Cretaceous
130–125.5 Ma

Yixian Formation,
Liaoning, China

Lacustrine Dong, Wang & Evans (2017)

Yabeinosaurus tenuis Late Barremian,
Early Cretaceous
130–125.5 Ma

Yixian Formation,
Liaoning, China

Lacustrine Dong, Wang & Evans (2017)
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Table 2 Model selection using AICc. Results from model testing of squamate biogeography via Bio-
GeoBEARS, with the bestsupported model (DEC+ j) in bold. The addition of the ‘j ’ parameter did not
absorb a disproportionate amount of the dispersal estimated in the other models, a caution expressed by
some previous authors (Ree & Smith, 2008; seeMatzke, 2021).

Model lnL k d e j AICc Wt

DEC −7,319 2 0.0016 1.00E−12 0 14,642 9.00E−10
DEC+J −7,297 3 0.0015 1.00E−12 0.0008 14,601 1
DIVALIKE −7,885 2 0.0019 1.00E−12 0 15,774 1.40E−255
DIVALIKE+J −7,819 3 0.0017 1.00E−12 0.0019 15,645 1.90E−227
BAYAREALIKE −12,365 2 0.01 0.01 0 24,735 0
BAYAREALIKE+J −12,278 3 0.01 0.01 0.001 24,561 0

(Squamata + Rhynchocephalia), which is congruent with Gondwanan Triassic presence
of rhynchocephalians (e.g., Bonaparte & Sues, 2006) and Laurasian Triassic presence of
squamates (Simoes et al., 2018). Subsequently, the node subtending extant squamates is
estimated to have the same ancestral range of Pangaea (Africa, Australia, Eurasia, and
Sunda) ∼180 Ma, some 68 million years after divergence from the rhynchocephalians,
approximately coinciding with the beginning split between Gondwana and Laurasia in the
Early Jurassic (Fig. 3).

The earliest diverging squamate lineage (Dibamia) exhibits a subsequent contraction
from Pangaea into Laurasia (North America, Eurasia, and Sundaland) during the long
ghost lineage between their ∼180 Ma divergence from the remainder of Squamata and
their most recent common ancestor (MRCA) ∼73 Ma, possibly as the final portions of
the Sundaland plate had collided with mainland Eurasia (Metcalfe, 1998). We estimate
an ancestral range for Gekkota identical to that of Lepidosauria and Squamata (Africa,
Australia, Eurasia, and Sunda). Most of the later-diverging lizard lineages in the Jurassic
show an entirely Eurasian distribution, including Episquamata, Unidentata, Toxicofera,
Laterata, Anguimorpha, and Iguania (see Burbrink et al., 2020 for clade definitions).

In the early Cretaceous, most stem lineages were regionalized to Laurasia, though we
estimate a broad ancestral range for Scincomorpha, which shows a northern Pangaean
distribution (Africa and Eurasia). Crown Serpentes also evolved in the Cretaceous, and
the estimated ancestral range for extant snakes is also Pangaean (Africa, Eurasia, South
America, and Sunda). Within Serpentes, we estimate an African origin for Scolecophidia
and a South American origin for Alethinophidia, showing the first examples of Gondwanan
regionalization in Squamata. In contrast with widespread Laurasian regionalization in the
Jurassic and early Cretaceous, Gondwanan endemic lineages of extant taxa are established
by the end Cretaceous in Gekkota, Iguania, Laterata, Scincomorpha, and Serpentes. These
arose through several different mechanisms: via contraction from a broad Pangaean range
in Scolecophidia, Alethinophidia, and Iguania; contraction from a Northern Pangaean
range in Scincomorpha, some Gekkota, and colubroid snakes; or dispersal from Laurasia
in some Gekkota and Laterata (Fig. 3).

In the Cenozoic, we estimate fewer transitions between ancestral areas designated by
Laurasia, Gondwana, and northern Pangaea, and observe an increasing frequency of
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Table 3 Proportional data on ancestral ranges. Proportions for each geographic area in the ancestral range estimations for the major early squa-
mate nodes (note, neither the columns or rows sum to one, as each cell measures the proportion of ancestral range estimations that contain a spe-
cific area versus the proportion of ancestral range estimations that do not contain that area). Areas with substantial support ( >0.5) are in bold. For
Scincomorpha, a proportion equal to 1 for Eurasia represents a nodal constraint based on fossil data.

