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Helically arranged cross struts
in azhdarchid pterosaur cervical vertebrae
and their biomechanical implications
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SUMMARY

Azhdarchid pterosaurs, the largest flying vertebrates, remain poorly understood,
with fundamental aspects of their palaeobiology unknown. X-ray computed to-
mography reveals a complex internal micro-architecture for three-dimensionally
preserved, hyper-elongate cervical vertebrae of the Cretaceous azhdarchid
pterosaur, Alanqa sp. Incorporation of the neural canal within the body of the
vertebra and elongation of the centrum result in a ‘‘tubewithin a tube’’ supported
by helically distributed trabeculae. Linear elastic static analysis and linearized
buckling analysis, accompanied with a finite element model, reveal that as few
as 50 trabeculae increase the buckling load by up to 90%, implying that a vertebra
without the trabeculae is more prone to elastic instability due to axial loads. Sub-
suming the neural tube into the centrum tube adds considerable stiffness to the
cervical series, permitting the uptake of heavy prey itemswithout risking damage
to the cervical series, while at the same time allowing considerable skeletal mass
reduction.
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INTRODUCTION

Pterosaurs, volant reptiles of the Mesozoic made their first appearance in the fossil record in the Late

Triassic and survived until the end of the Cretaceous approximately 66 million years ago (Unwin, 2005; Wit-

ton, 2013; Longrich et al., 2018). Although some pterosaurs were small, with wingspans of less than 1 m, the

enigmatic Azhdarchidae achieved wingspans of up to 10 m, possibly even as high as 12 m (Lawson, 1975;

Frey and Martill, 1996; Buffetaut et al., 2003; Witton and Habib, 2010). These gigantic forms were globally

distributed, but mainly restricted to the late Early to end Late Cretaceous (Averianov, 2010, 2013; Naish and

Witton, 2017). The Azhdarchidae are notable for elongation of the neck as a result of hyper-elongation of

their cervical vertebrae (Frey andMartill, 1996; Unwin and Lü, 1997; Martill et al., 1998; Company et al., 1999;

Unwin, 2003; Henderson and Peterson, 2006; Watabe et al., 2009; Witton, 2013; Liu et al., 2015; Harrell et al.,

2016). Their cervical vertebrae (Figure 1) display many modifications of the centrum, neural arch, and artic-

ulatory facets and processes (condyles, cotyles, and zygapophyses), many of which appear to be adapta-

tions for holding the neck in an outstretched position (Averianov, 2013; Naish andWitton, 2017). Numerous

bone locks restrict flexion in three planes, and deep ligament sockets anteriorly and posteriorly imply

strong linkage between individual vertebrae. Flattening of the condyle and cotyle also limits flexion to a

single plane (Averianov, 2013). However, the function and complexity of the internal structure of these high-

ly unusual vertebrae has never previously been investigated. Previous analysis of the biomechanics of azh-

darchid cervical vertebrae (e.g., Averianov, 2013; Naish andWitton, 2017) modeled them as a simple, single

hollow tube, but such analyses fail to correctly determine the biomechanical properties of the pterosaur

neck skeleton by ignoring its internal structure. This lack of quantifiable analysis has hampered efforts to

assess fundamental aspects of azhdarchid ecology, such as their prey size and neck strength.

Studies of pterosaur skeletal anatomy are often limited by a shortage of high-quality specimens displaying

3D morphology, and this is especially true for the pterosaur neck skeleton. The limited amount of morpho-

logical data for Azhdarchidae contributes to our poor understanding of the biomechanics and palaeoecol-

ogy of these pterosaurs. Although three-dimensionally preserved pterosaur bones are rare, and articulated

material rarer still, the mid Cretaceous Kem Kem Group of Morocco is becoming increasingly important as
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Figure 1. Cervical vertebra of Alanqa sp. from the Kem Kem Group of Morocco

Cervical vertebra of Alanqa sp. FSAC-KK 5077 in (A), dorsal view, (B), ventral view, (C), right lateral view, (D), anterior view,

(E), posterior view. Scale bars represent 10 mm. Abbreviations: pz, prezygapophysis; ct, cotyle; ns, neural spine; su, sulci;

fo, foramina; lpf, lateral pneumatic foramina (See Table S1 for measurements).
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a source of well-preserved, 3D pterosaur bones, including azhdarchid cervical vertebrae (Ibrahim et al.,

2020).

