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Abstract 
Bonapartenykus ultimus is an alvarezsaurid theropod from the Upper Cretaceous of 

Patagonia, Argentina. This species is represented by the holotype specimen and several 

referred specimens, many of which have pneumatic structures. Pneumaticity involves 

the invasion of the interior of the skeleton by means of air sac diverticula. Such invasion 

occurs from cortical openings (foramina) that communicate with internal air spaces. 

Despite previous studies on pneumatic structures in theropod specimens, there are no 

studies focusing on the family Alvarezsauridae. Here we address this gap by presenting 

the first contribution focusing on the pneumatic features of an alvarezsaurid theropod 

using both external skeletal anatomy as well as computed tomographic images showing 

internal details. The specimens studied show that the axial skeleton of B. ultimus was 

invaded by pneumatic structures, reaching the middle section of the tail. Our study sug-

gests that pneumaticity among alvarezsaurids did not have a linear evolutionary trajectory, 

but instead shows a more random pattern of variability. This study is an important first step 

that paves the way for future studies to uncover the extent of pneumatic invasion among 

alvarezsaurids and its macroevolutionary implications.

Introduction
Alvarezsauridae are a group of early diverging maniraptoran theropod dinosaurs, first 
recognized by Bonaparte [1]. The fossil record of this dinosaur family comes from the 
Upper Cretaceous of South America, North America, Europe, and Asia [2–11]. Notably, 
the diversity of this clade in South America is limited to Argentina where five species 
have been described to date: Alnashetri cerropoliciensis from the Cenomanian Candeleros 
Formation [7,12]; Patagonykus puertai from the Coniacian Portezuelo Formation [3,13]; 
Alvarezsaurus calvoi and Achillesaurus manazzonei from the Coniacian Bajo de la Carpa 
Formation [1,4]; and Bonapartenykus ultimus from middle Campanian–lower Maastrich-
tian Allen Formation [6].
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Among the Argentinian forms, an endemic subclade Patagonykinae has been identified 
that currently includes Patagonykus puertai and Bonapartenykus ultimus [6]. This subfamily 
shows a tendency towards larger body sizes relative to other alvarezsaurians with body length 
estimated between ~ 3 to ~ 3.3 meters [14]. Bonapartenykus ultimus comes from the “Salitral 
Ojo de Agua” locality of Rio Negro Province (Patagonia, Argentina) and is the only known 
species of its genus. The species is represented by the holotype specimen published by Agnolín 
et al. [6], along with several referred specimens published by Salgado et al. [15] and Meso  
et al. [16]. These specimens exhibit particular bone anatomy including structures indicating 
the presence of postcranial pneumaticity.

Pneumaticity is a widely distributed feature among archosaurs, including pterosaurs and 
saurischian dinosaurs [17–24]. However, birds are the only living archosaurs with postcranial 
pneumaticity in their skeleton, since crocodylians lack it [23]. The pneumatic system denotes 
the invasion of bone by air sac diverticula, which may manifest through observable external 
openings (i.e., fossae and foramina) and internal pneumatization patterns (e.g., procamerate, 
camerate and camellate). Numerous studies have explored the pneumatic system of dinosaurs 
[e.g., 20,21,25–28]. Sauropods have been the main focus of attention [e.g., 19–21,29,30],  
but there have also been studies investigating pneumaticity in non-avian theropods 
[22,23,28,31,32,34,35]. Nevertheless, to date, no studies have focused on the pneumaticity 
of the family Alvarezsauridae. This study aims to fill this knowledge gap by characterizing 
the pneumatic structures in the axial skeleton of Bonapartenykus based on first-hand study 
of external anatomy as well as internal anatomy from computed tomography scans. The 
observed pneumatic pattern was compared with other theropods, focusing on alvarezsaurians, 
to understand its broader significance in theropod evolution.

Materials and methods
The fossils described here come from the middle Campanian-lower Maastrichtian (Upper 
Cretaceous) Allen Formation of Río Negro Province, Argentina. The holotype specimen of 
Bonapartenykus (MPCA 1290) is housed in the MPCA “Museo Provincial Carlos Amegh-
ino”, Cipolletti City. Referred specimens (MPCN-PV 738) are housed in the MPCN “Museo 
Patagonico de Ciencias Naturales” General Roca. Both museums are located in Río Negro 
Province, Argentina. No permits were required for the described study, which complied with 
all relevant regulations.

