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Abstract

The first fossil eggshell from the Cenomanian-age Mussentuchit Member of the Cedar

Mountain Formation was described over fifty years ago. In the half-century since, oodiversity

of this rock unit has been limited to a single, taxonomically unstable ootaxon, currently for-

mulated as Macroelongatoolithus carlylei. Recently, there has been a renewed effort to

recover and describe the macrofauna of the Mussentuchit; however, these advances are

limited to the body fossil record. Here, we examine the range of eggshells present in the

Mussentuchit Member and assess the preserved biodiversity they represent. Gross morpho-

logical and microstructural inspection reveals a greater diversity of eggshells than previously

described. We identify six ootaxa: three Elongatoolithidae oogenera (Macroelongatoolithus,

Undulatoolithus, Continuoolithus), eggs laid by oviraptorosaur dinosaurs; two oospecies of

Spheroolithus laid by ornithopod dinosaurs; and Mycomorphoolithus kohringi, laid by a cro-

codylomorph. The diversity of Elongatoolithidae in the Mussentuchit requires a co-occur-

rence of at least three putative oviraptorosaurs, the oldest such phenomenon in North

America. The occurrence of the crocodylomorph oogenus Mycomorphoolithus is the first

recognized occurrence outside of Europe, and the youngest yet documented. This new

ooassemblage is more representative of the known paleobiodiversity of Cenomanian-age

strata of Western North America and complements the body fossil record in improving our

understanding of this crucial—yet poorly documented—timeslice within the broader evolu-

tion of the Cretaceous Western Interior Basin.

Introduction

The Early Cenomanian (99.94–98.9 Ma) Mussentuchit Member of the Cedar Mountain For-

mation is a renowned unit amongst vertebrate paleontologists studying the early Late Creta-

ceous [1]. Preserving an exceptionally diverse vertebrate fauna that now includes over 100
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species [2, 3], this unit offers particularly valuable insight into the otherwise poor fossil record

of the early Late Cretaceous, with abundant vertebrate microfossil assemblages of dinosaurs,

mammals, crocodylomorphs, squamates, and turtles [2, 4–6]. Early diversity research focused

on microvertebrate sampling. In the last decade, a growing diversity of new dinosaur taxa is

documented by body fossils, including the allosauroid Siats meekerorum [7], the small tyran-

nosaur Moros intrepidus [8], and the rhabdodontomorph Iani smithi [9]. As one of the best-

preserved records of paleobiodiversity in the early Late Cretaceous worldwide, this unit offers

a window into the Western Interior Basin of North America in the run-up to the Cretaceous

Thermal Maximum, the subsequent scarce terrestrial macrovertebrate fossil record in the Tur-

onian, Coniacian, and Santonian [10–14], and the dinosaur diversification into the Campano-

Maastrichtian when we see peak diversity [15, 16].

The mid-Cretaceous is vital in terms of dinosaur paleobiogeography due in no small part

to the influx of fauna into western North America that were previously endemic to Asia (e.g.

[2, 8, 17, 18]. The entire region was ephemerally connected, via Beringia, to what is the mod-

ern-day Asian continent, supporting a recognized network of faunal exchange, the Early Cre-

taceous Laurasian Interchange Event (EKLInE) [19]. There is a documented turnover of

western North American dinosaur faunas, and previously abundant clades were superseded by

taxa from Asia. These taxa comprise a range of dinosaur clades first seen across the Western

Interior Basin during the mid-Cretaceous, including: hadrosauriforms [9, 20, 21]; possible

pachycephalosaurs [22]; ceratopsians [23]; and oviraptorosaurs [24]. The Mussentuchit Mem-

ber encapsulates a microcosm of this turnover, such as the co-occurrence of the diminutive

early tyrannosaur taxon Moros intrepidus with the Mussentuchit apex predator Siats meeker-
orum [8], one of the last allosauroid taxa in North America. Although previous efforts have

contributed impressively to our collective knowledge of the paleoecology, paleoenvironment,

and paleobiogeography of the early Late Cretaceous, previous work has yet to incorporate the

new fossil eggshell recovered from the Mussentuchit Member into the makeup of this pivotal

timeslice, and adjudge its implications for the broader Cretaceous Period. Since 2012, field

crews from the Paleontology Lab at the North Carolina Museum of Natural Sciences

(NCMNS) have collected an abundance of oolithic material from multiple localities in central

Utah (Fig 1), ranging from >2,500 surface eggshell fragments to a clutch of 10+ Macroelonga-
toolithus carlylei eggs [18], referable to the largest known oospecies in the dinosaur fossil

record [25].

We compare the eggshell specimens in the Mussentuchit Member to those of other North

American units, including other lower Upper Cretaceous formations and the more prolific

Late Cretaceous ooassemblages across the Western Interior Basin. We determine putative tax-

onomic affinities for the Mussentuchit ootaxa, and incorporate these into our existing knowl-

edge of the Mussentuchit Member faunal composition. By filling gaps in the body fossil faunal

data with fossil eggshell remains, we aim to better constrain the paleobiological diversity, and

garner a better spatiotemporal understanding of Western Interior Basin faunistics during the

Late Cretaceous Period.

History of Mussentuchit Member ootaxonomy

Although it has changed names repeatedly, only one ootaxon was recognized from the Mus-

sentuchit Member of the Cedar Mountain Formation for the past half century. The first

ootaxon named from the member—Oolithes carlylensis—was described over fifty years ago

[26]. At the time it represented the first described North American oospecies. The diagnosis

was based on a rudimentary, then current existing taxonomic system [27, 28] that had been

applied to Asian eggs. A more comprehensive parataxonomic system was adopted shortly after
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[29] and this led to the reassignment of BYU E-200 to the oogenus Macroolithus, within Elon-

gatoolithidae, based on diagnostic features of microstructural layering. However, this reassign-

ment was not broadly accepted, even after the wider adoption of this ootaxonomic system

outside of Asia [30, 31].

Fig 1. Location and geology of the study area. A) Map of present-day Utah with overlaid surface geology. The studied outcrop from the Mussentuchit is

highlighted in yellow. Adapted from Utah Geological Survey B) outcrop of Mussentuchit Member from inset, with eggshell-bearing localities numbered.

https://doi.org/10.1371/journal.pone.0314689.g001
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Decades later, Jensen’s original material was then reinterpreted as referable to Spheroolithi-

dae, and assigned to the oogenus Boletuoolithus carlylensis [31], based on an interpretation of

prolatospherulitic shell units and pronounced radial ultrastructure diagnostic to Early Creta-

ceous eggshell. This material was subsequently reassessed by Zelenitsky and colleagues [32],

who thin-sectioned both Jensen’s material and eggshell from four new localities within the

Mussentuchit (n = 91) and concluded that all of the eggshell sampled belonged to Macroelon-
gatoolithus carlylei. The study of Zelenitsky and colleagues was the first to recognize that these

were eggshells with the ‘ornithoid-ratite’ morphotype [30] laid by theropods. Zelenitsky et al.

[32] recognized that these eggshells were indistinguishable from colossal oviraptorosaur eggs

discovered in Henan Province of China [33]. They further revised the specific epithet based on

etymological aberration. Finally, Zelenitsky et al. [32] considered the oospecies of eggs from

China (M. xixiaensis) a junior synonym of M. carlylei based on publication priority, until such

a time that whole eggs from Utah were found and a true comparison could be made. Despite

this diagnosis, the use of a single oogenus and oospecies has not always been widely adopted in

the literature, and many other ootaxa including M. xixiaensis and other new Macroleongatoo-
lithus oospecies (M. zhangi [34]; M. goseongensis [35]) were named from sites across Asia.

Wang et al. [36] erected the oofamily Macroelongatoolithidae and included Macroleongatoo-
lithus and the oogenera Megafusoolithus and Longiteresoolithus [34]. The discovery of a pair of

colossal oviraptorosaur eggs from the Wayan Formation of Idaho [25], a unit similar in age to

the holotype locality of M. carlylei, prompted reconsideration of the number of oospecies and

oogenera within the taxon Macroelongatoolithidae. Simon et al. [25] discerned that the signifi-

cant overlap of microstructure within all the aforementioned large taxa was sufficient to justify

a single oogenus and oospecies for all these eggs, and to include them within the oofamily

Elongatoolithidae. Thus, they synonymized all existing oogenera and oospecies with M. carly-
lei, with the Mussentuchit fragment BYU E-200 the holotype specimen.

Geological setting

The Mussentuchit Member, which is the uppermost member of the more regionally wide-

spread Cedar Mountain Formation, is exposed across central Utah, along the western side of

the San Rafael Swell anticline east of the Wasatch and Fish Lake Plateaus, (Emery County,

Utah). The Mussentuchit Member, the uppermost member of the Cedar Mountain Formation,

spans an ~800,000 year interval within the earliest Cenomanian (99.674 + 0.439 / − 0.197 to

98.905 + 0.158 / − 0.183 Ma), with locally traceable, highly unaltered volcanic ash zones

(MAZ1-MAZ4) providing spectacular temporal resolution [1]. Preserved sedimentary succes-

sions indicate that the Mussentuchit Member was a paralic depocenter (distal fluvial to

coastal-tidal flat) margin along the western margin of the Interior Seaway that split North

America during much of the Cretaceous [4, 37, 38].