XCT scanning of a well-preserved azhdarchid cervical vertebra from the Kem Kem Group provides a rare

opportunity to investigate the internal architecture of these highly derived bones to determine their me-

chanical properties and tolerance.We tentatively attribute these vertebrae to the taxon,Alanqa sp. Ibrahim

et al. (2010), although we note, based on recently described finds that other azhdarchoid taxa were present

in the Kem Kem Group (Ibrahim et al., 2020). The Kem Kem Group records a complex fluvial system domi-

nated by red-bed strata. They are famous for the high abundance of fragmentary, but well-preserved re-

mains of disarticulated vertebrates (Lavocat, 1954; Sereno et al., 1996; Ibrahim et al., 2010). Most pterosaur

material has been collected from the Albian-Cenomanian Ifezouane Formation (Ibrahim et al., 2020).
Pterosaur bone

Pterosaur bones are typically hollow and usually thin walled with reduced internal trabeculae, except at

points of articulation (Witton, 2013). Like all tetrapod bones, pterosaur bone is rich in osteocyte lacunae

with dense fringes of canaliculae (de Ricqlès et al., 2000; Steel, 2008) and micro-capillaries, which may

render the bone less dense than if it were solid (supplemental information Figure S1). Thus, pneumatized

pterosaur bones likely are extremely light (Witton and Habib, 2010, but see Butler et al., 2009; Dumont,

2010; Martin and Palmer, 2014 for a discussion on the effects on pneumaticity on bone density in volant
2 iScience --, 102338, --, 2021
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tetrapods). Most Cretaceous pterosaur bones appear extremely fragile due to the highly reduced thickness

of their bone walls (Bennett, 1997). Paleohistological studies reveal thin-walled pterosaur bone to be

composed of microlamellar bone, with many lamellae per mm of thickness (de Ricqlès et al., 2000; Steel,

2008). Such histology is widely thought to confer stiffness and resist impact fracture (de Ricqlès et al., 2000).
Pterosaur neck skeleton

Pterodactyloid pterosaur necks are comparatively large structures with generally eight or nine cervical

vertebrae, most of which are larger than individual thoracic, lumbar, sacral, and caudal vertebrae (Howse,

1986; Wellnhofer, 1991; Witton, 2013; Bennett, 2014). The neck is usually longer than the torso and often

supports an extremely large but lightly constructed skull (Kellner and Langston, 1996). Individual vertebrae

are usually pneumatized with enlarged lateral foramina, low, or even absent neural spines and in many

cases are approximately as high as they are wide and long (approximately equant) (Butler et al., 2009;

Claessens et al., 2009). They are procoelous and articulate with adjacent vertebrae via a horizontally oval

condyle and cotyle, with inclined facets of the anterior and posterior zygapophyses (Howse, 1986; Witton,

2013).

In ctenochasmatid and azhdarchid pterosaurs cervical vertebrae are more elongate in the central portion

(C3 to C7), and in Azhdarchidae, they are highly elongate and even hyper-elongate in the case of cervical

five (C5) (the Romanian Hatzegopteryxmay have secondarily shortened their neck length, but the evidence

is equivocal) (Vremir et al., 2015; Naish and Witton, 2017). Most notably, the late Cretaceous azhdarchid

Arambourgiania has a cervical vertebra (C5) with an estimated maximum length of 770 mm (Frey and Mar-

till, 1996) and an estimated total neck length of ~2.5 m. Such elaborate structures have become the subject

of several biomechanical and functional studies (Witton and Habib, 2010; Averianov, 2013; Naish and Wit-

ton, 2017), as such long necks are remarkable for volant animals. Besides their increased length, several

other features distinguish azhdarchid cervical vertebrae from other pterosaurs. Notable is the lack of pneu-

matic foramina on the centrum sides, the reduction of the neural spine, and subsuming of the neural canal

into the middle of the centrum to form a neural tube (Frey andMartill, 1996), although this latter feature has

also been recorded for another group, the Dsungaripteridae (Buffetaut and Kuang, 2010).

In this analysis we examine the role of the internal architecture of an azhdarchid cervical vertebra to deter-

mine its biomechanical properties regarding azhdarchid pterosaur feeding behavior (see supplemental in-

formation for methods, Figures S2 and S3).
RESULTS

Internal architecture

The results of XCT scanning and 3D manipulation reveal a complex internal architecture of the azhdarchid

cervical vertebra. Clearly visible is an approximately centrally located bony neural tube attached to the

centrum wall (centrum tube) by helically arranged radial, spoke-like trabeculae (Figure 2. See also Videos

S1 and S2). These are arranged as complimentary opposed helices (clockwise vs anticlockwise) and are

often fused where they cross over. Superficially, looking along the length of the centrum internally the radial

trabeculae resemble bicycle wheel spokes (Figures 2B and 2D). The arrangement is somewhat irregular and

so the helices are not perfect, but this likely reflects changes in the stress regime along a centrum that is not

a perfect cylinder. The ‘‘spokes’’ are inclined posteriorly or anteriorly, while still displaying the radial archi-

tecture (Figures 2B and 2D). Some ‘‘spokes’’ bifurcate and branch, especially toward the centrum outer wall