Computed tomographic images (CTs) were obtained from eleven vertebral elements: a 
mid-cervical vertebra (MPCN-Pv 738.28), two posterior cervical vertebrae (MPCN-Pv 738.26 
and 27), two cervico-dorsal vertebrae (MPCN-Pv 738.15 and 16), a sacral vertebra (MPCN-Pv 
738.14), the first caudal vertebra (MPCN-Pv 738.10), an anterior caudal vertebrae (MPCN-Pv 
738.29), two mid-caudal (MPCN-Pv 738.8 and 30) and a posterior caudal vertebra  
(MPCN-Pv 738.11). The scans were performed at “Sanatorio Juan XXIII” hospital in General 
Roca, Río Negro Province, Argentina. The remaining elements were examined first-hand for 
external anatomical features and to a limited extent some internal anatomy accessible through 
natural fractures in the fossils. The descriptions follow the vertebral laminae and fossae 
nomenclature proposed by Wilson [36,37] and Wilson et al. [38] as well as the terminology for 
pneumatic structures of Britt [17], Wedel [20], and O’Connor [22].

Results
Two anterior cervical vertebrae assigned to cf. Bonapartenykus ultimus (MPCN-PV 738) are 
preserved, a vertebral centrum (MPCN-Pv 738.32) and an incomplete neural arch (MPCN-Pv 
738.47). The external surface of anterior cervical centrum (MPCN-Pv 738.32) lacks foramina, 
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but has a deep depression on its ventral region. This centrum is broken dorsally, exposing 
a wide internal cavity surrounded by a reticule of interconnected trabeculae (Fig. 1A). The 
anterior cervical neural arch (MPCN-Pv 738.47) bears poor developed laminae and shallow 
neural fossae (Fig. 1B) as well as a pair of foramina on the inner surface of centrodiapophyseal 
fossa (cdf).

The mid-cervical region of cf. Bonapartenykus ultimus is represented by a neural arch 
(MPCN-Pv 738.28). This has a rough ventral surface indicating an open neurocentral joint 
(i.e., site of attachment with the centrum). This element presents a pattern of poorly devel-
oped neural laminae, accompanied by wide lateral fossae (i.e., cdf, prcdf, pocdf and sdf) 
(Fig. 2A). Additionally, natural fractures in the preserved transverse processes and base of 
the neural spine reveal a three-dimensional network of trabeculae, with small interconnected 
air spaces. In particular, the inner surface of the prezygapophyseal centrodiapophyseal fossa 
(prcdf) and spinodiapophyseal fossa (sdf) of MPCN-Pv 738.28 bears foramina (Fig. 2A). 

Fig 1. Anterior cervical vertebrae assigned to cf. Bonapartenykus ultimus. A, MPCN-Pv 738.32 in dorsal view; A1, 
interpretive drawing showing internal air spaces; B, MPCN-Pv 738.47 in lateral view; B1, detail of foramina. Abbrevia-
tions: ic, internal cavity; ns, neural spine; prz, prezygapophysis.

https://doi.org/10.1371/journal.pone.0320121.g001

Fig 2. Mid-cervical vertebrae MPCN-Pv 738.28 assigned to cf. Bonapartenykus ultimus. A, MPCN-Pv 738.28 
in lateral view; A1, close ups showing foramina on sdf and A2, on prcdf; B, three-dimensional reconstruction of 
MPCN-Pv 738.28 in lateral view; B1, transverse section of MPCN-Pv 738.28 at mid-length, note the internal air 
spaces. Abbreviations: cdf, centrodiapophyseal fossa; nc, neural canal; ns, neural spine; dp, diapophysis; prcdf, prezy-
gapophyseal centrodiapophyseal fossa; prz, prezygapophysis; pocdf, postzygapophyseal centrodiapophyseal fossa; sdf, 
spinodiapophyseal fossa.

https://doi.org/10.1371/journal.pone.0320121.g002

https://doi.org/10.1371/journal.pone.0320121.g001
https://doi.org/10.1371/journal.pone.0320121.g002
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Although mid-cervical neural fossae are shallow externally (Fig. 2B), CT scan images reveal a 
network of internally interconnected air spaces (Fig. 2B).