Methodology and materials

Institutional Abbreviations—BLM, Bureau of Land Management, Washington DC; BYU, Brig-

ham Young University, Provo, Utah, U.S.A; FMNH, Field Museum, Chicago, Illinois, U.S.A.;

NCSM, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, U.S.A; NCSU,

North Carolina State University, Raleigh, North Carolina; OMNH, Sam Noble Oklahoma

Museum of Natural History, Norman, Oklahoma, U.S.A.; UGS, Utah Geological Survey, Salt

Lake City, Utah.

Anatomical Abbreviations—CL, continuous layer (or crystalline layer); ML, mammillary

layer; TST, total shell thickness.
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Materials

In this study, we examined all fossilized eggshells recovered from the Mussentuchit Member of

the Cedar Mountain Formation and housed at the NCSM (n > 2,500), plus additional loaned

material from the OMNH (n > 1,500), FMNH (n = 77), and BYU (n = 8), to extensively ana-

lyze ootaxonomic diversity across twenty localities. NCSM and FMNH fragments from the

Mussentuchit Member were collected between 2012 and 2022, and fragments and thin section

slides loaned from BYU and the OMNH were collected by Jensen [26] and Cifelli et al. [2],

respectively.

Methodology

We systematically categorized fragments of eggshell into ‘morphotypes’ based on external

ornamentation patterns, and selected the highest quality samples (free of additional matrix,

appropriately sized) for photography and consumptive sampling. Fragments selected were

photographed with a Keyence VHX-7000 Digital Microscope before creating radial thin sec-

tions to assess microstructural features such as crystal arrangement, pore networks, the ML/

CL boundary, and ML/CL thickness ratios. We encased fragments in epoxy resin, cut the

resulting blocks using a Buehler IsoMet 1000 Precision Saw, and polished them using a Bueh-

ler MetaServ 250 Grinder/Polisher to a thickness of 80 μm. We analyzed finalized thin sections

with a Nikon Eclipse Ci Pol light microscope (with attached DS-FI 2 camera) and the Keyence

VHX-7000 Digital Microscope for microstructure. Measurements of TST, ML and CL features

were taken digitally using ImageJ. Further analysis of microstructure and ultrastructure, with a

focus on crystal splaying across the ML/CL boundary, was undertaken on a Hitachi SU8700

field-emission scanning electron microscope at the NCSU Analytical Instrumentation Facility.

We viewed samples at 100x magnification at variable pressure, with a 50 Pa backfill of dry

nitrogen and a 20 kV accelerating voltage. These combined analyses were used to determine

ootaxonomic assignment.

Ethics statement

Specimens collected for this study were obtained under the following permits from BLM

(UT15-001, UT14-008E, UT15-003E, UT17-007E, UT20-006E, UT13-017E, 2021–584, UT-

017E, UT15-001S) and UGS (2020–569, 2022–601). All necessary permits were obtained for

the described study, which complied with all relevant regulations.

Systematic paleontology

Oofamily ELONGATOOLITHIDAE Zhao 1975

Included Oogenera—Elongatoolithus Zhao and Jiang, 1974 (= Oolithes elongatus Young,

1954); Macroolithus Zhao, 1975 (= Oolithes rugustus Young, 1965); Nanhsiungoolithus Zhao,

1975 (= Oolithes nanhsiungensis Young, 1965); Ellipsoolithus Mohabey, 1998; Trachoolithus
Mikhailov, 1994; Macroelongatoolithus Li, Yin, and Liu, 1995 (see Wang and Zhou [34], for

oofamily Macroelongatoolithidae and Wang et al., 2010, for assignment of oogenus Macroe-

longatoolithus to oofamily Macroelongatoolithidae, and introduction of the oogenus Megafu-
soolithus); Undulatoolithus Wang, Zhao, Wang, Li, and Zou, 2013.

Referred Specimen—NCSM 33736 (n = 1), Cenomanian Mussentuchit Member of the

Cedar Mountain Formation, Emery County, Utah, U.S.A.

Revised Diagnosis—Eggs are elongate and range from 9–61 cm long. TST 0.61–4.74 mm

depending on oogenus and oospecies. CL and ML thickness ratio ranges from ca. 2:1–8:1. Egg-

shell with two distinct structural layers, a mammillary layer consisting of radiating calcite
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crystals and a second structural layer lacking well-defined shell units, obscured by squamatic

ultrastructure, with undulating accretion lines. CL separated from the underlying ML by a dis-

tinct boundary. Pore systems are variable (angusticanaliculate most common). Dispersituber-

culate, ramotuberculate, and lineartuberculate ornamentation types are common.

Description—A single eggshell fragment from the ‘Kate’s Ridge’ locality. TST is 0.98–1.42

mm including ornamentation. Ratio of CL:ML is ca. 3:1. Eggshell in cross-section shows two

distinct layers demarcated with a clear boundary; the lower ML has sub-vertical crystals

extending from nucleation sites, and the overlying CL has no distinct shell units but exhibits

clear wavy accretion lines. Pores appear to be prolatocanaliculate. External ornamentation is

coarse and ramotuberculate (a combination of nodes and ridges with weak orientation), with

heights ca. 1/5 of TST at the apex of ornamentation.

Remarks—We revise the diagnosis of Elongatoolithidae from Simon et al. [25] to assign all

previously described Continuoolithus specimens to this oofamily. This is detailed in the Conti-
nuoolithus canadensis Systematic Paleontology section of this paper.

Previously, all elongatoolithid fragments from the Mussentuchit were assigned to M. carly-
lei [32], presumably on the assumption that only a single elongatoolithid ootype was present in

the member. We advise caution in assigning fragments with this degree of granularity. There

is little difference in the microstructural features across Elongatoolithidae, with the exception

of the genus Macroelongatoolithus, which is diagnosable based on crystal splaying across the

ML/CL boundary [25, 39], but this feature was not reported in Zelenitsky et al. [32]. Although

commonly seen, not all Elongatoolithidae morphotypes from the Mussentuchit exhibit this

feature. NCSM 33736 not only lacks crystal splaying across the ML/CL boundary, but lies out-

side the diagnosable TST range for the oogenus Macroelongatoolithus. The oogenus this frag-

ment most resembles visually is Ellipsoolithus, known only from the Maastrichtian Lameta

Formation of India [40]. However, we do not formally refer this specimen to the oogenus, as

the initial description of Ellipsoolithus lacks microstructural characteristics in the description

that would allow for confident referral of an isolated fragment.

Oofamily ELONGATOOLITHIDAE Zhao 1975

Oogenus MACROELONGATOOLITHUS Li, Yin, and Liu, 1995

Oospecies MACROELONGATOOLITHUS CARLYLEI Jensen, 1970

Junior Synonyms—Oolithes carlylensis Jensen, 1970:62–63, pl. 1, figs. 1, 2, 4, 6; pl. 2, figs. 3,

5, 6; pl. 3, figs. 4, 7, 8; text-fig. 5.; Macroelongatoolithidae Wang and Zhou, 1995 (see also

Wang et al., 2010); Boletuoolithus Bray, 1998:221–222, figs. 1–3, 4a, b.; Macroolithus carlylei
(Jensen, 1970); Zhao, 1975:108; Longiteresoolithus xixiaensis Wang and Zhou, 1995:262; Zhou

et al. 1999:298–299, fig. 1b, d; Zhou et al., 2001:98; Liang et al., 2009:fig. 2h; Macroelongatoo-
lithus xixiaensis Li et al., 1995:pl. 1.; Macroelongatoolithus xixiaensis Fang et al., 1998:pl. 17, fig.

10; Grellet-Tinner et al., 2006:figs. 6d–f, 7a–f; Wang et al., 2010:figs. 3a–d, 4a–d; Huh et al.,

2014:figs. 3, 5a, 6a–d, 7, 8; Macroelongatoolithus xixia Carpenter, 1999:fig. AII.22. Macroelon-
gatoolithus sp. Carpenter, 1999:fig. 10.12. Macroelongatoolithus goseongensis Kim et al., 2011b:

figs. 2a, 5a–h; Megafusoolithus qiaoxianensis Wang, Zhao, Wang, Jiang, and Zhang, 2010b:fig.

5a–e.

Referred Specimens—Eggshell fragments NCSM 33724 (n = 3), NCSM 33725, NCSM

33726, NCSM 33734, NCSM 33735, NCSM 33737, NCSM 33756 (n = 9), NCSM 33813, NCSM

33815, NCSM 33816, NCSM 33817, NCSM 33818, NCSM 33820, NCSM 33822 (ntotal = 24),

Cenomanian Mussentuchit Member of the Cedar Mountain Formation, Emery County, Utah,

U.S.A.

Revised Diagnosis—Large, elongate eggs exceeding 250 mm and up to 610 mm long. TST,

including ornamentation, is 1.38–4.75 mm. Abrupt, undulating boundary separates the CL

and ML. CL:ML ratio ranges widely from 2:1 to 8:1. Crystal splaying across the ML/CL
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boundary occurs at random intervals. Ornamentation is variable both in type and relief and

may grade from dispersituberculate at the poles to lineartuberculate along the middle portion

of the length of the egg; smooth patches may occur near poles. Clutches consist of paired eggs

in a ring-shaped configuration with an external clutch diameter of up to 3 m.