(Figure 2A, 2C, and 2E). Toward the dorsal part of the centrum (neural arch) and the prezygapophyses the

trabeculae are more densely arranged and are orientated more randomly (Figure 2A, 2C, and 2E). Trabec-

ulae are also present along the interior wall of the vertebra, presumably providing support and increasing

its strength. The ‘‘spokes’’ have varying diameters, with an average of 1.16 mm.
Biomechanical properties of a single cervical vertebra

The load multiplier associated with buckling changes with the number of trabeculae, because an increase

in trabeculae creates a stronger bond between the external and internal tubes and increases the overall

resistance of the structure to buckling (Figure 3A). An increase in trabeculae reinforces the structure by

increasing its elastic stability (i.e. a bigger load to produce buckling); at the same time, this produces a

stress transfer between the external bone wall and the internal neural tube (see Figure 4), thus reducing

the safety factor with respect to tissue failure. In other words, with more trabeculae the structure is more
iScience --, 102338, --, 2021 3



Figure 2. Images of XCT scan of cervical vertebra of Alanqa sp

Images of digital model generated from XCT scans of cervical vertebra FSAC-KK 5077 showing the internal architecture (A

and B) and simplification diagrams of the internal structure (C and D), dorsal (A (above neural canal), (C and E) (cut through

neural canal)) and anterior (B and D) views cut transversely through the cervical (position indicated by arrows). All views to

same scale; scale bar represents 10 mm.
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stable but closer to the limit of fracture of the material. In this sense, an optimal trade-off in the trabecula

number seems to optimize the first effect (stability) with lesser impact on the latter (safety factor with

respect to fracture).

The critical load triggering the structural instability shows a highly non-linear dependence with the number

of trabeculae. Assuming as reference the case of no trabeculae, the critical load able to trigger buckling is

increased on average up to 90% when the first 50 trabeculae are randomly introduced on the vertebral

body. Conversely, the introduction of a further 400 trabeculae increased the critical load by only 10%

with respect to the initial condition. Thus, when the number of trabeculae increases, the stability of the

structure also increases and is less prone to buckling (i.e., the load triggering buckling increases); at the

same time, the connection between the external bone wall and the internal neural tube increases, resulting

in a greater tensile strain on the wall of the neural tube. Thus, as few as 50 trabeculae produce a consider-

able increase in the vertebra’s structural stability without generating a hazardous strain concentration on

the central neural tube.

Figure 3B shows the change of safety factor related to material fracture with the number of trabeculae; the

chart reports the change rate with respect to the reference condition of no trabeculae. As well as the buck-

ling load multiplier, the safety factor (i.e., how close the structure is to localized material fracture) changed
4 iScience --, 102338, --, 2021



Figure 3. Graphs displaying relative buckling and relative safety factor for a simplified azhdarchid cervical

vertebra modeled with varying numbers of trabeculae

(A) Relative increase of buckling load proportional factor (LPF) versus number of trabeculae (average values and standard

deviation).

(B) Safety factor (SF) in tension and in compression determined via a static analysis (average values reported) averaged

values rated to the no trabeculae condition. The safety factor refers to the strain level. When the number of the trabeculae

increases, it increases the mechanical bonding between the external shell of the vertebra and the internal channel; this

introduces an increased stress concentration (and therefore strain level) onto the wall of the internal neural tube. In fact,

the internal neural tube is the area where stresses and strains are highest, as shown in Figure 4.
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non-linearly with the number of trabeculae arranged onto the vertebral body. In particular, the overall

trend is of a progressive deterioration of the safety factor in both tension and compression. For all the

analyzed cases, the decay in the safety factor is overall within approximately 20% of the initial value. This

change is not uniform in both trend and magnitude; a monotonic trend appears only after the level of

150 trabeculae.

Implications for azhdarchid feeding

It has been widely assumed that azhdarchids were either piscivores or generalist feeders taking

perhaps small mammals and reptiles (Witton and Naish, 2008). Alternative feeding strategies have been

proposed, including skim feeding for surface plankton and probe feeding for molluscs and infaunal arthro-

pods (Lehman and Langston, 1996; Bestwick et al., 2018). There seems to be a consensus that small tetra-

pods and fish were the likely prey (Averianov, 2013). Thus, based on the structural constraints imposed by

the cervical vertebrae, it is pertinent to ask the question, what is a reasonable maximum prey animal mass

the pterosaurs were able to catch, lift (with its head and neck), and process?