The posterior cervical vertebrae assigned to cf. Bonapartenykus ultimus (MPCN-Pv 738.26 
and 27) preserve only the neural arches. The pattern of neural laminae and fossae is consid-
erably more complex compared to the mid-cervical vertebrae (Fig. 3A and B). Lateral fossae 
(i.e., cdf, prcdf, pocdf and sdf) are deep and almost reach the axial plane of the element. The 
posterior cervical vertebra MPCN-Pv 738.27 has a deep spinopostzygapophyseal fossa (spof) 
with an elliptical outline (Fig. 3C). This fossa reaches almost to the roof of the neural canal, 
invading almost half the height of the neural arch. The spof is not discernible in posterior 
cervical vertebra MPCN-Pv 738.26 since the posterior surface of the neural spine is completely 
eroded. The inner surfaces of the prezygapophyseal centrodiapophyseal fossae (prcdf) have a 
pair of foramina in MPCN-Pv 738.26 and a simple foramen in MPCN-Pv 738.27. Addition-
ally, both posterior cervical vertebrae have a poorly developed lamina on the inner surface of 
the spinodiapophyseal fossae (sdf) and have a foramen on each side of that lamina; the only 
exception is the right sdf of MPCN-Pv 738.26, which is simple and has only one foramen 
inside it. Interestingly, CT scans also show the interior of the neural arch with interconnected 
air spaces, including some small camerae in the neural spine (Fig. 3D and E).

The cervico-dorsal transition of cf. Bonapartenykus ultimus is represented by two incom-
plete vertebrae, with both MPCN-Pv 738.15 and 16 lacking the centrum, as well as an isolated 
fragment of postzygapophysis (MPCN-Pv 738.48) and neural spine (MPCN-Pv 738.49). Their 
neural fossae (prsdf, posdf, sprf and spof) are wide and deep (Fig. 4A-D), especially the 
postzygapophyseal spinodiapophyseal fossa (posdf) that invades almost to the axial plane of 
the neural arch (Fig. 4E and F). The cervico-dorsal transition is characterized by the presence 

Fig 3. Posterior cervical vertebrae assigned to cf. Bonapartenykus ultimus. A, MPCN-Pv 738.26 in lateral view, and 
detail of foramina (A1); B and C, MPCN-Pv 738.27 in lateral view (B), detail of foramina (B1), and posterior views (C); 
D, three-dimensional reconstruction of MPCN-Pv 738.26 in lateral view, transverse (D1), and frontal (D2) sections; 
E, three-dimensional reconstruction of MPCN-Pv 738.27 in lateral view, transverse (E1), and frontal (E2) sections. 
Abbreviations: cdf, centrodiapophyseal fossa; dp, diapophysis; nc, neural canal; ns, neural spine; prcdf, prezygapoph-
yseal centrodiapophyseal fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; sdf spinodiapophyseal fossa; 
spof, spinopostzygapophyseal fossa.

https://doi.org/10.1371/journal.pone.0320121.g003

https://doi.org/10.1371/journal.pone.0320121.g003
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of deep spinoprezygapophyseal (sprf) and spinopostzygapophyseal (spof) fossae with an 
elliptical contour. This anatomical area is also represented by a fragment of isolated postzyga-
pophysis (MPCN-Pv 738.48) and neural spine (MPCN-Pv 738.49), whose fractures show large 
internal camerae. The incomplete vertebra MPCN-Pv 738.15 has two foramina, separated by 
a thin bony layer on the interior surface of prezygapophyseal spinodiapophyseal fossa (prsdf). 
CT images show that the interior of the neural spine of MPCN-Pv 738.15 and 16 has abundant 
interconnected air spaces (Fig. 4E and F).