Distribution—Upper Cretaceous Zoumagang, Majiacun, Gaogou, Zhaoying, and Sigou

formations, Henan Province, Xixia Basin, China; Albian—Cenomanian Liangtoutang Forma-

tion and Upper Cretaceous Chichengshan Formation, Zhejiang Province, Tiantai Basin,

China; Upper Cretaceous Goseong Formation, South Gyeongsang Province, South Korea;

Lower Cretaceous Cedar Mountain, Kelvin, and Naturita Formations, Utah, U.S.A.; Albian—

Cenomanian Wayan Formation, Bonneville County, Idaho, U.S.A.; Cenomanian—Turonian

Liangtoutang Formation, Zhejiang Province, Tiantai Basin, China [25].

Description—Eggshell fragments are associated with two clutches of eggs from the ‘Deep

Eddy’ NCSM 33576) and ‘Holy Hand Grenade’ (NCSM 33724) field localities, as well as several

other sites. External ornamentation is variable (Fig 2A and 2B), including high relief nodes

and ridges, linear ridges with consistent orientation, to disperse nodes and very low relief to

near-smooth surfaces.

In radial thin section, TST ranges from 1.38–2.33 mm. Eggshells are composed of two layers

delineated by a sharp, undulating boundary (Fig 2). The CL:ML ratio ranges between 3:1 and

8.5:1. Ornamentation can be up to 1/3 of eggshell thickness (Fig 2G). Pores are a range of

straight and narrow (‘angusticanliculate’), angled and straight (‘oblicucanaliculate’), or variable

in width (‘prolatocanaliculate’; Fig 2H). The eggshell units are obscured in the CL by squa-

matic ultrastructure. Under cross-polarized light, extinction patterns are columnar or blocky

(Fig 2I). Eggs under scanning electron microscopy and cross-polarized light show crystal

splaying across the ML/CL boundary at random intervals (Fig 2C and 2D).

Remarks—The discovery of whole eggs at the ‘Deep Eddy’ and ‘Holy Hand Grenade’ locali-

ties requires amendment to the diagnosis provided by Simon et al. [25]. Whole eggs from

these two localities fall below the lower threshold for the pre-existing Macroelongatoolithus
carlylei diagnosis of 34 cm egg length (‘Deep Eddy’ eggs range from 27.1–30.1 cm; ‘Holy Hand

Grenade’ from 25.0–25.9 cm). Therefore, we have amended the oospecific diagnosis to expand

the lower bound for egg length from 34 to 25 cm. Eggs in the nest have been crushed and tele-

scoped, but we estimate variation in the lengths has not been altered by more than 1 cm in

either direction.

Specimens now referred to Macroelongatoolithus have a convoluted diagnostic and descrip-

tive history. In the 1960s, fragments from the Mussentuchit Member were described as

Oolithes carlylensis [26] and with the advent of egg parataxonomy, were assigned to Elongatoo-

lithidae [29]. From the 1990s, extensive finds in Asia dramatically expanded the diversity of

Macroelongatoolithus and other colossal oviraptorosaur eggs, resulting in the naming of three

oogenera and five oospecies of Elongatoolithidae [34, 36, 37]. Zelenitsky et al. [32] proposed

that all known ootaxa had significant microstructural overlap and were junior synonyms of

the original material from the Mussentuchit Member. They amended the Jensen [26] nomen-

clature and erected Macroelongatoolithus carlylei to encompass all of these taxa. This single

oospecies identification is inconsistently applied, with ootaxa from Asia described before and

since still referred to other oospecies (M. xixiaensis, M. goseongensis), or the oofamily Macroe-

longatoolithidae. Simon et al. [25] described the first whole egg pair of M. carlylei in North

America from the Wayan Formation of Idaho. Overlap in microstructural features in this

paper supports the Zelenitsky et al. [32] justification of referring all Macroelongatoolithus spe-

cies, plus Megafusoolithus and Longiteresoolithus to M. carlylei. The diagnosis provided by

Simon et al. [25] permits us to assign these eggshells to M. carlylei based on the presence of

crystal splaying across the ML/CL boundary, which occurs only in this ootaxon within
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Fig 2. Macroelongatoolithus ‘morphotypes’ showing the variation in surface ornamentation patterns, and

diagnostic features of microstructure. A) BYU E-200 (holotype) in surface view; B) NCSM 33734 in surface view. C–

D Cross sections of NCSM 33725 showing crystal splaying (red dashed line) across the ML/CL boundary (solid black

line) in C) scanning electron microscopy and D) cross-polarized light. E–J Fragments of NCSM 33576 [E), G), I)] and

NCSM 33822 [F), H), J)] through the thin sectioning process, demonstrating variation in ornamentation and shared

characters in thin section E) NCSM 33576 in surface view; F) NCSM 33822 in surface view; G) NCSM 33576 in radial
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Elongatoolithidae [25] and has been suggested as a method of strengthening the eggshell with

increased size [39].

Oogenus UNDULATOOLITHUS Wang, Zhao, Wang, Li and Zhou 2013

Oospecies UNDULATOOLITHUS PENGI Wang, Zhao, Wang, Li and Zhou 2013

Referred Specimens—Eggshell fragment NCSM 33729 (n = 1), Cenomanian Mussentuchit

Member of the Cedar Mountain Formation, Emery County, Utah, U.S.A.

Revised Diagnosis—TST ranges from 0.78–2.16 mm (including ornamentation). The outer

surface of the eggshell is ornamented with nodes and longitudinally aligned ridges, and the

ridges are ca. 1/2 of the TST. CL:ML ratio ranges from 4:1–8:1, with a gradational boundary

between layers.

Distribution—Cenomanian Mussentuchit Member, Cedar Mountain Formation, Utah, U.

S.A.; Upper Cretaceous Pingxiang Basin, Jiangxi Province, China.

Description—The eggshell surface is composed of rugose nodes intermittently coalescing

into ridges (Fig 3A), and significant mineral overgrowth. Pores appear slightly elongated and

are low-density.

In radial thin section, two eggshell layers have an unclear boundary obscured by cracks

(Fig 3B). CL:ML ratio ranges from 4.6:1–5.8:1. TST ranges from 1.17–2.16 mm (with orna-

mentation). Ornamentation is extreme, constituting nearly one half of TST, and can be as tall

as 0.98 mm. Complete pores are not visible in a single cross-section but appear to be straight

and narrow (angusticanaliculate). Accretion lines are visible across eggshell units in the con-

tinuous layer, with individual units obscured by squamatic ultrastructure. In cross-polarized

light, extinction patterns are blocky where not obscured (Fig 3C).

Remarks—Undulatoolithus pengi was previously known from a single locality in Jiangxi

Province, China [41] that included whole eggs arranged in a partial nest. We revise their

diagnosis based on a greater shell thickness ratio in the Mussentuchit Member fragments,

and remove the character of egg size from the diagnosis due to the significant overlap with

other elongatoolithid oogenera. The described specimen from the Mussentuchit Member

has many of the characteristics of the Asian eggs of U. pengi, most notably the remarkable

ornamentation-to-shell thickness ratio, and conforms with the microstructural diagnosis.

The presence of the remarkable ornamentation ratio encompassing up to 50% of TST

excludes it from being referred to other elongatoolithid taxa. The identification of Undula-
toolithus in the Mussentuchit Member of the Cedar Mountain Formation extends the spatio-

temporal range of the oogenus to the early Late Cretaceous of North America from the Late

Cretaceous of China.

Oofamily ELONGATOOLITHIDAE Zhao, 1975

Oogenus CONTINUOOLITHUS Zelenitsky, Hills, and Currie 1996

Oospecies CONTINUOOLITHUS CANADENSIS Zelenitsky, Hills, and Currie, 1996

Junior Synonyms—Spongioolithus hirschi Bray 1999 pp. 368–369, fig. 5

Type Oospecies—Continuoolithus canadensis Zelenitsky, Hills and Currie 1996

Referred Specimens—NCSM 33727, NCSM 33728, NCSM 33732, NCSM 33733, NCSM

33738 (n = 5), Cenomanian Mussentuchit Member, Cedar Mountain Formation, Utah, U.S.A.

cross section under plane polarized light, tailed scale bar shows extent of ornamentation, mammillae and shell units

outlined in ML; H) NCSM 33822 in radial cross section under plane polarized light, arrows and black fill show infilled

pores. I) NCSM 33576 in radial cross section under crossed polars with lambda filter, blocky extinction outlined in

white. J) NCSM 33822 in radial cross section under crossed polars with lambda filter. Solid red lines indicate where

thin sections were cut; solid black line indicates ML/CL boundary; dashed black lines indicate accretion lines across

squamatic ultrastructure of the CL obscuring individual shell units. All scale bars = 10 mm.

https://doi.org/10.1371/journal.pone.0314689.g002
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Revised Diagnosis—Eggs are approximately 120 mm long x 55 mm wide, elongated, and

occur in pairs. External surface ornamented primarily by isolated and coalesced nodes, with

occasional ridges. TST ranges from 0.61–1.74 mm with ornamentation. Pores are usually

located between or at the base of nodes or ridges, and the pore system is ‘angusticanaliculate’.