Adopting for the variables in Equation (5) the values reported above and assuming the elastic modulus for

the bone ranging from 15 GPa to 22 GPa, the corresponding maximum mass of the prey ranges between

18 kg and 27 kg. In order to consider dynamical effects related to the flying dynamics and to an expected
iScience --, 102338, --, 2021 5



Figure 4. Distribution of the maximum principal strain on the finite element (FE) model; a cross-section showing

the effect of the load transfer via the trabeculae

(A–C) (A) 50 trabeculae; (B) 150 trabeculae (optimum number), and (C) 450 trabeculae.
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fast action of prey catching, the values related to both the head mass and the prey mass should be multi-

plied by a magnification factor MF. Equation (5) then becomes:

Fp =
1

MF
εt
JEb

L Dout
2

�
1

2
qL2 + MF Fh

�
: (Equation 6)

In the absence of detailed information about pterosaur feeding strategies, it is hard to identify a reliable

value for this loadmultiplier. Nonetheless, it appears reasonable to consider the same value of the dynamic

amplification factor associated with a dynamic system with a suddenly applied load, i.e., 2 (Chao et al.,

2020). In this condition, Equation (6) gives a maximum mass for the prey ranging between 9 kg and 13 kg.

DISCUSSION

Previous analyses

Averianov (2013) was first to attempt a biomechanical analysis of the neck of azhdarchid pterosaurs, deter-

mining that the neck was held outstretched in a sub-horizontal pose (not straight) and was somewhat ‘‘S’’

shaped at the posterior-most four cervical vertebrae, although the degree of flexion between vertebrae
6 iScience --, 102338, --, 2021
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was no more than 20�. Averianov (2013) considered azhdarchids essentially volant animals feeding on the

wing.

Later biomechanical models to determine the ‘‘strength’’ of the azhdarchid neck assumed each vertebra to

represent a simple hollow tube (Witton and Habib, 2010: Naish and Witton, 2017). Adoption of a hollow

tube proxy is not unreasonable but fails to recognize the role of some of the complexities seen on the

external surface and ignores entirely the internal architecture of the vertebrae.

Naish and Witton (2017) concluded that the azhdarchid Hatzegopteryx neck vertebrae are substantially

stronger than those of Arambourgiania, with relative failure forces (RFFs) of 5.26 and 0.38 in coronal plane,

respectively when loaded by 2,452 N. They suggested that the relatively thick wall of the vertebrae of Hat-

zegopteryx enhanced buckling strength without altering bending strength. They acknowledged that other

internal features also needed to be considered—camellate bone and trabeculae. However, these features

were not considered in their analyses. They concluded thatHatzegopteryxwas a robust form of azhdarchid,

whereas Arambourgiania was more gracile, occupying distinct ecological niches and perhaps diets. Unfor-

tunately, the comparison is flawed, as the two vertebrae compared are from different parts of the cervical

series (Naish and Witton, 2017) and likely would have distinct biomechanical properties in any case.
Vertebral internal architecture

The functional capabilities for any bone result from the combination/interaction of all its structural compo-

nents. Thus, the internal structure as well as the external components and their mechanical properties must

be considered in any analysis of its form and function. This can be extended to its histology, microstructure,

and even molecular composition of the bone material itself (e.g., Huiskes, 2000; Rayfield, 2007). XCT scan-

ning revealed an internal structure of a generally thin-walled cylindrical vertebra dominated internally by an

axially located bony neural tube supported by a cross-helical arrangement of thin trabeculae along the

entire length of the vertebral cylinder.

Additional resistance to buckling could have been achieved by thickening the external walls of the vertebral

body; however, such thickening would considerably increase the mass of the vertebra, something that is

detrimental for a flying vertebrate. The evolution of a spirally arranged system of thin trabeculae as an alter-

native allowed for a reduced wall thickness and thus a reduction in the mass of the vertebra along with

increased resistance to torsion and compression, i.e., the system was both lighter and stronger and ener-

getically cheaper to construct.
Biomechanical properties of a single vertebra

Our results identify a crucial role of the trabeculae in stabilizing the vertebral structure. As soon as the in-

ternal space is populated with trabeculae radially arranged between the neural tube and the external wall,

the structure’s capability to sustain loads increases; the non-linear nature of this change seems to suggest

the existence of an optimal number (approximately 150 trabeculae) of trabeculae able to bring the most

relevant benefit to the structural stability without impacting on both mass and stress distribution. When

the number of trabeculae increases, the structure is increasingly more stable. Meanwhile, the mechanical

connection between the external wall and the internal neural tube also increases. This linkage is respon-

sible for the stabilization process, which is mediated by radial trabeculae: when the number of trabeculae

increases, the wall of the internal neural tube is subjected to an increased level of strain (Figure 4). As the

stabilization induced by the trabeculae is non-linearly dependent on the number of trabeculae, the in-

crease in stress on the neural tube is also non-linear. The increased level of strain reduces the safety of

the structure with respect to any local fracture. Nonetheless, the numerical models suggest this change

in the safety factor is marginal and does not change significantly when the number of trabeculae increases.