The mid-dorsal vertebra (MPCA 1290, holotype specimen) is almost completely preserved 
and its anatomy has been described in detail by Agnolín et al. [6]. However, it is interesting to 
note some features that could be linked to the presence/absence of pneumaticity in the only 
preserved vertebral element of the holotype specimen of Bonapartenykus ultimus. For exam-
ple, the centrum lacks pleurocoels, although it bears a foramen on its lateral cortical surface. 
The natural fractures in the centrum do not appear to show signs of internal pneumaticity, 
such as camellae or camerae, although the preservation in that area is poor. The neural arch 
has well-developed lamellae that delimit wide and deep pacdf, pocdf and sdf; and a much- 
reduced prcdf (Fig. 5A-B). The neural arch also has a deep spof (Fig. 5C).

The sacral region of cf. Bonapartenykus ultimus is represented by two anterior sacral ver-
tebrae (MPCN-Pv 738.14) and the last sacral vertebra (MPCN-Pv 738.31). The poor state of 
preservation of these elements makes it difficult to observe certain features; however, natural 
fractures in their centra show the presence of small camerae internally (Fig. 6A-D). CT scan 
images show a large cavity in the posterior region of the centrum that occupies almost the 
entire interior and is surrounded by small air spaces. The anterior half of centrum is com-
posed of cancellous bone (Fig. 6E).

The exterior of the anterior and middle caudal vertebrae of cf. Bonapartenykus ultimus 
(MPCN-Pv 738.8, 10, 29, 30, 37 and 38) show lateral depressions and rather shallow neural 
fossae. The lateral surfaces of some caudal centra bear small and elliptical foramina, and natu-
ral fractures in the centra reveal internal air-spaces. CT images show that the interior of these 

Fig 4. Cervico-dorsal vertebrae assigned to cf. Bonapartenykus ultimus. A, MPCN-Pv 738.15 in lateral view, and 
detail of two foramina (A1); B, C, and D, MPCN-Pv 738.16 in anterior (B), posterior (C), and lateral views (C); E, 
three-dimensional reconstruction of MPCN-Pv 738.15 in anterior view, frontal (E1), and parasagittal (E2) sections; 
F, three-dimensional reconstruction of MPCN-Pv 738.16 in lateral view and frontal section (F1). Abbreviations: ns, 
neural spine; posdf, postzygapophyseal spinodiapophyseal fossa; prsdf, prezygapophyseal spinodiapophyseal fossa; 
spof, spinopostzygapophyseal fossa; sprf, spinoprezygapophyseal fossa.

https://doi.org/10.1371/journal.pone.0320121.g004

https://doi.org/10.1371/journal.pone.0320121.g004
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vertebrae are mainly invaded by asymmetrical air-spaces, however, this feature is variable in 
the vertebrae scanned. For instance, the first caudal centrum (MPCN-Pv 738.10) is pneumatic 
with camellate tissue, except for the condyle which is solid (Fig. 7A-B). In contrast, a big cam-
era is present in anterior caudal centrum MPCN-Pv 738.29, with a longitudinal septum in its 
dorsal area (Fig. 7C-D). In the mid-caudal vertebrae (MPCN-Pv 738.30 and MPCN-Pv 738.8), 
CT scans show cancellous bone in the interior of the centrum, including the condyle (Fig. 
7E-I). Remarkably, the most complete caudal vertebra MPCN-Pv 738.8 has a large internal 
air-chamber in the anterior half of the neural arch, above the neural canal, which bifurcates in 
the posterior half of the neural arch. This air-structure contacts an external foramen located 
at the base of the neural spine (Fig. 7I) and pneumatizes almost the entire neural arch. Finally, 
the posterior caudal centrum MPCN-Pv 738.11 has a foramen on its lateral surface, but CT 
images show that its interior is completely solid (Fig. 7J-K).

Discussion
Among theropods, alvarezsaurids exhibit a distinctive suite of skeletal characteristics [14]. 
Members of this clade were characterized by a gracile skull with small teeth, that likely did 
not exceed 1 centimeter in length; large and rounded orbits; absence of contact between 
the postorbital and jugal bones; markedly shorter forelimbs with a robust digit; elongated 

Fig 5. Mid-dorsal vertebrae of holotype specimen of Bonapartenykus ultimus (MPCA 1290). A, vertebra in lateral 
view and detail of foramina (A1); B, three-dimensional reconstruction in lateral view; C, vertebral element in posterior 
view; D three-dimensional reconstruction in posterior view. Abbreviations: nc, neural canal; pacdf, parapophyseal 
centrodiapophyseal fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; prcdf, prezygapophyseal centrodia-
pophyseal fossa; sdf spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa.