Taxon Africa Arabia Australia Caribbean Eurasia India North America South America Sunda

Squamata 0.50 0.05 0.48 0.06 0.89 0.09 0.45 0.16 0.61
Unidentata 0.31 0.01 0.02 0.01 0.91 0.02 0.14 0.09 0.10
Episquamata 0.17 0.00 0.00 0.01 0.88 0.00 0.08 0.10 0.02
Toxicofera 0.22 0.00 0.00 0.01 0.87 0.01 0.04 0.11 0.03
Dibamia 0.04 0.03 0.07 0.03 0.63 0.03 0.65 0.04 0.99
Gekkota 0.83 0.01 0.96 0.05 0.78 0.09 0.39 0.19 0.47
Scincomorpha 0.86 0.03 0.04 0.01 1.00 0.06 0.26 0.01 0.21
Laterata 0.19 0.01 0.01 0.01 0.91 0.01 0.31 0.50 0.01
Anguimorpha 0.11 0.03 0.04 0.01 0.99 0.03 0.19 0.01 0.18
Iguania 0.26 0.01 0.01 0.08 0.88 0.01 0.15 0.16 0.03
Serpentes 0.91 0.01 0.04 0.08 0.58 0.11 0.07 0.88 0.40

dispersal events within Old World and New World landmasses, with relatively infrequent
instances of dispersal between the Old and New Worlds (Fig. 4B). Corresponding to
its estimated status as a major locality of origination for Squamata (Table 3), Eurasia
continued to act as a source of diversity for squamates throughout the Cenozoic, with
numerous dispersals into Africa, India, and Sunda. Similarly, Sunda also acts as a major
source area, with frequent dispersals into Eurasia, along with several events into Australia
and India. Interestingly, both Eurasia and Sunda also show the highest rates of extirpation
(i.e., lineage contraction from an area), with Eurasia having nine lineages contracting from
the continental plate and Sunda having two. We also estimated one extinction each in
Africa, North America, and India (Fig. 4B).

Ancestral range estimates for Mesozoic squamate lineages received insignificant
contributions from the Arabian, Caribbean, Indian, and South American plates (Table
3). Some of these such as the Caribbean were not land positive in their current form in
the Mesozoic, suggesting that these plates were not important areas of origination and
diversification of squamate lineages. In contrast, it seems likely that South America and
India had diverse endemic squamate faunas that are not represented among extant lineages
but may be present undiscovered in the fossil record. For the root node of Squamata, the
model shows significant contributions from the African, Eurasian, and Sunda plates as
part of the ancestral range. These three continental plates are clearly important for the
early evolution of Squamata across the Mesozoic (see Evans, 2003; Simões & Pyron, 2021)
and should be an active area of research in the study of ancient squamates, particularly the
phylogenetic placement of fossil taxa from those regions.

DISCUSSION
Biogeographic models
We estimate overwhelming support for a DEC+J model (Table 2), reflecting strong
evidence for long-distance dispersal and colonization (particularly during the Cenozoic), a
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a) DEC+J by region

b) Area Transitions
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Figure 4 Ancestral range estimation of Squamata into the Cenozoic. A circle tree (Jetz et al., 2012)
showing the complete phylogeny of Squamata (Tonini et al., 2016) onto which the ancestral range estima-
tions are mapped (A), which expands the temporal range from the K-Pg in Fig. 3 into the current time.
(B) A network analysis of dispersals between the different biogeographic regions. The size of the circles
corresponds to extant diversity. The width and density of the arrows correspond to the number of disper-
sals from one area to another in the direction the arrow is pointing. Red arrows indicate extinction.