The numerical analyses provide an insight into the role of the internal bone structure and specifically the

role of trabeculae that extend the load-bearing ability by stabilizing the structure without making it signif-

icantly heavier. This enhances the mechanical performance of the vertebral structure, preserving its biolog-

ical integrity while increasing the magnitude of the force that can be applied to a bone segment. These

characteristics are of key importance for a predatory flying animal equipped with a long neck used as

the main tool to capture and lift prey.
iScience --, 102338, --, 2021 7
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This model may also explain the radial arrangement of the trabecular structure. Although some limited

areas of a more isotropic spongy bone can be envisaged locally, the most relevant part of the trabecular

structure is distinct from that of the spongy bone of a typical mammalian vertebra, where trabeculae

appear predominantly aligned with the vertebral axis. One possible explanation, corroborated by the

above-discussed analysis, is related to the extremely slender nature of the vertebral body geometry.

The particular combination of aspect ratio and wall thicknesses suggests buckling as the most relevant crit-

ical scenario to produce bone fracture. Thus, it is possible that the evolutionary process encouraged and

drove the specialization of a trabecular structure able to mitigate as much as possible the risk of buckling

instability. If so, this would be in the direction of an optimization process where the maximum load-bearing

ability of the skeleton is increased without impacting on the overall mass.

Azhdarchid necks

Hyper-elongate necks are unusual in tetrapods outside of Dinosauria, and animals that possess them are

highly distinctive. Giraffa and Tannystropheus (Nosotti, 2007; Badlangana et al., 2009; Rieppel et al., 2010)

are two examples where hyper-elongation involved lengthening of the individual vertebrae rather than an

increase in cervical number (Nosotti, 2007; Rieppel et al., 2010), as occurred in plesiosaurs and many avians

(some animals, notably sauropod dinosaurs, achieved hyper-elongate necks by adopting both approaches)

(O’Keefe and Hiller, 2006; Christian and Dzemski, 2007; Taylor and Wedel, 2013).

In animals with long necks the structure functions either as a mast (brachiosaurid dinosaurs, giraffe, ostrich)

raising the head significantly above the ground or as a beam, extending the neck forwards and perhaps later-

ally also (Martin et al., 1998) (e.g., diplodocid sauropods, plesiosaurs, Tannystropheus, and azhdarchid ptero-

saurs perhaps) (Martin et al., 1998; Nosotti, 2007; Badlangana et al., 2009; Averianov, 2013; Noè et al., 2017). In

those animals where the neck functions as a mast the animal is not obliged to feed in the trees as do giraffes.

Ostriches are largely ground-feeding birds (Folch, 1992), whereas swans use their long necks to garner food

fromdeeper water than their short-necked cousins, the ducks. Themodus operandi of the elongate azhdarchid

neck has for a long timebeen problematic. The analysis of Averianov (2013) showedonly limited flexibility in the

neck of azhdarchids, whereasNaish andWitton (2017) suggested that it had very limited resistance to buckling.

In those azhdarchids where the head and neck skeleton is known (Quetzalcoatlus, Zhejiangopterus) the

skull is proportionally large (perhaps as long as >1 m for a neck 3 m in length) (Kellner and Langston,

1996; Naish and Witton, 2017), a morphology not seen in any other animal except birds such as pelicans

and storks. Such a morphology poses questions for diet and mode of feeding in azhdarchid pterosaurs.

A stork-like feeding strategy of terrestrial foraging (Witton and Naish, 2008) and a probe-feeding mode

of foraging were proposed for Quetzalcoatlus, although the latter hypothesis was based solely on the as-

sociation of invertebrate trace fossils, rather than any biomechanical analysis (Lehman and Langston, 1996).

Size of prey?

Our analysis allows us to speculate on the maximum mass of prey compatible with the average bony struc-

ture identified in the neck of the pterosaur. The limiting factor considered was the prey mass at which the

bone component of the vertebrae would fail. We cannot factor in the complexity of the intervertebral joints,

connective tissue, and neck musculature, as these remain unknown for Pterosauria. This analysis, based on

a simplified cantilever continuous beam model, is affected by many limitations: (1) a static model was

assumed; (2) the neck was assumed as a homogeneous structure where only the bony structure is reacting

to loads (i.e. the muscular and connective tissue contributions in loading tensional stresses are neglected);

(3) either material properties (i.e. density and elastic modulus) or failure criteria for the bone tissue were

assumed matching those usually valid for bird bone; and (4) the model assumed for each vertebra was

extremely simplified in both the overall geometry and the internal structure. On the other hand, the model

appears to be simple and parametric, able to assess the impact of the uncertainties associated with each

one of its parameters in a straightforward and clear way. The absence of detailed information about the

muscular structure and the flight dynamics would make pointless the elaboration of more complex models

involving a more accurate skeletal structure for the purposes of a first rough assessment aimed to identify

mostly the order of magnitude of the prey mass.