Two structural layers are present, with a ML:CL ratio of ca. 1:6–1:8. Adjacent mamillae tightly

abutting one another.

Distribution—Lower Maastrichtian Willow Creek Formation, Alberta, Canada; Maastrich-

tian North Horn Formation, Utah, U.S.A.; Maastrichtian St. Mary River Formation, Alberta,

Canada.; Campanian Two Medicine Formation, Montana, U.S.A.; Campanian Kaiparowits

Formation, Utah, U.S.A.; Campanian Dinosaur Park Formation, Alberta, Canada; Campanian

Oldman Formation, Alberta, Canada; Campanian Fruitland Formation, New Mexico, U.S.A.;

Campanian Aguja Formation, Texas, U.S.A.; Campanian El Gallo Formation, Spain; Santo-

nian Milk River Formation, Alberta, Canada; Cenomanian Mussentuchit Member, Cedar

Mountain Formation, Utah, U.S.A.; Morrison Formation, New Mexico, U.S.A.

Description—Fragments have nodose ornamentation with some nodes coalescing into

ridges. Pore openings are rounded to elongate and usually occur adjacent to nodes (Fig 4A).

Fig 3. Features of Undulatoolithus fragment NCSM 33729. A) surface view of NCSM 33729. Red line indicates where thin section was made (dashed where not

seen in the radial thin sections). B) NCSM 33729 in radial thin section. Tailed scale bar marks very high, undulating ornamentation. Gradational ML/CL boundary

marked with solid black lines; accretion lines in CL shown with dashed black lines; arrows and black fill show infilled pores. C) radial thin section under crossed

polars. Scale bars equal 10 mm.

https://doi.org/10.1371/journal.pone.0314689.g003
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In radial thin section, the CL and ML are delineated with a clear, undulating boundary,

with a thickness ratio ranging from 6:1–8:1. TST ranges from 1.01–1.74 mm. Ornamentation

varies between 1/7 to 1/5 of TST. Pores are straight and narrow (‘angusticanaliculate’; Fig 4B).

Accretion lines are present and undulating in the CL, but individual eggshell units are not seen

in the continuous layer. Extinction patterns in cross-polarized light are columnar (Fig 4C).

Remarks—We revise the diagnosis of Continuoolithus canadensis from [42] to include triv-

ial increases to the upper limit of eggshell thickness found in this study (from 1.73–1.74 mm)

and ML:CL ratios (from ca. 6.5–7:1 in Voris et al. [42], to 6:1–8:1 in this study).

Since its formal diagnosis [43], Continuoolithus has been recognized as similar to Elonga-

toolithidae eggs, but has only once been formally included in the oofamily [36], instead being

most commonly informally assigned to Theropoda [33, 43]. The key differentiator has been

the particular external ornamentation style, with isolated nodes that sometimes coalesce, and

lower total shell thickness [33, 44]. Although diagnostic skeletal material would be preferable,

we assign Continuoolithus to Elongatoolithidae based on the following suite of elongatoolithid

characters from the diagnosis here that conform to the diagnosis of Elongatoolithidae in

Simon et al. [25] and this study: elongated eggs laid in pairs between 9–61 cm in length, and a

shape index< 50 [45]; CL and ML thickness ratio ranging from ca. 6:1–8:1; eggshell with two

distinct structural layers, a mammillary layer consisting of radiating calcite crystals and a

Fig 4. Features of Continuoolithus fragments. A) NCSM 33728 in surface view, showing characteristic nodes with intermittent coalescence. Red line indicates

where thin section was made (dashed where not seen in the radial thin sections). B) NCSM 33728 in radial thin section. ML/CL boundary highlighted with solid

black line; mamillae and shell units outlined in ML; pore infilled in black and marked with arrow; dashed black lines indicate accretion lines in CL. C) NCSM

33728 in radial thin section with crossed polars. White outline shows a blocky extinction pattern within shell units. All scale bars equal 10 mm.

https://doi.org/10.1371/journal.pone.0314689.g004
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second structural layer lacking well-defined shell units with undulating accretion lines sepa-

rated from the underlying ML by a distinct boundary; dispersituberculate ornamentation type

with coalescing nodes. We have five morphotypes in this study that also have a shell thickness

well within the known Elongatoolithidae range (1.01–1.74 mm), but we extend the lower

bound of Elongatoolithidae thickness from 0.8 to 0.61 mm given the suite of other features

that are concomitant with the oofamily. We do note however that previous measurements

taken with fragments may lower TST values if not considering the resorption of mammillae

nucleation sites at the base of the ML due to embryo developmental differences.

Oofamily SPHEROOLITHIDAE Zhao 1979 emend. Mikhailov 1991

Oogenus SPHEROOLITHUS Zhao 1979 emend. Mikhailov 1994

Oospecies SPHEROOLITHUS ALBERTENSIS Zelenitsky and Hills 1997

Referred Specimens—NCSM 33731 (n = 1), NCSM 33814 (n = 1), Cenomanian Mussentu-

chit Member of the Cedar Mountain Formation, Emery County, Utah, U.S.A.

Diagnosis—Sub-spherical eggs with spheroolithid microstructure, TST of 0.98–1.22 mm,

primarily fine sagenotuberculate ornamentation, dominantly prolatocanaliculate with some

rimocanaliculate pores [42].

Distribution—Maastrichtian North Horn Formation, Utah, U.S.A; Maastrichtian Willow

Creek Formation, Alberta, Canada; Campanian Oldman Formation, Alberta, Canada; Campa-

nian Dinosaur Park Formation, Alberta, Canada; Campanian Two Medicine Formation, Mon-

tana, U.S.A.; Campanian Kaiparowits Formation, Utah, U.S.A; Santonian Milk River

Formation, Alberta, Canada; Cenomanian Mussentuchit Member, Cedar Mountain Forma-

tion, Utah, U.S.A..

Description—Eggshell external surfaces have low-relief ornamentation composed primarily

of fine, anastomosing ridges (Fig 5A). Pore openings are sub-circular, and particularly dense

in NCSM 33731. In radial thin section, the eggshell is not clearly split into two distinct layers

but an irregular boundary is present where shell units become fused (Fig 5B). TST ranges from

1.01–1.11 mm. The ratio between the upper and lower layers is approximately 4:1. Eggshell

units, although fused, are distinguishable by their sweeping extinction patterns in cross-polar-

ized light and individual mammillae with radiating crystals. Pores, where seen, are funnel-

shaped and taper inwards (‘rimocanaliculate’, Fig 5B). Ornamentation is thin and represents

between 1/13 and 1/8 of TST.

Remarks—Spheroolithus is a multi-oospecific oogenus within the oofamily Spheroolithidae

[46], although see Stromatoolithidae in Zhu et al. [47]. It has significant northern hemisphere

distribution in North America, Europe and Asia. We assign NCSM 33731 and NCSM 33814 to

Spheroolithus albertensis based on the following suite of characters: eggshell thickness ranging

from 1.01–1.11 mm; sweeping extinction in cross-polarized light, distinct eggshell units

unobscured by squamatic ultrastructure; ornamentation composed of thin, anastomosing

ridges; high pore density of sub-circular aperture, and rimocanaliculate pores [43]. We distin-

guish it from S. irenensis [48] and S. tenuicorticus [49] by the presence of anastomosing ridges

of ornamentation, and the thickness of the eggshell (1.08 mm) differentiates our eggshell from

S. chiangchiungtingensis (2.7 mm; [48]), S. megadermus (5.7 mm [27]), and S. choteauensis
(0.66–0.94 mm [50]). It also lacks the densely concentrated, undulating accretion lines in the

radial microstructure of S. europaeus [51].

Referral of specimens in the Mussentuchit Member to S. albertensis extends the range of

this oospecies, and the Spheroolithus oogenus in the Western Interior Basin, from the Santo-

nian of the Milk River Formation (ca. 84.5–83.5 Ma; [52]) back into the Cenomanian by ca. 15

Myr. Although this referral represents the first description of Spheroolithus from the Mussen-

tuchit Member, it does not represent the first argument for Spheroolithidae eggshell in the

member. Several decades ago Bray [31] erected Boletuoolithus within Spheroolithidae for a
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sample of eggshell fragments collected from the Mussentuchit Member. Zelenitsky et al. [32]

examined these fragments, concluded that these specimens were misidentified, and referred

them to M. carlylei, removing Spheroolithidae from the recognized paleooodiversity of the

Mussentuchit Member. We agree with Zelenitsky et al. [32] that the fragments described by

Bray [31] are not referrable to Spheroolithidae. However, we now independently document

the presence of spheroolithid eggshells from the member based on newly collected materials

that are referable to Spheroolithus albertensis.
Spheroolithus albertensis is widely distributed across the Late Cretaceous Western Interior

Basin, including whole eggs in the Lower Two Medicine Formation [50], plus fragments from

the Oldman Formation [53], St Mary River Formation [43, 54], the Kaiparowits Formation

Fig 5. Features of Spheroolithus fragments. A–B S. albertensis. A) NCSM 33731, in surface view showing low anastomosing ridges and large spherical pores, scale

bar equals 5mm. B) NCSM 33731 in radial thin section with funnel-shaped pore infilled in black and marked with arrow. C–E S. cf. europaeus. C) OMNH 28280 in

surface view with rugose linear ridges. D) OMNH 28280 in radial thin section, CL/ML boundary is fluctuant (solid black lines) and individual shell units with

radiating spherulites in the ML are identifiable. E) OMNH 28280 in radial thin section with crossed polars. White outline shows a sweeping extinction pattern

within shell units. All scale bars equal 10 mm.

https://doi.org/10.1371/journal.pone.0314689.g005
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[55], and the Milk River Formation [52]. Shell thickness in the Mussentuchit Member spher-

oolithid eggshell (1.08 mm) is on average closest to eggshell from the St Mary River Formation

(1.08 mm [42], but with a significantly lower range of thicknesses (1.01–1.11 mm, n = 2),

owing most likely to a lower number of samples than other later Cretaceous assemblages

(Table 1).