Full-size DOI: 10.7717/peerj.17277/fig-4
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widely implicated mode of biogeographic range expansion for squamate lineages moving
among former Pangaean landmasses currently or previously separated by great distances
(Longrich et al., 2015). Recent authors (Ree & Sanmartín, 2018) raised potential issues with
biogeographic inference using models (specifically DEC-type models) with founder-event
speciation. However, their primary critique lay with cladogenesis parameters, which they
claimed are problematic in being modeled probabilistically without respect to time in
DEC-type models, an issue they further claim is compounded when additional weight
is assigned these events via the ‘j’ parameter. We note that our best-fit model (DEC+J)
does not seemingly over-estimate the jump parameter in respect to the dispersal, as the
dispersal parameter (d = 0.0015) was estimated to be an order of magnitude higher than
the parameter for the jump dispersal (j = 0.008; Table 2).Matzke (2021) showed that these
concerns are likely unfounded for most empirical analyses.

As noted, we employed a geographic strategy of area coding based on present-day
plate-tectonic boundaries, which are broadly congruent with modern zoogeographic
regions (e.g., Holt et al., 2013). This approach has distinct advantages and limitations.
Chief among the benefits is its discreteness, objectivity, and unambiguousness, and it
can be replicated easily in other taxa for comparative analyses. This eliminates subjective
uncertainty regarding where to draw lines between terrestrial ecoregions like the Nearctic
and Tropical Middle America (e.g., Kreft & Jetz, 2010; Pyron, 2014a; Pyron, 2014b; Vilhena
& Antonelli, 2015). Disadvantages include fixing boundaries between terrestrial ecoregions
to their paleogeographic origins, which may not correspond with empirical evidence of
the recent ecologically mediated biogeographic processes affecting related species in those
regions (Mucina, 2018).

We attempt to avoid implying excessive certainty in our model-based reconstructions.
While support for the most-likely ancestral range is high at nearly all internal nodes (Fig.
S3; Table 2), we nevertheless concede that there are several factors that may confound
such inferences. The first is the existence and phylogenetic placement of extralimital fossil
taxa, species that are outside the modern range of the clade, which therefore does not
reflect its historical distributions (Head, 2021). The second is topological uncertainty,
such as the placement of Dibamia or relationships within Iguania (Burbrink et al., 2020).
Third is variation in divergence-time estimates for nodes across the tree (see Jones et al.,
2013; Simões & Pyron, 2021). While there are disparate estimations between phylogenomic
(Irisarri et al., 2017) and total-evidence data (Pyron, 2017) especially for groups such as
Gekkota, it is unlikely to affect the ancestral range estimation.Where differential divergence
times can potentially impact results is in dispersal versus vicariance estimations, which is not
something we attempted to capture in our study. Fourth are conceptual deficiencies in all
existing biogeographic models, which include inadequate parameterization of extinction
(see Matzke, 2014), and incomplete integration of correlated diversification and range
evolution (see Goldberg, Lancaster & Ree, 2011; Goldberg & Igić, 2012; Caetano, O’Meara &
Beaulieu, 2018). Recent results suggest that fully identifiable models for the latter may not
be possible (see Louca & Pennell, 2020).

Regardless, we are confident that our results represent a substantial advance in presenting
at least a partially informed view of the early biogeographic history of squamates, one that
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proposes several distinct hypotheses that can be tested further. Future studies could
incorporate other parameters, such as trait-based dispersal (Klaus & Matzke, 2020),
dispersal as a function of ecological or geographic distance between areas (Dam &Matzke,
2016). Body size (e.g., Feldman et al., 2016), limb reduction (Vidal et al., 2008), and the
temperate/tropical transition (Pyron, 2014b) all potentially impact dispersal and are avenues
worth pursuing.

Finally, a recent methodology aimed at incorporating both fossil geographic occurrences
and complex geographic interaction across time has been used for ancestral range
estimations (Landis, 2017), and could be implemented in future studies. To do this
effectively, more Jurassic squamate fossils need to be included in morphological matrices
for a better understanding of their phylogenetic relationships (see Conrad, 2008; Wiens
et al., 2010; Gauthier et al., 2012; Reeder et al., 2015; Pyron, 2017; Simoes et al., 2018).
Paramacellodid lizards in particular will likely have a strong bearing on these estimates,
given their Jurassic and early Cretaceous distribution across Pangaea and uncertain
placement within Squamata (see Bittencourt et al., 2020). There is a well-known bias in
the fossil record towards species in Laurasia (Vilhena & Smith, 2013; Valenzuela-Toro &
Pyenson, 2019; Croft & Lorente, 2021), which may have impacted our results here, as all
squamates available were from Laurasia in the Jurassic and early Cretaceous. In particular,
the results presented here suggesting a Eurasian regionalization for Squamata would be
falsified by fossil occurrence of relevant lineages in former Gondwanan continents such as
South America, Australia, India, or Antarctica. Prospecting and research on these locations
could greatly benefit future studies.