The values this model produced (9-13 kg) appear reasonable when correlated with the assessed total mass

of the animal with a mass estimated to be between ~16 kg and 37 kg for a wingspan of approximately 6 m

(Humphries et al., 2007; Witton, 2008).
8 iScience --, 102338, --, 2021
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Concluding remarks

XCT imaging of an azhdarchid pterosaur cervical vertebra reveals a complex internal architecture of radial,

spoke-like support structures maintaining the integrity of a centrally located bony neural tube through

which passed the main spinal cord. Linear elastic static analysis and linearized buckling analysis reveal

that as few as 50 trabeculae increases the buckling load by up to 90%, implying that a cervical vertebra

without the trabeculae is considerably more prone to elastic instability due to axial loads. Subsuming

the neural tube into the centrum tube and supporting it with an optimum number of fine-spoke-like trabec-

ulae adds considerable resistance to buckling to the cervical series, potentially permitting the uptake of

heavy prey items without risking damage to the cervical skeleton, while at the same time without significant

mass increase of the skeleton. Calculations applied to the entire neck indicate a prey size lift capability

without failure of between 9 kg and 13 kg. Our results are consistent with large prey capture by azhdarchids,

including giant forms like Quetzalcoatlus, with a wingspan of 10 m or more (Lawson, 1975). Prey size was

likely limited by skull and gullet size, rather than neck lifting capacity. We also acknowledge that the

neck strength may have been utilized for another function, such as neck ‘‘bashing,’’ an inter-male rivalry

behavior seen in giraffes. Alternatively, the seemingly overengineered cervical vertebrae could be related

to shearing forces associated with large skulls being buffeted by strong winds during flight or while on the

ground.
Limitations of the study

Despite their popular appeal, azhdarchid pterosaurs are poorly understood. Their remains are incredibly rare,

mostly fragmentary and usually crushed. The cervical vertebral series is only known for three taxa, Phosphato-

draco, Zhejiangopterus, and Quetzalcoatlus, all of which are crushed to varying degrees. The specimen

described here is remarkable for its 3-dimensionality with internal structure intact and is almost unique.

The model assumed for each vertebra was highly simplified in both the overall geometry and the internal

structure. A hollow cylinder within a hollow cylinder mimics the overall structure of the living system.We did

not consider the complexities of the articulatory surfaces, processes, and structural features at the anterior

and posterior terminations of the vertebra. Similarly, our mass calculations are based on a simplified model

of the vertebra.

Our mathematical analysis is based on a cantilever continuous beammodel affected by several limitations:

(1) a static model was assumed; (2) the neck was assumed as a homogeneous structure where only the bony

structure is reacting to loads (i.e. the muscular and connective tissue contributions in loading tensional

stresses are disregarded); (3) either material properties (i.e. density and elastic modulus) or failure criteria

for the bone tissue were assumed to match those valid for bird bone.
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Transparent Methods 

The pterosaur cervical vertebra analysed here is provisionally identified as Alanqa sp. on the basis that 
1, it has an azhdarchid construction, and 2, it is found in a taphocoenosis with jaws confidently 
identified as Alanqa saharica. There is little doubt that the specimen is from an azhdarchid, but its 
precise generic and specific identity can only be provisional. The specimen (Main Text Figure 1) FSAC 
KK 5077, was obtained from Aferdou N’Chaft, near the oasis of Hassi El Begaa in the Tafilalt of south 
east Morocco and is accessioned in the collection of the Faculté des Sciences Aïn Chock, Université 
Hassan II, Casablanca, Morocco. Specimens from Begaa occur in a thin (0 mm-~500 mm) mud-flake 
conglomerate within the Ifezouane Formation of the Kem Kem Group (Martill et al., 2018; Ibrahim et 
al., 2020). Bones from this horizon are usually isolated and may be broken, but some elements are in 
near perfect condition. Preservation of the bone microstructure is also excellent (see Figure S1). 
Three-dimensional prints from the XCT scans of the specimen are accessioned in the collection of the 
University of Portsmouth School of the Environment, Geography and Geosciences (UOP-PAL-KK 007). 

XCT scanning. X-ray computed tomography (XCT) was conducted using an X-ray microscope (Xradia 
520 Versa, Carl Zeiss X-ray Microscopy, located at the University of Portsmouth) operating at a voltage 
of 80 kVp with a power of 6 W and a tube current of 75 µA. A ZEISS LE1 proprietary filter positioned 
directly after the X-ray source filtered the X-ray spectrum. A tomography was collected using a flat 
panel detector to acquire 1601 projection images over 360 degrees with an interval of 0.22 degrees. 
The detector was exposed for 0.5 seconds (5 frames, 0.1 s exposure/frame) for each projection. The 
voxel size of the scans is 69.4 µm. The projections were reconstructed using the microscope software, 
incorporating a filtered back projection algorithm (Scout and Scan Reconstructor, Carl Zeiss 
Microscopy). For each dataset the centre shift was manually found, no beam hardening correction 
was utilised and a smoothing correction of 0.5 applied. 