Oofamily SPHEROOLITHIDAE Zhao 1979 emend. Mikhailov 1991

Oogenus SPHEROOLITHUS Zhao 1979 emend. Mikhailov 1994

Oospecies SPHEROOLITHUS EUROPAEUS Selles, Via and Galobart 2014

Referred Specimens—OMNH 28280 (n = 1), Cenomanian Mussentuchit Member of the

Cedar Mountain Formation, Emery County, Utah, U.S.A.

Diagnosis—shell thickness ranging from 1.04 to 1.11 mm; sagenotuberculate surface domi-

nated by fine irregular ridges; two types of pore apertures, large elliptical-shaped (300–600 μm

in width) and small rounded ones (100 μm in diameter), sometimes paired; highly fused shell

units; and undulating growth lines densely concentrated in the outer half of the shell [52].

Table 1. Known oodiversity of the Cretaceous Western Interior Basin of North America. The Mussentuchit Member oogenera are shown in bold.

Oogenus Formation Age Location Reference

Continuoolithus, Montanoolithus, Porituberoolithus,
Prismatoolithus

Willow Creek Upper

Maastrichtian

Alberta Zelenitsky et al. (2017a)

Continuoolithus, Ovaloolithus (two species),
Spheruprismatoolithus

North Horn Upper

Maastrichtian

Utah Bray (1999)

Belonoolithus, Dimorphoolithus, Krokolithes,
Spheroolithus, Testudoolithus,

Hell Creek Maastrichtian Montana Jackson and Varricchio (2016)

Continuoolithus, Montanoolithus, Prismatoolithus,
Tetonoolithus, Spheroolithus

St. Mary River Lower

Maastrichtian

Alberta,

Montana

Voris et al., (2018); Jackson and Varricchio ((2017)

Continuoolithus, Montanoolithus, Prismatoolithus Upper Two Medicine Upper

Campanian

Montana Horner and Makela (1979); Horner (1982); Hirsch and

Quinn (1990); Horner and Currie (1994); Zelenitsky

and Hills (1996); Zelenitsky et al. (1996); Varricchio

et al. (2002); Grellet-Tinner and Makovicky (2006);

Zelenitsky and Therrien (2008a)

Continuoolithus, Krokolithidae indet.,
Macroelongatoolithus, Prismatoolithus,
Portituberoolithus, Spheroolithus, Stillatuberoolithus

Kaiparowits Upper

Campanian

Utah Oser et al. (2021)

Continuoolithus, Porituberoolithus, Prismatoolithus,
Reticuloolithus, Spheroolithus

Dinosaur Park Upper

Campanian

Alberta Zelenitsky and Sloboda (2005)

Continuoolithus, Dispersituberoolithus,
Porituberoolithus, Prismatoolithus, Tristaguloolithus

Oldman Upper

Campanian

Alberta Zelenitsky and Hills (1996); Zelenitsky et al. (1996);

Zelenitsky and Hills (1997);

Spheruprismatoolithus, Prismatoolithus Judith River Upper

Campanian

Montana Zelenitsky and Hills (1996); Clouse (2001); Bray (1999);

Jackson et al. (2010)

Continuoolithus, Porituberoolithus, Prismatoolithus Fruitland Upper

Campanian

New

Mexico

Tanaka et al. (2011)

Continuoolithus, Porituberoolithus Aguja Upper

Campanian

Texas Welsh and Sankey (2008)

Prismatoolithus, Spheroolithus, Triprismatoolithus,
Tubercuoolithus, Spheruprismatoolithus

Lower Two Medicine Lower

Campanian

Montana Bray (1999); Jackson and Varricchio (2010)

Continuoolithus, Porituberoolithus, Prismatoolithus,
Triprismatoolithus

Milk River Upper

Santonian

Alberta Zelenitsky et al. (2017b)

Macroelongatoolithus, Undulatoolithus,
Continuoolithus, Spheroolithus,
Mycomorphoolithus

Cedar Mountain

(Mussentuchit

Member)

Cenomanian Utah Jensen (1970); Zelenitsky et al. (2000); This study

Macroelongatoolithus Wayan Albian-

Cenomanian

Idaho Krumenacker et al. (2017); Simon et al. (2019)

"D. antirrhopus" egg Cloverly Aptian Wyoming Grellet-Tinner and Makovicky (2006)

https://doi.org/10.1371/journal.pone.0314689.t001
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Distribution—Maastrichtian Tremp Formation, Spain; Cenomanian Mussentuchit Mem-

ber, Cedar Mountain Formation, Utah, U.S.A.

Description—Eggshell external surfaces have low-relief ornamentation composed primarily

of irregular linear ridges. Pore openings are either small and sub-circular or large and ellipsoi-

dal, but many are obscured by matrix or crystal overgrowth. In radial thin section, TST is ca.

1.08 mm. The eggshell is not clearly split into two distinct layers but an irregular gradational

boundary is present where shell units become fused (Fig 5D). Pores are prolatocanalicuate.

Eggshell units, although fused, are distinguishable by their sweeping extinction patterns in

cross-polarized light and individual mammillae with radiating crystals (Fig 5E). In the thinnest

eggshells there is erosion of the innermost shell either embryonically or taphonomically.

Densely concentrated, undulating accretion lines are visible throughout the cross-section.

Remarks—OMNH 28280 has a different ornamentation pattern to S. albertensis specimens

NCSM 33731 and NCSM 33814, with more linear, ‘worm-like’ ridges as reported in Sellés

et al. [51]. This fragment has a sweeping extinction patterns, unclear ML:CL boundary, exter-

nal ornamentation consistent with Spheroolithus. We refer it to Spheroolithus europaeus based

on the presence of the following characteristics, consistent with the diagnosis from Sellés et al.

[51]: shell thickness of 1.08 mm; external surface dominated by irregular linear ridges; large

ellipsoidal and small sub-circular pores on the surface dense, undulating accretion lines

through the continuous layer in radial cross section, and highly fused shell units. Our descrip-

tion extends the spatiotemporal range of S. europaeus from Maastrichtian Europe to Cenoma-

nian North America.

INCERTAE SEDIS

Oogenus MYCOMORPHOOLITHUS Moreno-Azanza et al. 2015

Oospecies MYCOMORPHOOLITHUS KOHRINGI Moreno-Azanza et al. 2015

Referred Specimens—Eggshell fragments NCSM 35004, NCSM 35005 (n = 2), Cenomanian

Mussentuchit Member of the Cedar Mountain Formation, Emery County, Utah, U.S.A.

Diagnosis—Eggshells characterized by mushroom-shaped or inverted subtriangular shell

units comprising radiating wide crystals. TST ranges from 0.31–0.81 mm. Shell units are slen-

der at the base of the unit, abruptly increasing up to fivefold in width at 1/3 to 1/2 the eggshell

height. Pore openings are dense, vary in shape and dimensions, and may coalesce. Growth

lines are straight to slightly wavy, over the entire eggshell thickness [56, 57].

Distribution—Cenomanian Mussentuchit Member, Cedar Mountain Formation, Utah, U.

S.A.; Barremian Blesa Formation, Spain; Barremian El Castellar Formation, Spain; Barremian

Mirambel Formation, Spain; Barremian La Huerguina Formation, Spain; Barremian El Col-

lado Formation, Spain; Berriasian Purbeck Limestone Group, England.

Description—Eggshell surfaces lack ornamentation, with a high density of subcircular, rela-

tively large (100–250μm) pore openings (Fig 6A). TST ranges from 0.64–0.72 mm. In radial

thin section, eggshell is composed of a single layer for which individual eggshell units are sub-

triangular to ‘mushroom-shaped’ [56], with the apices directed towards the egg interior (Fig

6B). Between units, eggshell exhibits large interstices, which obscure the nature of the pore sys-

tem (Fig 6C). Under cross-polarized light, the eggshell displays blocky extinction within each

eggshell unit.

Remarks—Currently, this ootaxon is restricted to a single oospecies, M. kohringi from

Europe and is not formally assigned to any oofamily [56–59]. However, it is recognized as

being most similar to eggs in the oofamily Krokolithidae, laid by crocodylomorph archosaurs

[60, 61]. Whether these eggs can be assigned to Krokolithidae is uncertain because they lack

tabular ultrastructure and organic basal cores that are characteristic of this oofamily [56],

although see Bravo et al. [62]. Moreover, Moreno-Azanza et al. [63] suggest krokolithid egg-

shell is three-layered, not single layered as previously proposed, and that Mycomorphoolithus is
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single layered. Although Mycomorphoolithus is most likely crocodylomorph eggshell, there is

currently no current justification for including it in Krokolithidae.