https://doi.org/10.1371/journal.pone.0320121.g005

Fig 6. Sacral vertebrae assigned to cf. Bonapartenykus ultimus. A, B and C, MPCN-Pv 738.14 in anterior (A), dor-
sal (B) and lateral (C) views; D, MPCN-Pv 738.31 in lateral view; E, three-dimensional reconstruction of MPCN-Pv 
738.31 in lateral view, and transverse (E1), and frontal (E2) sections. Abbreviation: ic, internal cavity.

https://doi.org/10.1371/journal.pone.0320121.g006

https://doi.org/10.1371/journal.pone.0320121.g005
https://doi.org/10.1371/journal.pone.0320121.g006
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hindlimbs; and hyper-elongated tails with procoelous caudal vertebrae, among other fea-
tures. These morphological features have motivated a number of important studies about the 
paleobiology of this group [e.g., 5,10,39–44]. Despite this range of past studies, the pneumatic 
system of the postcranial skeleton has never been investigated in detail. To address this knowl-
edge gap, this study has presented the first contribution focusing on the pneumatic structures 
of an alvarezsaurid theropod (i.e., Bonapartenykus) using first-hand study and CT images.

It has been established that the presence of cortical foramina may be linked to pneumatic 
diverticula or vasculature [17,20]. However, the persistence of cortical foramina communicat-
ing with internal cavities (e.g., camerate tissue) in the axial skeleton is a direct correlate of the 
presence of pneumatic diverticula [22]. Thus, irrespective of ontogenetic stage, the specimens 
studied here show unambiguous evidence of postcranial pneumaticity. This study underscores 
the importance of using CT images in pneumaticity studies, especially in small-bodied taxa in 
which pneumatic and vascular traces can be difficult to distinguish. For example, the cortical 
foramina of distal caudal vertebra MPCN-Pv 738.8 was found to be unexpectedly associated 
with a solid centrum, reinforcing the idea that inferences of pneumaticity should not be based 
on external osteological correlates alone. Thus, we propose the creation of a more substantial 
alvarezsaurian CT dataset in the future in order to better assess the distribution and signifi-
cance of pneumatic features across the group and across theropods more broadly.

The CT images of the presacral vertebrae of Bonapartenykus ultimus show, in general 
terms, a pattern of internal air-spaces. Pneumaticity of cervical and anterior dorsal vertebrae 
is widespread in theropods [25]. In this aspect, presacral vertebrae of MPCN-PV 738 show 
camellate internal patterns described for most other coelurosaurs, including early branching 

Fig 7. Caudal vertebrae assigned to cf. Bonapartenykus ultimus. A MPCN-Pv 738.10 in lateral view; B, three- 
dimensional reconstruction of MPCN-Pv 738.10 and frontal section (B1); C MPCN-Pv 738.29 in lateral view; D, 
three-dimensional reconstruction of MPCN-Pv 738.29 and frontal sections (D1-D2); E, MPCN-Pv 738.30 in lateral 
view; F, thrsee-dimensional reconstruction of MPCN-Pv 738.30 and transverse section (F1); G, MPCN-Pv 738.8 in 
lateral view; H, three-dimensional reconstruction of MPCN-Pv 738.8 in lateral view, and transverse sections (H1-H2), 
and frontal sections (H4-H6); I, three-dimensional reconstruction of MPCN-Pv 738.8 in anterior view, and parasag-
ittal section (I1); J, MPCN-Pv 738.11 in lateral view; K, three-dimensional reconstruction of MPCN-Pv 738.11, and 
frontal section (K1). Abbreviation: nc, neural canal.

https://doi.org/10.1371/journal.pone.0320121.g007

https://doi.org/10.1371/journal.pone.0320121.g007
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paravians [28,45] and even the early diverging alvarezsaurian Shishugounykus inexpectus 
[33]. The particular case of the dorsal vertebra of the holotype specimen of B. ultimus (MPCA 
1290) shows no signs of unambiguous pneumaticity; but, observations of this specimen are 
currently limited to external anatomy only.