XCT data manipulation. MeVisLab software was used to digitally remove the matrix of the CT scanned 
specimen to observe the internal structure. GeoMagic Design X was used to generate sections and 3-
D images of the scanned vertebra. Three-dimensional models were printed from the scans of the 
original specimen and accessioned as UOP-PAL-KK 007 from this data (see above). 

Numerical modelling. The geometry of the pterosaur cervical vertebra has been parametrically 
generated in Matlab and then analysed in ABAQUS. The idealised geometry is summarised in Figure 
S2, where key reference parameters are reported using the notation adopted below. The vertebra is 
modelled as a hyperboloid with elliptical cross-section with an eccentricity of 0.6. The elliptical section 
at the top and bottom has major axis DM = 60mm and minor axis Dm= 48 mm, the minimal elliptical 
section, located at the middle of the vertebra has DM = 46 mm and Dm = 36.8 mm), the overall vertebra 
length L = 160 mm and wall thickness t = 1 mm. The geometry has been analysed via 21480 S4 shell 
elements, a four nodes quadrilateral linear element. The exterior surface used 9600 elements (60 
elements in the circumferential direction and 160 elements in the axial direction). The neural canal 
was modelled as a hollow cylinder (length L = 160 mm, radius R = 4 mm, wall thickness 0.7 mm) and it 
was meshed with 9600 S4 shell elements (60 divisions along the circumference and 160 divisions along 
the longitudinal axis). The resulting hollow geometry was then closed by top and bottom shell caps 
with a thickness of 12 mm, each discretized with 1140 S4 shell elements. Mesh details are represented 
in Figure S3A. The dimensions used were taken directly from the XCT scans and reflect as near as 
possible those of the original specimen. 

Linear elastic static analyses as well as linearised buckling analyses were performed. The bone was 
considered as a linear elastic material with a Young’s modulus E = 22 GPa and Poisson ratio ν = 0.3. 
Trabeculae connecting the inner neural canal radially to the external vertebral walls were randomly 
generated and distributed along the longitudinal axis. The number of trabeculae has been assumed as 
a parameter in the numerical analysis and varied in the range (0-450) to assess their effect on the 
mechanical behaviour of the structure. All the trabeculae were assigned the same radius (Rtrab = 0.5 
mm) but they had a different length: in fact, each trabecula was generated by randomly connecting 



nodes on the neural tube walls with nodes on the external wall of the vertebra; the algorithm for 
defining the trabeculae was designed for producing sub-radial elements (i.e. small deviations from a 
perfectly radial direction were allowed). The overall arrangement looks like the distribution of the 
spokes on a bicycle wheel. Trabeculae were modelled as B31 beam elements, a two nodes linear 
element, that assumes the beam is shear deformable as per Timoshenko beam theory. See Figure S3B. 

As boundary conditions, all nodes placed at the bottom surface were fully constrained; a uniformly 
distributed compression load was applied on the top lid with a reference magnitude of 100 kPa. This 
fictitious load is then multiplied by the Load Proportional Factor (LPF) resulting from the stability 
analysis to assess the ultimate load which the structure can bear before the onset of an elastic 
instability (i.e., buckling). 

In order to elucidate the impact of the trabeculae on the mechanics of the vertebra, seven different 
conditions were considered corresponding to seven distinct number of randomly generated 
trabeculae (i.e. 0, 25, 50, 150, 250 and 450 trabeculae); to take into account possible local effects 
related to the randomised nature of both distribution and positioning of the trabeculae, three models 
were created for each trabecular numerosity. 

The mechanical behaviour was analysed with respect to two failure scenarios: structural instability 
and material fracture. The structural stability was assessed by analysing linear buckling induced by the 
axial load; the load multiplier associated to the first instability mode was calculated for each model. 
Material fracture was analysed by means of static analysis: A strain-based failure criterion asymmetric 
for tension and compression, commonly considered for describing bone failure (Nalla et al., 2003; 
Schileo et al., 2008), was adopted; for each model: the bone was assumed to fail when the principal 
strain value in compression and in tension reached 1.1% and 0.8% respectively. The safety factor with 
respect to the material collapse was calculated as the ratio between the critical strain value in 
compression/tension and the actual value of the maximum principal strain in compression/tension.    