The crystal dissolution exhibited by extant crocodylomorphs [64, 65] is apparent in fossil-

ized eggs, evidenced by a wide variety of pore aperture sizes and shapes exhibited by the Mus-

sentuchit Member and European specimens [56]. This leads to a negative preservational bias

and challenges studying microstructure, especially given the comparatively thin eggshell when

compared to dinosaurian eggs (at maximum 0.81 mm). Eggshell fragments from the Mussen-

tuchit Member fall within the full range of thickness in the existing diagnosis (0.31–0.81 mm),

but mean thickness of the Mussentuchit Member specimens is higher than those from Europe

(0.675 mm against 0.524 mm).

Discussion

Ootaxonomic affiliation

Assigning precise affinities between ootaxa and true taxa is speculative when there are no

direct associations preserved. Nonetheless, assigning true taxonomic affinities at the highest

granularity possible is important for studying faunistics and biogeography, and we therefore

use the existing taxonomic data from the Mussentuchit Member, and the localities where the

named ootaxa are also present, to make inferences.

All theropod eggshells described herein exhibit the diagnostic criteria for assignment to

Elongatoolithidae. Elongatoolithid ootaxa present many body fossil associations with Ovirap-

torosauria and, to date, no other theropod clades [66–81]. However, the exclusive relationship

between Oviraptorosauria and Elongatoolithidae merits further discussion due to studies

Fig 6. Features of Mycomorphoolithus fragment NCSM 35005. A) Surface view of NCSM 35005. Red lines indicate where thin sections were made. B-C NCSM

35005 in radial thin section showing single-layered triangular shell units (B), columnar extinction (white outlines) and dissolution of eggshell associated with

crocodylomorph hatching (C).

https://doi.org/10.1371/journal.pone.0314689.g006
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noting similar morphological traits between eggshell associated with oviraptorosaurs and

those associated with dromaeosaurs [82, 83] and phylogenetic studies documenting a close

relationship between eggs attributable to dromaeosaurs and oviraptorosaurs [82–85]. These

phylogenetic analyses often describe character traits with inconsistent or incomplete ootaxo-

nomic nomenclature. Oviraptorosaurs and dromaeosaurs do share a symplesiomorphic suite

of traits, along with the prismatoolithid eggs of Troodontidae,: paired eggs resulting from

monoautochronic ovulation, two eggshell layers, dominantly angusticanaliculate pores, and

eggs that are more elongate than spherical. Although these features are likely synapomorphic

for Pennaraptora, they do not permit differentiation of oviraptorosaurian and dromaeosaurid

eggs. Moreover, new research has shown that the previously recovered polyphyly of dromaeo-

saur and oviraptorosaur eggs may in fact be the result of erroneous assignment of some oogen-

era (Heishanoolithus, Paraelongatoolithus, possibly Nanhsiungoolithus) to Elongatoolithidae,

which are more referable to ootaxa associated with dromaeosaurs [85, 86]. Putative dromaeo-

saur eggs, currently without a referable oofamily, have the following autapomorphies that dis-

tinguish them from oviraptorosaur eggs: less elongate eggs (Shape Index > 50 [85]), lower

eggshell thickness ranging from 0.35–0.95 mm, loosely arranged and acicular mammillae in

the ML, horizontal accretion lines in the CL, and reticulate ornamentation patterns [37, 43, 44,

85, 87–91], as well as unconfirmed sub-layering of the dromaeosaur egg continuous layer [83].

Although this does not change our taxonomic interpretation of the Mussentuchit Member

ootaxa, we do recognize that relationships between eggs of dromaeosaurs and oviraptorosaurs

remain poorly resolved phylogenetically. More data on dromaeosaur taxon-ootaxon relation-

ships and a clear diagnosis created for dromaeosaur ootaxa that distinguishes these from Elon-

gatoolithidae are required to resolve these issues.

Based on the number of elongatoolithid oospecies identified we can conclude that there

were multiple oviraptorosaur species in the Mussentuchit Member. As the largest known

oogenus within Elongatoolithidae, Macroelongatoolithus is commensurately attributed to the

largest known oviraptorosaurs. This is corroborated by direct association between an egg and

the perinate remains of Beibeilong sinensis [78], with size extrapolation suggesting a skeletally

mature individual on the scale of Gigantoraptor erlianensis [92], the holotype of which is ca. 8

m in length and is estimated to have weighed over a tonne [93, 94]. The eggs associated with

Beibeilong are 40–45cm in length [78], still well below the largest that have been reported

(> 60 cm [35, 95–97]). These largest eggs stem from a nest that has considerable variation in

egg length, up to 179% from shortest to longest (34–61 cm, [25]). Egg lengths for undescribed

whole eggs from the Mussentuchit [98] show a range of 26–30 cm, outside the previous diag-

nosis for Macroelongatoolithus but certainly attributable to a giant oviraptorosaur on the order

of magnitude for Beibeilong and Gigantoraptor. Giant oviraptorosaur body fossils have been

excavated from the Mussentuchit Member of the Cedar Mountain Formation but remain

undescribed [99, 100].

Whole egg remains or fragments of Undulatoolithus have yet to be found in association

with any body fossils. Still, as Undulatoolithus is assigned to Elongatoolithidae, it most likely

represents a different oviraptorosaur taxon. Based on the whole egg remains found in China

(egg length of ca. 19 cm; [41]), these were smaller individuals than those laying Macroelonga-
toolithus eggs in the Mussentuchit (egg length of 26–30 cm length). Thus, we interpret the

taxon to be smaller bodied than giant oviraptorosaurs, more similar to the length of eggs

known for the oviraptorid (14–16 cm, [76]) and Citipati (18–19 cm, [67, 69]). Putatively, we

suggest that at least two sympatric size classes of oviraptorosaur coexisted in the Mussentuchit.

Recognition of Continuoolithus in the Mussentuchit Member makes it the earliest Creta-

ceous record of this ootaxon and narrows the temporal gap in the record between the Santo-

nian-age Milk River Formation (ca. 83 Ma; [52, 101]) and the earliest described
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Continuoolithus from the Tithonian-age Brushy Basin Member of the Morrison Formation in

New Mexico [102]. Whole egg remains of Continuoolithus range in length from 9.5–12.3 cm

[103, 104]. Inclusion within Elongatoolithidae suggests these eggs belong to yet another

smaller oviraptorosaur taxon with a smaller body mass than in all known parent-egg associa-

tions for this clade: Oviraptor (egg length 14.3–16 cm, [69, 79]), and Nemegtomaia (egg length

14–16 cm, [76]). Combined with the records of Macroelongatoolithus and Undulatoolithus, we

now have evidence for at least three sympatric putative oviraptorosaurs in the ecosystem repre-

sented by the Mussentuchit Member.

Spheroolithidae has been taxonomically affiliated with hadrosauroid dinosaurs, with a

direct association of body fossils and eggs documented for the saurolophine Maiasaura peeble-
sorum and Spheroolithus albertensis eggshell in the Two Medicine Formation of Montana

[103, 105, 106]. However, the phylogenetic extent of this parent taxon-ootaxon association

remains uncertain because there is no evidence yet as to whether Spheroolithidae eggs were

exclusively laid by hadrosaurids, hadrosauroids, or a broader group of Ornithopoda. The pres-

ence of Spheroolithus in the Cenomanian indicates that the ootaxon is not restricted to Hadro-

sauroidea because the Mussentuchit Member has only one currently described hadrosauroid,

the early-diverging and abundant hadrosauromorph Eolambia caroljonesa [20, 21], which is

the most parsimonious egg-layer based on the taxonomic affiliation of S. albertensis. We have

two Spheroolithus oospecies in the Mussentuchit oofauna, and the affiliation of the more

recently described S. europaeus to a putative egg-laying taxon is much less discussed. In the

description of the holotype, Sellés et al. [51] mentioned six described and many indeterminate

hadrosauroids from the Late Maastrichtian of the southern European archipelago [107–113].

Spheroolithidae are also described from Lower Cretacous units in Europe, particularly across

the Maestrazgo Basin in Spain (Guegoolithus [63]). No hadrosauroids have yet been described

from these horizons, but early-diverging Ornithopoda (Gideonmantellia turolensis [114]) and

Iguanodontia (Delapparentia turolensis [115]) co-occur in the Lower Barremian Camarillas

Formation with Guegoolithus.
In the Mussentuchit Member, the assemblage of Ornithischia is more similar to the Early

Cretaceous deposits of Western Europe before the hadrosauroid diversification in North

America in the Late Cretaceous [116]. Recent discoveries from NCSM and FMNH expeditions

to the Mussentuchit Member reveal five clades of Neornithischia—Thescelosauridae (Fona
herzogae [117], Rhadodontomorpha (Iani smithi [9]) and Hadrosauriformes (Eolambia carol-
jonesa [20, 21]), plus fragmentary ceratopsians and ankylosaurians—were simultaneously

present during the early Late Cretaceous of North America. One or both of the Spheroolithus
oospecies could have possible affiliation with these taxa—with the possible exception of cera-

topsians that may have laid soft-shelled eggs [118]—but the occurrence of multiple Spheroo-
lithus oospecies in the early Late Cretaceous suggests a non-exclusive relationship with

hadrosauroids. This highlights again the importance of eggs and ichnofossils when describing

paleoecological make-up, in addition to solidifying the understanding of dinosaur lineage evo-

lution through the Cretaceous. Further investigation into the early occurrences of Spheroo-
lithus could better untangle its complex oofamilial relationships [47, 63] and constrain its

taxonomic affiliations.