Furthermore, specimens studied here show that the sacral region of Bonapartenykus was 
pneumatized, as in at least some abelisauroids and several tetanurans such as spinosauroids, 
allosauroids, tyrannosauroids, ornithomimids, and maniraptorans including alvarezsauri-
ans [25]. Conversely, apneumatic sacral vertebrae are found in some theropods, such as the 
carcharodontosaurid Tyrannotitan [46] and the therizinosaurid Nothronychus [47, 48]; and, 
although rarely, in some birds too [21].

Caudal pneumaticity has been widely recorded among theropods such as Carcharodonto-
sauridae, Megaraptora, Ornithomimosauria, Therizinosauroidea, Oviraptorosauria, and early 
diverging alvarezsaurians [17,33,34,48]. Although several clades exhibit caudal pneumaticity, 
the specimens studied here show that the caudal series of Bonapartenykus (though incomplete 
and represented by disarticulated vertebrae) was pneumatized in both anterior and middle 
sections. In other words, the pneumatic structures extend into the middle section of the tail. 
This feature is reminiscent of some ornithomimosaurians whose pneumaticity reached the 
mid-caudal vertebrae [32]. By contrast, caudal pneumaticity in theropods like carcharodon-
tosaurids [17], therizinosaurs [49, 50], and abelisaurids are typically limited to the anterior 
caudals, while noasaurids exhibit apneumatic caudal vertebrae [35,51]. Lastly, in oviraptoro-
saurs, caudal pneumatization reached the posterior caudal vertebrae [35,52,53]. The evidence 
collected so far shows that the caudal region of the alvarezsaurids had well-developed pneu-
maticity. Of particular interest is a caudal vertebra of a parvicursorine from the Hell Creek 
Formation (LACM 153311) with an extensive development of pneumatic structures. The 
external features of this vertebral element possibly show a greater degree of pneumaticity than 
South American forms, including Bonapartenykus.

The study of axial pneumaticity within Alvarezsauria is limited to external anatomy (such as 
cortical foramina and natural fractures) and CT scans performed on Shishugounykus [33] and 
now extending to specimens assigned to Bonapartenykus. It appears that the earlier-diverging 
members of Alvarezsauria, such as Shishugounykus inexpectus, exhibit a greater degree of pneu-
matic invasion compared to more derived forms. However, the absence of cortical foramina in 
this Asiatic form makes the internal spaces of the vertebrae ambiguous evidence of postcranial 
pneumaticity. Thus, this study based on specimens of Bonapartenykus presents the first unam-
biguous evidence of postcranial pneumaticity in an alvarezsaurian theropod.

The axial skeletons of alvarezsaurians possess internal chambers, in some cases accompa-
nied by cortical foramina that confirm the presence of postcranial pneumaticity. In addition, 
Bannykus, Xiyunykus and alvarezsaurids share the presence of a foramen that develops above 
the neural canal in caudal vertebrae. CT images show that, at least in Bonapartenykus, this 
foramen penetrates the neural arch as unambiguous evidence of alvarezsaurian axial pneuma-
ticity, a feature that requires future work to evaluate among other alvarezsaurian taxa. Never-
theless, what we currently know from alvarezsaurians does not suggest a linear evolutionary 
trajectory, but rather points to a degree of seemingly random variability in the pneumatic fea-
tures of the axial skeleton (Fig. 8). Future studies, particularly CT-based analyses of additional 
alvarezsaurid specimens, will be essential to fully understand the extent of pneumatic invasion 
among members of this clade and its macroevolutionary significance.

The examined specimens referred to Bonapartenykus show a wide range of sizes and 
ontogenetic stages, indicating a diversity of represented individuals [14]. For instance, cervical 
neural arch MPCN-Pv 738.28 has rough neurocentral sutures that suggest a lack of fusion to 
its corresponding vertebral centrum, interpreted as a sign of immaturity. Additionally, the 
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degree of pneumatic invasion within the vertebrae varies considerably between different speci-
mens (possibly linked to ontogenetic stages) particularly in regions such as the tail.

