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Abstract

Background: As gigantic herbivores, sauropod dinosaurs were among the most important members of Mesozoic
communities. Understanding their ecology is fundamental to developing a complete picture of Jurassic and Cretaceous
food webs. One group of sauropods in particular, Diplodocoidea, has long been a source of debate with regard to what and
how they ate. Because of their long lineage duration (Late Jurassic-Late Cretaceous) and cosmopolitan distribution,
diplodocoids formed important parts of multiple ecosystems. Additionally, fortuitous preservation of a large proportion of
cranial elements makes them an ideal clade in which to examine feeding behavior.

Methodology/Principal Findings: Hypotheses of various browsing behaviors (selective and nonselective browsing at
ground-height, mid-height, or in the upper canopy) were examined using snout shape (square vs. round) and dental
microwear. The square snouts, large proportion of pits, and fine subparallel scratches in Apatosaurus, Diplodocus,
Nigersaurus, and Rebbachisaurus suggest ground-height nonselective browsing; the narrow snouts of Dicraeosaurus,
Suuwassea, and Tornieria and the coarse scratches and gouges on the teeth of Dicraeosaurus suggest mid-height selective
browsing in those taxa. Comparison with outgroups (Camarasaurus and Brachiosaurus) reinforces the inferences of ground-
and mid-height browsing and the existence of both non-selective and selective browsing behaviors in diplodocoids.

Conclusions/Significance: These results reaffirm previous work suggesting the presence of diverse feeding strategies in
sauropods and provide solid evidence for two different feeding behaviors in Diplodocoidea. These feeding behaviors can
subsequently be tied to paleoecology, such that non-selective, ground-height behaviors are restricted to open, savanna-
type environments. Selective browsing behaviors are known from multiple sauropod clades and were practiced in multiple
environments.
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Introduction

Herbivory evolved multiple times within Archosauria, the group

uniting crocodiles and birds and containing a variety of fossil forms

such as dinosaurs, aetosaurs, phytosaurs, rauisuchians, and

pterosaurs. Among living archosaurs, however, herbivory is

restricted to birds and potentially turtles, which have been

recovered as the sister clade to crown-group Archosauria [1–3].

Jaw morphology in these living representatives is highly derived

(e.g., secondary loss of teeth) and provides a poor analog for the

vast majority of extinct, herbivorous archosaurs. Without a direct

behavioral analog, progress in understanding the behavior of

herbivorous archosaurs has not reached the level of sophistication

seen in studies of extinct mammals, whose craniodental anatomy is

readily interpreted using modern analogues and dental wear

features. As a result, studies of Mesozoic ecology are often

hampered by an incomplete understanding of herbivore behav-

ior—an issue that carries great weight due to the relative

abundance of herbivores in any ecosystem. As a major link

between primary productivity and secondary and tertiary

consumers, herbivores represent the base of the animal food

pyramid and therefore influence the flow of energy through an

ecosystem.

Of particular importance to the understanding of Mesozoic

ecology are sauropod dinosaurs, which were the dominant

megaherbivores during most of the Jurassic and Cretaceous, a

span of approximately 135 million years. Sauropods were typically

quite large, with the largest reaching over 30 m in total body

length [4]. Although estimates of metabolic rates and food

requirements vary [5–7], it is clear that these organisms required

a large amount of browse daily. There is also evidence of herding

behavior [8], increasing the local impact of sauropods on a

community—higher population density results in greater stress on

plant communities as more animals utilize the available resources.

Disregarding all other impacts, these animals must have had major

effects on communities in terms of bulk mass consumed daily.
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Although sauropods lack the obvious adaptations for herbivory

(e.g., beaks and cheeks) present in the other major clade of

herbivorous dinosaurs, Ornithischia [9], ongoing work suggests

that sauropods were equally specialized for the task. Histological

study of thin-sectioned teeth reveals that sauropod dinosaurs had

the fastest known tooth replacement rates among vertebrates—

some sauropods replaced their teeth every 30 days [10]. Even the

slowest replacing teeth in neosauropods (,62 days; [11]) were

replaced at a rate similar to the fastest replacement rate seen in

non-sauropod dinosaurs [12]. Given the remarkable degree of

wear seen on shed teeth—perhaps 25–40% crown height lost,

based on estimated Nigersaurus crown heights [13]—the implication

is that sauropod teeth experienced extreme wear throughout their

short life span. As the plant materials a sauropod would have

encountered are not particularly abrasive in comparison to

modern floras [9], it is likely that a combination of feeding

behavior and sheer volume of plant material ingested is

responsible for high wear. Debate continues, however, on how

and what sauropods, particularly diplodocoid sauropods, were

eating. In this contribution, I examine the diet and behavior of

diplodocid sauropods, using data from analyses of snout shape and

dental wear (both micro- and macrowear features).