Mycomorphoolithus represents the first non-dinosaurian eggshell described from the Cedar

Mountain Formation and would be the youngest known example of the oogenus, extending

the documented temporal range from the Berriasian to the Cenomanian. Moreno-Azanza

et al. [56] putatively affiliated M. kohringi to non-eusuchian crocodylomorphs based on the

high relative abundance of this clade in the Maestrazgo Basin of Spain and a lack of some diag-

nostic Krokolithidae characters in the eggshell. Eggs of extant crocodilians are thickest in Alli-
gator mississippiensis, C. porosus, and C. niloticus at a maximum of 0.53 mm [119], leading to
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the inference that the thicker eggs of Mycomorphoolithus reflect a larger taxon (see Crocodylo-

morph Nesting).

Mussentuchit Member paleoecology

The Mussentuchit Member preserves the highest documented oodiversity among the lower-

most Upper Cretaceous units of the Western Interior Basin. We recognize at least five oogen-

era in the unit. The ootaxa present here are representative of multiple oviraptorosaur taxa

(Macroelongatoolithus, Undulatoolithus, Continuoolithus, Elongatoolithidae indet.), ornitho-

pods (Spheroolithus), and Mesoeucrocodylia (Mycomorphoolithus). Only a single ootaxon, rep-

resented by an egg pair and eggshell fragments (Macroelongtoolithus carlylei [25]), has been

described from the Wayan Formation of Idaho (101.0 Ma ± 1.1 to 97.5 Ma ± 2.0 Ma [120, 121]

and another in the older Little Sheep Mudstone Member (ca. 110–115 Ma [122]) of the Clo-

verly Formation of Wyoming (‘Deinonychus antirrhopus’ egg [82]).

Oodiversity of the Mussentuchit Member is comparable to some of the Campanian and

Maastrichtian age dinosaur-bearing units of the Western Interior Basin (Table 1). The most

diverse unit with a similar timeframe currently is the Campanian-age Kaiparowits Formation

with eight recognized oospecies. Eggshell from the Kaiparowits Formation represents a tempo-

ral window of over two million years based on sandine Ar/Ar (ca. 76.46–74.69 Ma [123]) and

detrital zircon U-Pb radiometic geochronology (as late as 73.10 Ma ± 1.20 Ma [124]), with

multiple ootaxa occurring at the same locality [55]. The oogenera we document from the Mus-

sentuchit Member are represented from at least one locality between MAZ1 (99.49 Ma ± 0.05)

and MAZ2 (99.40 Ma ± 0.07; Fig 7), constraining the temporal window of the total oodiversity

we describe in this unit to ca. 89,000 years.

The next oldest multiple eggshell-bearing unit in the Western Interior Basin is the Upper

Santonian Milk River Formation [52], from which four theropod and one ornithopod ootaxa

are documented. The lack of reported ootaxa between the Cenomanian and Santonian is likely

due to a depauperate fossil record in the Turonian and Coniacian ages [16]. Zelenitsky et al.

[52] noted the thinness of the Milk River Formation eggshell versus Campanian and Maas-

trichtian eggshell (although see Voris et al. [42]); conversely, we describe remarkably thick egg-

shells. In this study, we measured eggshell thickness digitally to remove uncertainty regarding

embryonic age variation or dissolution of mammillae [125]; we only recorded thickness in

Fig 7. Stratigraphic sections for the Mussentuchit Member. This includes localities where either whole eggs or isolated fragments were recovered.

MAZ = Mussentuchit Ash Zone. One of each oogenus is at least seen between the first two ash horizons MAZ1 and MAZ2, a range of less than 100 kyr.

https://doi.org/10.1371/journal.pone.0314689.g007
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fragments where the nucleation sites of mammillae were visible in radial cross-section. We

note that measurement using calipers without assessing the presence or absence of complete

mammillae, as conducted in previous studies, could bias results towards lower overall shell

thickness. The Continuoolithus eggshells are on average 0.43 mm in the Milk River Formation,

and 1.42 mm in the Mussentuchit; Spheroolithus similarly are on average 0.56 mm and 0.97

mm, respectively. The Milk River Formation is dominated (82% of all eggshell) by Spheroo-
lithus eggshell, whereas the Mussentuchit is mostly Macroelongatoolithus, a record of colossal

oviraptorosaurs (67% of fragments in this study, >1,500 fragments in Zelenitsky et al. [32]).

Though the percentage of ootaxa does not reflect the percentage of body taxa in a given assem-

blage, the stable chemical composition of eggshell compared to body fossils across a range of

environmental conditions during diagenesis could indicate more accurate ecosystem make-up

than from body fossils alone [126].Macroelongatoolithus do not appear in the Western Interior

Basin fossil record after the Cenomanian, despite the persistence of mid-sized caenagnathids

and Continuoolithus in Upper Cretaceous formations (Fig 8), suggesting the colossal ovirap-

torosaurs of the early Late Cretaceous may have gone extinct in North America before the San-

tonian. Nonetheless, they persisted through to the end of the Cretaceous in Asia [36, 97].

The earliest record of Prismatoolithidae, the oofamily associated with Troodontidae [127–

129], is the Milk River Formation. There are records of Troodontidae in North America before

the Santonian as far back as the Tithonian-age Morrison Formation (Hesperornithoides [130];

Koparion [131]), and isolated troodontid teeth in the Cenomanian from the Mussentuchit

Member [2, 5, 132], the Naturita Formation [133], and the Lewisville Formation [134]. How-

ever, the lack of Prismatoolithidae from the Mussentuchit Member ooassemblage is notable

given the preservation of isolated teeth, the expanded oodiversity presented in this study, and

the prevalence of Prismatoolithidae in the Late Cretaceous of the Western Interior Basin [42,

43, 50, 52, 87, 90, 129, 135, 136]. The recent re-interpretation of the Mussentuchit Member as

a paralic succession with a strong influence of brackish groundwater [38] is different from the

Late Cretaceous prismatoolithid-bearing units that are predominantly alluvial plains and

braided river systems [43, 52, 90] (although see Jackson and Varricchio) [50]. The topic of how

environmental differences reflect differences in the nesting habits of the fauna here and the

Late Cretaceous generally warrants future investigation.

The Mussentuchit Member records the earliest occurrence of the oogenus Spheroolithus in

North America; the previous oldest known was from the Lower Campanian Two Medicine

Formation of Montana [50]. The occurrence of S. albertensis here bridges a gap in the North

American fossil record of more than 20 million years. It is also consistent with the diversifica-

tion of the hadrosauroid clade with a recognized association to this ootaxon [63, 103, 105,

106], which came to prominence in North America during the early Late Cretaceous. Of note

is the difference in porosity between the two oospecies of Spheroolithus, reported in Sellés et al.

[51] and corroborated by the eggshells we describe in this study. S. albertensis has a much

higher pore density (161 pores per cm2 [137]) than S. europaeus 48 pores per cm2 [51]), indi-

cating lower overall porosity. Tanaka and colleagues [138] infer that differences in eggshell

porosity in archosaurs reflect open or closed nesting modes. However, their data do not offer

nesting states for hadrosauroids, much less insight into the higher resolution variation between

oospecies. It is possible that Spheroolithus oospecies differed in porosity due to nesting modes,

or differences in vapor conductance [137], thus justifying future investigation.

Ootaxa add valuable insight into the faunal make-up of the Mussentuchit and a greater

understanding of the transitional state of the fauna during the early Late Cretaceous. However,

they do not capture true dinosaur diversity in Cenomanian North America as no ootaxa is yet

described for some of the last known allosauroids or sauropods as well as the immigrating tyr-

annosauroids, ceratopsids, and non-oviraptorosaurian maniraptorans [7–9, 139].
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North American oviraptorosaur distribution

The Mussentuchit Member is a window into the early radiation of Asian-immigrant fauna that

proliferated in the early Late Cretaceous of North America [2, 7, 8, 19], a trend now corrobo-

rated with oological data. All theropod eggshell from the Mussentuchit Member described

Fig 8. The fossil record of North American oviraptorosaurs during the middle to Late Cretaceous, as represented by body fossils and Elongatoolithidae. The

three known oogenera of Elongatoolithidae in the Mussentuchit Member (highlighted in yellow) close a 20 million year ghost lineage of co-occurring

oviraptorosaurs, where the previous oldest known co-occurrence was in the Campanian-age Dinosaur Park Formation. The Mussentuchit assemblage is also the

first known co-occurrence of Elongatoolithidae in North America. A = Aguja Fm.; C = Cloverly Fm.; DP = Dinosaur Park Formation; F = Fruitland Fm.;

HC = Hell Creek Fm.; HS = Horseshoe Canyon Fm.; K = Kaiparowits Fm.; MM = Mussentuchit Member (Cedar Mountain Fm.); MR = Milk River Fm.;