Origin and diversification of extant Squamata
The phylogenetic relationships and present-day distributions of living squamates, along
with well-constrained fossil taxa from the Jurassic and early Cretaceous, contain signal
suggesting that the earliest squamate lineages (represented by the basal branches of the
phylogeny of extant species) were localized along the plates that formed the coastline of
the paleo-ocean, the Tethys Sea (Zhu, Zhao & Zhao, 2022; Fig. 3). Continuing into the
Jurassic, a strongly supported pattern emerges of Eurasian origin for many major groups of
squamates as Gondwana and Laurasia continued to break apart (Fig. 3). This geographical
regionalization persisted at least until the mid to late Cretaceous, when Gondwanan
radiations were established in Serpentes for Alethinophidia and Scolecophidia, the two
major lineages of snakes (Fig. 3).

Later in the Cretaceous, Teiidae and later-diverging Gekkota also are reconstructed
to have Gondwanan ancestral ranges (Fig. 3, for exact ranges see Appendix S2). These
localizations formed via contraction from Pangaean or Northern Pangaean in Gekkota
and Serpentes in contrast to Teiidae, which resulted from a jump dispersal from Laurasia
to Gondwana (Fig. 3). This is coincident with and likely related to a substantial period of
tectonic vicariance as the paleocontinents continued to diverge (Bird, 2003). It is worth
noting that four of the nodes described above were constrained utilizing fossils and may
seem circular. However, fossils are the only concrete evidence of the presence of a group
in an area. Therefore, we argue that the estimated ancestral ranges are empirically valid
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and supported, since we are employing the increased certainty that comes along with fossil
geographic occurrences as empirical data.

At more recent timescales, our results are congruent with most studies using molecular
time trees to infer biogeographic histories to the extent that the area codings are comparable.
Formore detail, we refer to previous works onDibamia (Townsend, Leavitt & Reeder, 2011),
Gekkota (Agarwal et al., 2014; Carranza et al., 2000; Carranza & Arnold, 2006; Gamble et
al., 2011; Gamble et al., 2008; Šmíd et al., 2013), Scincidae (Honda et al., 2000; Carranza
& Arnold, 2003; Whiting et al., 2006; Brandley et al., 2011; Barley et al., 2015; Pereira &
Schrago, 2017), Teiidae (Giugliano, Collevatti & Colli, 2007), Amphisbaenia (Longrich et
al., 2015; Vidal et al., 2008), Lacertidae (Arnold, Arribas & Carranza, 2007; Tamar et al.,
2016), Anguimorpha (Macey et al., 1999; Vidal et al., 2012), Iguania (Macey et al., 2000;
Noonan & Sites Jr, 2010; Okajima & Kumazawa, 2010; Grismer et al., 2016), and in snakes,
Typhlopoidea (Adalsteinsson et al., 2009; Vidal et al., 2010), Booidea (Graham Reynolds,
Niemiller & Revell, 2014; Noonan & Chippindale, 2006a), and Colubroidea (Burbrink &
Lawson, 2007; Alfaro et al., 2008; Wüster et al., 2008; Guo et al., 2012; Chen et al., 2013;
Chen et al., 2017).

Subsequent studies may take a more focused perspective on individual lineages
to enhance our understanding of the complex geographic history of Squamata. For
example, colubroid snakes and Old World skinks have a vast, complex, and rather recent
biogeographic history that deserves more attention than given here or in recent studies
(see Cadle, 1985; Greer, 1970 for some early hypotheses and discussion). Similarly, little
recent attention has been paid to teiid, lacertid, or anguimorph lizard biogeography at the
continental or global scale since updated molecular phylogenies have become available
(i.e., Tonini et al., 2016).