Diplodocoid diets: previous studies
Within Sauropoda, no clade has received as much attention

with regard to diet as Diplodocoidea [10,14–33]. This is due in

large part to their unusual skulls, which feature elongate, horse-like

faces ending in a squared snout and a comparably short arcade of

tiny, narrow-crowned teeth [34]. Because this morphology has

typically been regarded as poorly suited for biting or slicing

through vegetation, many other hypotheses of feeding behavior

have been put forth, including eating plants from riverbeds [14],

scraping algae from rocks[16], stripping leaves from branches by

using the teeth as a sort of ‘comb’ or ‘rake’ [19,20,24], and at least

partial reliance on carnivory, either on bivalves (Sternfeld in [15])

or fish [18]. Other workers have suggested that diplodocoid

sauropods fed in a manner similar to modern large-bodied

herbivores: ground-level browsing [10,24,27,28,30,31]. This latter

hypothesis has the benefit of being directly observable in modern

animals and thus requires no invocation of novel behaviors.

Testing this hypothesis is consequently more straightforward and

can be accomplished using methods proven effective in studies of

both mammals and dinosaurs.

Reconstructing diets
The reconstruction of diet in fossil taxa has a long methodo-

logical history, and in sauropods dates back to the 19th century

[33]. Two morphological features in particular, snout shape and

tooth wear, have proven informative in mammals. Here, I discuss

methods historically used to examine those features, and their

relevance to the reconstruction of diets in diplodocoid sauropods.

Snout shape. The shape of the premaxilla, constituting the

entirety of the anterior-most extremity of the skull, or ‘snout’, in

most mammals, has long been suggested to be related to dietary

preference or selectivity in herbivorous mammals [35–38]. Boué

[35] provided the first quantitative measurement of snout shape in

ungulates, the Arcade Index (AI). The AI measured the shape of

the incisive arcade in the dentary in ruminants and was calculated

by dividing the breadth of the arcade by its anteroposterior depth.

An AI of over 1.0 (a square jaw) was found to be associated with

grazers, whereas scores below 1.0 (pointed jaws) were found most

commonly in browsers, although this measurement is primarily a

measure of breadth and does not fully capture snout shape.

Janis and Erhardt [39] found that although both palatal breadth

and snout breadth scale with body size, palatal breadth was more

strongly correlated with dietary selectivity (e.g., grazing vs.

browsing behavior) in ungulates. The narrowest snout breadths

occurred in animals browsing in upper story vegetation [39].

Gordon and Illius [40] expanded on these observations, noting

that incisor arcade structure is also correlated with selectivity.

Broader arcades are maladaptive for selective browsing behavior,

as this morphology is more likely to result in the unintentional

ingestion of unpalatable, undigestible, or dangerous woody parts of

browse plants (e.g., thorns). Narrow arcades, conversely, are

maladaptive for grazing (a non-selective feeding behavior) because

the small breadth of the arcade results in reduced intake efficiency

when consuming sward-like growth forms such as grasses. Gordon

and Illius [40] also noted that grazers, in addition to having

broader snouts, also have sublinear arcades with a more

transversely oriented anterior tooth row. So-called ‘intermediate’

feeders, which may utilize both selective and non-selective

behaviors, have snout shapes more similar to those of browsers

than grazers. Gordon and Illius [40] concluded that snout shapes

have evolved to maximize food intake within a particular

nutritional quality constraint. There also appears to be a size

component to behavioral and morphological differentiation: larger

animals were found to be less selective than smaller taxa, although

at body sizes below about 100 kg, morphological differentiation

between snouts seems to be minor [40].

Solounias et al. [41] and Solounias and Moelleken [42]

demonstrated that a similar relationship between snout shape

and diet also occurred in extinct ungulates. These two studies used

a method originally applied to hominids [43]. Snout shape was

quantified along a profile defined using the midline and the

intersection of the snout with a line drawn at 26u from the midline,

originating at the anterior-most point of the premaxillary

symphysis. These profiles were then digitized and analyzed using

spline-fit functions. Upon examining both reconstructed fossil

premaxillae and those of extant ruminants, Solounias et al. [41]

and Solounias and Moelleken [42] found that snout shape

correlates well with selectivity in extant species. Solounias et al.

[41] also confirmed their inferences from snout shape using dental

microwear data (see below).

Dompierre and Churcher [44] modified the method used by

Solounias et al. [41] and Solounias and Moelleken [42] for their

study of diet in extinct camelids. The original method, which

relied on the curvature of snout profiles, necessitated scaling each

profile to an equivalent size; the Premaxillary Shape Index (PSI) of

Dompierre and Churcher [44] used area ratios and so removed

the size component. PSI scores were found to correlate with diet in

extant herbivores, such that the highest PSI scores were present in

grazers and lower scores were present in selective browsers [44].