Determining biomechanical properties of the neck. The neck of the animal was considered as a 
cantilever continuous beam L = 1.2 m long, comprising a sequence of nine contiguous vertebrae; the 
average vertebra was described as a can (hollow cylinder) model with the following geometry: 

- length (Lv) = 0.14 m 
- Outer diameter (Dout) = 0.05 m 
- Inner diameter (Din) = 0.048 m 
 
The resulting cross section was then a circular crown (area = 15.39*10(-5) m2, second moment with 
respect to a principal axis of inertia I = 4.6*10(-8) m4). The volume of the bone tissue (Vb) of each 
vertebra = 21.55*10(-6) m3, the corresponding bone marrow volume (Vm) = 12.67*10(-5) m3. The neck 
was modelled as a cantilever continuous beam subjected to simple bending resulting from three loads: 
 
A. The distributed load (q) related to the mass of the neck. 
B. The concentrated load (Fh) associated with the mass of the animal’s head. 
C. The concentrated weight associated to the mass of the prey (Fp). 
 
The weight of the neck was assessed by considering the mass of both bone tissue (volumetric mass = 
2000 kg/m3) and bone marrow (volumetric mass = 1000 kg/m3) for each vertebra (Currey, 2002). The 
internal cavity was assumed to be filled with bone marrow only for half of the internal volume, as this 
is an unknown for pterosaur pneumatised bones. Therefore, the mass of the single vertebra was mv = 
0.168 kg, as a fraction of the overall cantilever model, corresponding to a uniformly distributed load 
q = 10.41 N/m. The bending moment (Mtot) at the fully constrained end is then given by: 

 

𝑴𝒕𝒐𝒕 =
𝟏

𝟐
𝒒𝑳𝟐 +  𝑭𝒉𝑳 + 𝑭𝒑𝑳   (1) 



 

Assuming a linear distribution of the stresses on the cross-section area (i.e. a Navier’s stress diagram, 
typical of the simple bending on homogeneous cross sections), the magnitude of the maximum stress 
in either tension and compression is given by: 

 

|𝝈𝒎𝒂𝒙| =
𝑴𝒕𝒐𝒕 𝑫𝒐𝒖𝒕  

𝟐𝑱
   (2) 

The corresponding strain is: 

𝜺𝒎𝒂𝒙 =
 |𝝈𝒎𝒂𝒙|

𝑬𝒃
  (3) 

Where Eb is the elastic modulus of the bone tissue. For the bone tissue, a strain-based failure criterion 
with asymmetric threshold values in tension and compression (εt = 0.8%; εc = 1.1%) was assumed. 
Combining equations (1), (2) and (3), the maximum weight of the prey is the value of Fp that produces 
the maximum admissible strain in traction: 
 

𝜺𝒕 =
(

𝟏

𝟐
𝒒𝑳𝟐+𝑭𝒉𝑳+𝑭𝒑𝑳)

𝑫𝒐𝒖𝒕
𝟐

𝑱𝑬𝒃
  (4) 

That gives: 

𝑭𝒑 = 𝜺𝒕
𝑱𝑬𝒃

𝑳
𝑫𝒐𝒖𝒕

𝟐

− (
𝟏

𝟐
𝒒𝑳𝟐 + 𝑭𝒉).  (5) 

 

 

  



Supplemental Figures and Table 

 

Parameter Value in mm 

Maximum preserved length  160*  

Maximum width across anterior zygapophyses  96**  

Maximum preserved centrum height    45*** 

Maximum posterior width as preserved                 59 

Anterior height as preserved      39 *** 

 

Table S1. Selected measurement for cervical vertebrae FSAC KK 5077 (see Figure 1). *Measurement 
excludes posterior zygapophyses as these are missing from the specimen. ** Measured from tip of 
right anterior zygapophyses multiplied by 2. *** Part of the neural spine is missing, perhaps ~ 10 mm. 

 

 

 

 

  



 

Figure S1.  Thin section image of a trabeculae from a pterosaur atlas-axis vertebral complex showing 
the exceptional preservation of osteocytes and canaliculi. Specimen number UOP-PAL-KK-007. From 
the same locality as Figure 1. Scale represents 50 μm. 

 

  



 

Figure S2. Geometry of the parametric model for the vertebral body. R, radius of neural tube; DM, 
larger diameter of centrum; Dm, smaller diameter of centrum; L, length of centrum; t, bone wall 
thickness. This simplified model is based upon the vertebra in Figure 1. 

 

 



 

 

Figure S3. Computational mesh: (A) external wall and top lid; (B) detail of the internal structure: the 
internal neural tube is connected to the external vertebral wall by radial trabeculae, randomly 
arranged on the total bone marrow space and producing a “spoke-like” structure. This schematic 
based on XCT scans of specimen in Figure 1 and seen in Figure 2. 
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