A final question of great paleoecological and biogeographic interest is the directionality
or asymmetry of dispersal between the landmasses analyzed here. Recent studies have
shown that a variety of taxa experienced higher rates of dispersal into North America from
Asia across Beringia than the opposite (the Cenozoic Beringian Dispersal Hypothesis; Guo
et al., 2012; Jiang et al., 2019). Similarly interesting results might be obtained by examining
rates of interchange between North and South America (see Estes & Báez, 1985 for early
speculation), between Africa and western Eurasia (e.g., Georgalis, Villa & Delfino, 2016;
Tamar et al., 2016), between India and Eurasia (e.g., Agarwal et al., 2014; Datta-Roy et
al., 2012; Grismer et al., 2016), and between Australasia and eastern Eurasia (see Oliver
& Sanders, 2009) during the Cenozoic. A great deal remains to be learned about the
biogeographic history of Squamata, and our results will provide a robust foundation for
productive future investigations.

Preliminary assessment of our Cenozoic results (Fig. 4A) reveals relatively few lineages
(only 463 out of 5,415 species, <10%) with a recent Pangaean (i.e., cosmopolitan)
distribution. Regarding Cenozoic changes in distribution, there are very few range
transitions from Laurasia to Gondwana (only 143 instances) and Gondwana to Laurasia
(only 124 instances), suggesting a low rate of recent jump dispersal between the two former
supercontinents. Accordingly, the network analysis (Fig. 4B) reveals a much clearer pattern
of dispersal in the Cenozoic, which clearly shows a separation between clusters of dispersal
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within the NewWorld (South America, North America, and the Caribbean) andOldWorld
(Arabia, Australia, Africa, Eurasia, Sunda, and India), and very few events between the Old
and New Worlds. This contrasts with the Gondwana-Laurasian division seen in our data
during the Mesozoic (Fig. 3).

Additional fossil sampling, particularly in the Southern Hemisphere, will likely increase
our knowledge of early Gondwanan squamate evolution. These data may broaden the
ancestral range estimate to ‘Pangaea’ (see San Mauro et al., 2005 for a similar situation
in Amphibia), completely alter it to ‘Laurasia’ or a component thereof (see (Zhang et al.,
2013) for a similar result in plants), or a Gondwanan estimate with additional earlier
dispersals into Laurasian landmasses (see (Gardner, Surya & Organ, 2019) for a similar
example in early tetrapodomorphs). Recent Antarctic discoveries of an Eocene frog (Mörs,
Reguero & Vasilyan, 2020) and late Cretaceous mosasaur material (Martin, 2006; Legendre
et al., 2020) suggests the potential for a rich fossil history on this continent, which is
almost entirely unknown in studies of most organisms (seeNoonan & Chippindale, 2006a).
Although Antarctica poses no significance for our study (as no modern squamates occupy
the continent), other terrestrial tetrapod groups and marine squamates have been found
in Antarctica (Goin & Goin, 1972; Rozadilla et al., 2016; Estrella et al., 2019), suggesting
that with future exploration, potential terrestrial Antarctic squamates would expand our
understanding of the biogeographic patterns on the continent.

CONCLUSIONS
We find support for a Pangaean origin of early crown Squamata in the Jurassic followed
by strong regionalization to Eurasia for subsequent Jurassic lineages, with little evidence
for early occurrence in Australia, India, or Antarctica from phylogenetic or fossil evidence.
The inclusion of well-constrained fossil areas supports a Eurasian component in estimated
ancestral ranges. Subsequent regionalization and localization through range contraction
resulted in Laurasian and Gondwanan endemism for the ancestral range of many extant
groups by the end Cretaceous. Relatively simple Mesozoic patterns driven primarily by
tectonic vicariance give way to complex Cenozoic histories reflecting a strong influence of
long-distance dispersal. Preliminary evaluation of Cenozoic distribution patterns suggests
frequent but potentially asymmetric transitions between and amongGondwanan/Laurasian
and New World/Old World landmasses. More extensive inclusion of fossil taxa could
dramatically impact the results in Squamata, as our reconstructions might otherwise seem
to be at odds with the dearth of Jurassic fossil history present in Gondwana or early
diverging squamates in Laurasian Europe (Simoes et al., 2018). These dynamics represent
an intriguing source of future hypotheses across Squamata.
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