The described specimens have a seemingly random and asymmetrical distribution of 
foramina and internal pneumatic patterns (as shown by CT scans) along the axial skeleton. 
This lack of symmetry aligns with the idea proposed by Witmer [54] that the pneumatiza-
tion process may have been largely opportunistic, potentially stemming from the emergence 
of pneumatic diverticula due to blood vessels, as suggested by Taylor and Wedel [24]. This 
random or chaotic internal pneumatization is reminiscent of the internal structure of some 
sauropods, e.g., a rebbachisaurid caudal vertebra described by Windholz et al [55]. Pneuma-
ticity is variable because pneumatic diverticula followed blood vessels as they developed, and 
blood vessels are already inherently variable. The nature of pneumatization adds a second 
layer of variability on top of the variability imposed by the blood vessels. In other words, if 
blood vessels typically show some degree of variability, then we should expect that any pneu-
matic systems built on a pattern established by the blood vessels would be even more variable 
because the process of pneumatization is opportunistic. Thus, the highly variable morphology 
of the internal air spaces in Bonapartenykus is another line of evidence that they are pneu-
matic rather than vascular.

The occurrence of pneumatic structures in cervical vertebrae and most anterior dorsal ver-
tebrae supports the presence of cervical air-sac diverticula in Bonapartenykus. Furthermore, 
pneumatic chambers in the neural arch of posterior cervical vertebra MPCN-Pv 738.26 con-
nect to the neural canal which supports the presence of paramedullary diverticula, like those 
of birds [56]. Similarly, sacral and caudal pneumaticity indicate the presence of abdominal 

Fig 8. Mapped pneumatic features in the studies by Meso et al. [ 14]. The studied features are as follows: lateral surface of cervical centra (Ch 1; 0, simple 
depression; 1, foramina); internal anatomy of cervical centra (Ch 2; 0, absent; 1, present); lateral surface of dorsal centra (Ch 3; 0, simple depression; 1, 
foramina); internal anatomy of dorsal centra (Ch 4; 0, absent; 1, present); lateral surface of sacral centra (Ch 5; 0, simple depression; 1, foramina); internal 
anatomy of sacral centra (Ch 6; 0, absent; 1, present); lateral surface of caudal centra (Ch 7; 0, simple depression; 1, foramina); internal anatomy of caudal 
centra (Ch 8; 0, absent; 1, present); foramen developing above the neural canal in caudal vertebrae (Ch 9; 0, absent; 1, present).

https://doi.org/10.1371/journal.pone.0320121.g008

https://doi.org/10.1371/journal.pone.0320121.g008


PLOS ONE | https://doi.org/10.1371/journal.pone.0320121 April 2, 2025 10 / 13

PLOS ONE First unambiguous record of axial skeleton pneumaticity in alvarezsaurians

air-sac diverticula. Unfortunately, it is not possible to elucidate the presence of other air-sacs 
because they do not leave osteological correlates (e.g., caudal thoracic air-sac), or they pneu-
matize elements not preserved among the specimens here studied (e.g., sternum, sternal ribs) 
[25]. Finally, while reduced bone mass is advantageous for flight in modern birds, its adaptive 
significance in non-avian dinosaurs, including theropods of varying sizes, remains uncertain 
[32]. This highlights the need for further studies of pneumaticity in the different theropod 
lineages, as well as periodic global reviews [e.g., 31].

Conclusions
This paper presents the first research focusing on the pneumatic features of an alvarezsaurid 
theropod based on specimens of Bonapartenykus ultimus. It can now be noted that the axial 
skeleton of this species was pneumatized, and possibly in other alvarezsaurids as well with 
future work. This premise is supported by the presence of cortical openings communicating 
with internal air spaces in the vertebral elements of B. ultimus. The axial skeleton of B. ultimus 
appears to be pneumatized from the neck to the mid-tail region. Members of Alvarezsauridae 
do not seem to show a linear evolutionary trend, but rather show a degree of random variabil-
ity in the pneumatic structures of the axial series. Our findings emphasize the need for studies 
of the pneumatic system to examine both the external and internal anatomy of specimens. 
As a priority of future pneumaticity research, specimens should be imaged using available 
technologies such as CT scanning to fully understand the extent and significance of pneumatic 
invasion, among alvarezsaurids and theropods more generally.
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