NH = North Horn Fm.; O = Oldman Fm.; OA = Ojo Alamo Fm.; TM = Two Medicine Fm.; W = Wayan Fm.; WC = Willow Creek Fm.

https://doi.org/10.1371/journal.pone.0314689.g008
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herein is attributable to Oviraptorosauria, a clade that originated in Asia and migrated to

North America—possibly on multiple occasions—during EKLInE (e.g. [2, 8, 17–19]. The new

data we have presented here significantly impact our understanding of oviraptorosaur distri-

bution of the Late Cretaceous in North America. Eggshell is crucial to understanding ovirap-

torosaurian occurrence as this edentulous clade does not shed teeth that could otherwise be

found in microsites. The latest Cretaceous oviraptorosaur record in North America is largely

uninterrupted (at the resolution of whole formations) through the Campano-Maastrichtian

(Fig 8), particularly when oviraptorosaurian ootaxa are included. Across this uppermost Creta-

ceous timespan, there are ten described oviraptorosaur species (all of which are Caenagnathi-

dae [140, 141]) ranging from Alberta in the north [140] to Coahuila, Mexico in the south

[142]. There is a ca. 30 million year gap in the body fossil record between these taxa and the

small-bodied taxon from the Cloverly Formation of Wyoming [24], Microvenator celer. This

large temporal gap diminishes when we incorporate Elongatoolithidae as a proxy for Ovirap-

torosauria. Elongatoolithid eggshell from the Milk River Formation [52], the Wayan Forma-

tion [25], and the Mussentuchit Member of the Cedar Mountain Formation [26, 33, this

study] suggests the persistence of oviraptorosaurs in North America throughout most of the

Cretaceous.

Moreover, the Mussentuchit Member preserves at least three co-occurring elongatoolithid

ootaxa, indicating the presence of at least three coexisting oviraptorosaurian taxa. This is not

surprising; multiple elongatoolithid oogenera (Elongatoolithus, Macroelongatoolithus, and

Paraelongatoolithus) are known to co-occur in the Chichengshan Formation of Zhejiang,

China [36], eight oviraptorosaur species are described in the Nemegt Formation of Mongolia

[143], and seven species from the Nanxiong Formation of China [144]. Although the Late Cre-

taceous body fossil record for oviraptorosaurs is diverse, co-occurrence in North America of

multiple oviraptorosaurian taxa is rarely seen. Only three formations in the Upper Cretaceous

yield multiple oviraptorosaurian taxa: the Dinosaur Park Formation (n = 3 [143]); the Horse-

shoe Canyon Formation (n = 2 [145]); and the Hell Creek Formation (n = 2 [141]), and the

tentative co-occurrence of two taxa in the Frenchman Formation [146]. The Mussentuchit

Member’s three elongatoolithid ootaxa are the first documentation of multiple species of co-

occurring North American oviraptorosaurians solely from ootaxa. These fill a vital gap in our

understanding of mid-Cretaceous oviraptorosaurian paleobiogeography and paleoecology.

The occurrence of large elongatoolithid eggs, and large-bodied caenagnathids, in both the

Wayan and Cedar Mountain Formations pre-dates similarly sized Asian taxa such as Gigantor-
aptor [93], aged at 95.8 ± 6.2 Ma [147] or Beibeilong [78] from the middle Turonian to middle

Campanian Gaogou Formation [41]. Moreover, with at least three ootaxa present in the early

Cenomanian of Utah and Idaho, we can infer a larger niche occupation than previously sug-

gested for North American oviraptorosaurs, and that would not be evident solely from body

fossil evidence. It also bisects an approximately 20 million year gap of co-occurring oviraptoro-

saur taxa from before the deposition of the Dinosaur Park Formation, and is now the oldest

known instance of multiple oviraptorosaurian taxa co-occurring in a North American

formation.

Crocodylomorph nesting

NCSM 35004 and 35005 represent the first crocodylomorph eggshell documented from the

Mussentuchit Member, the first occurrence of Mycomorphoolithus kohringi outside of Europe,

and the youngest known fossil attributable to this ootaxon by about 30 million years. More-

over, they provide direct evidence of non-dinosaurian macrovertebrate reproduction in the

ecosystem. The eggshell found here represents that of one or more mesoeucrocodylian species
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[56] which are not uncommon in the member as body fossils [2, 5]. Crocodylian material

should be expected from this location given the proximal position to open water aquatic sys-

tems [38], and teeth are found consistently in relatively high abundance in both quarries and

at microsites [5, 21, 148]. It is likely that shed teeth are overrepresented and body fossils under-

represented given the taphonomic regime [5]. These teeth are nearly exclusively attributable to

stem mesoeucrocodylian taxa: bernissartiids, atoposaurids, pholidosaurids, and Dakotasuchus,
a phylogenetically unstable mesoeucrocodylian (goniopholidid in Frederickson et al. [149];

pholidosaurid in Jouve and Jalil [150]) for which the coracoid, dorsal vertebrae, and osteo-

derms are also described [149]. Cifelli et al. [2] also report the teeth of the teleosaurid Machi-
mosaurus, that the authors suggest as a ‘probable last occurrence’ with most teleosaurid fossils

known from the Jurassic. Woodbinesuchus (goniopholidid in Frederickson et al. [149]; pholi-

dosaurid in Jouve and Jalil [150]) and Terminonaris (Pholidosauridae [150–152]) are described

from the penecontemporaneous Woodbine Formation of Texas.

Environments in Europe with Mycomorphoolithus have yielded similar levels of diversity of

stem Mesoeucrocodylia from body fossils: abundant material comes from Spain, including the

holotype locality of La Cantalera [56] and Vadillos-1. The Purbeck Limestone of England has

also produced material reinterpreted as Mycomorphoolithus sp. following reinterpretation by

Moreno-Azanza et al. [56]. La Cantalera, an exceptionally diverse European locality in the

Blesa Formation at the Hauterivian-Barremian boundary, represents a marshy environment

with periodic droughts and non-permanent water [153, 154]. It preserves Bernissartiidae and

Goniopholididae teeth, as in the Mussentuchit Member, plus cf. Theriosuchus and cf. Lisboa-
saurus teeth. Vadillos-1 of the El Collado Formation, an alluvial-palustrine muddy floodplain

[155], preserves the teeth of Bernissartiidae, Atoposauridae, and Goniopholididae (taxa consis-

tent with the Mussentuchit) as well as the deeply-nested hylaeochampsid Unasuchus [134], in

addition to Mycomorphoolithus.
The Purbeck Limestone Group in southern England is older (Berriasian) and predomi-

nantly offshore [156]. The eggshell referred to Mycomorphoolithus (‘Type 1’ [57]; ‘Type 1 and

Type 2’ [58], sensu Moreno-Azanza et al. [56]) is from the Worbarrow Tout Member of the

Lulworth Formation, described as chert-rich micrites [156]. Two crocodylians are known

from body fossils recovered from the Purbeck Limestone Group: the goniopholidid Goniopho-
lis kiplingi [157], and the pholidosaurid Pholidosaurus purbeckensis [158]. Both of these clades

have been identified in the Mussentuchit Member based on isolated teeth.

Taxa from the Mussentuchit belong to clades that, in North America, range from 0.6 m

long Bernissartia to 6 m long Terminonaris; body size from the described Dakotasuchus in the

Mussentuchit has been estimated at 3.7–5.4 m [149]. Any clades referenced above could repre-

sent the putative egg layer with no indication of egg size to constrain the speculation or direct

association of osteological fossils with eggshell. It may be worth noting that the only taxon

cited in each of the three regions with Mycomorphoolithus are goniopholidids (Fig 9). Still,

considering the isolated nature of eggshell and teeth found along with the instability of the

taxa within Goniopholididae and Pholidosauridae, we do not ascribe an association.

Conclusions

Our results fill a major ootaxonomic knowledge gap among mid-Cretaceous assemblages of

Western North America, which lag behind those of the Late Cretaceous. Based on our study,

the Mussentuchit ooassemblage is currently the most diverse known prior to the Campanian.

Due to the newly formulated temporal framework, at least six archosaurian ootaxa are repre-

sented from a ~89,000-year window. Three of these provide novel insights for the understand-

ing of oviraptorosaur spatiotemporal distribution and diversity within the Late Cretaceous
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Fig 9. The known fossil-bearing strata of Mycomorphoolithus and co-occurring mesoeucrocodilians that have been posited as potential egg-layers. The

discovery of Mycomorphoolithus in the Mussentuchit extends the temporal and spatial range of this oogenus from Early Cretaceous Europe across into Late

Cretaceous North America. Goniopholididae are the only known clade with representation in all three units with Mycomorphoolithus.

https://doi.org/10.1371/journal.pone.0314689.g009
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Western Interior Basin. We document the presence of at least three differently sized co-

occurring oviraptorosaurs, of varying size classes, in the Mussentuchit assemblage. These data

bridge a 20 million year gap in the fossil record of co-occurring North American oviraptoro-

saurs, another 15 million years in the record of Spheroolithus in North America, and a 30 mil-

lion-year gap for the crocodylian ootaxon Mycomorphoolithus. Eggshell data are particularly

crucial to understanding broader paleoenvironmental questions. They provide data points

beyond body fossils alone and a fascinating window into the behavioral ecology of these taxa.
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