Dompierre and Churcher [44] concluded that PSI scores are

potentially indicative of diet in extinct animals as well.

The relationship between snout shape and dietary habit has also

been inferred outside of ungulate mammals. Christiansen [45]

examined the relationship between muzzle breadth and body mass

in sauropodomorph dinosaurs and found that breadth and mass

were correlated, although there was no discussion of snout shape

in relation to overall breadth. Additionally, snout breadth was

measured at the premaxilla-maxilla suture, which occurs in

markedly different places relative to the anterior-most point of

the snout in macronarian and diplodocoid sauropods [34] and

may have over-estimated snout breadth in narrow-snouted taxa as

a result. Carrano et al. [46] examined the relationship between a

suite of morphological characters (including snout breadth) and

dietary preference in hadrosaur dinosaurs. The two subclades

Diplodocoid Feeding Behavior
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within Hadrosauridae, Lambeosaurinae and Hadrosaurinae, were

found to be differentiated by relative snout breadth and limb

proportions, similar to the pattern seen in ungulates. Carrano et al.

[46] used this to infer an open-habitat, non-selective feeding

behavior for the broad-snouted hadrosaurines and a closed-

habitat, selective-feeding behavior for the narrow-snouted lam-

beosaurines. One hadrosaurine, Prosaurolophus, has a relative snout

breadth within the range seen in the selectively browsing

lambeosaurines [46]; this may suggest that there is not a perfect

correlation between phylogeny and behavior. Similar, though less

quantitative, inferences have also been made for ceratopsians [47]

and thyreophorans [48,49].

Although sauropods were typically much larger than both large

ungulates and large hadrosaurs, absolute skull size does not differ

greatly between the two dinosaurian clades. Cranial volume

estimates in sauropods range from ca. 0.05 m3 in Dicraeosaurus [50]

to 0.2 m3 in Brachiosaurus [51], compared to to ca. 0.3 m3 in the

hadrosaur Edmontosaurus [52]. As a result, snout breadths are

roughly constrained within a similar morphospace (although some

sauropod taxa greatly exceed the range of breadths seen in

hadrosaurs, e.g., Nigersaurus [53]). Sauropod snouts also display a

range of variation in shape, from narrow-snouted taxa like

Camarasaurus to broader snouted taxa like Diplodocus, that is

reminiscent of the pattern observed in modern ungulates (Fig. 1). It

is reasonable to hypothesize that the snout morphologies noted in

sauropods would have impacted selectivity and intake rate in

much the same way that they do in extant ungulates, although in

the absence of direct behavioral observations, additional evidence

may needed. One source of such evidence is dental wear.

Dental microwear. Dental microwear is the study of

damage done to teeth by contact with other surfaces, in

particular the interactions between a tooth and food, grit, and

opposing teeth. Studies of microwear typically include the

quantification of features falling into one of the following three

categories (Fig. 2; [54]):

scratches: features that are at least 4 times longer than

wide

pits: deep, subcircular features

gouges: oblate features with irregular margins

Such features preserve information about the last few meals an

organism ate and are one of the few direct lines of evidence we

have for interpreting the diets of extinct organisms, particularly

when those organisms have no extant descendants for comparison.

Although caution must be used when interpreting diets of extinct

organisms, broad dietary categories are often assignable. By

providing direct evidence of what organisms ate, microwear

features can also indicate overlap in resource exploitation and

behavior.

The majority of microwear studies to date involve the

reconstruction of diets in extinct and extant mammals [41,54–

60], based primarily on wear features recovered from molars and

premolars. Increasingly, however, studies focusing on the dental

microwear of non-mammalian organisms have begun to appear,

including cynodonts [61], crurotarsans [61], dinosaurs [10,22,23,

30,48,62–64], and fish [65,66]. Of these, only the analyses of

microwear in stickleback fish [65,66] were able to control diet

experimentally using the organism itself; the rest relied upon

comparisons with studies of mammalian microwear.

This reliance is a potential concern, due to broad differences in

shape and function between the majority of teeth in question and

the molariform teeth examined in the mammalian studies. Molars

are used for oral processing of food in mammals, using a

combination of puncturing, slicing, and crushing to break down

foodstuffs. Non-mammalian animals typically have no oral

processing (with the notable inferred exceptions of margin-

ocephalian and ornithopod dinosaurs) and use their teeth solely

for food-acquisition behaviors involving puncturing or slicing.

Incisiform teeth, therefore, may prove a more useful analogue to

archosaur teeth than molariform teeth.

The majority of incisor microwear studies have been done on

primates, although isolated studies of non-primate incisor micro-

wear exist [67–70]. There is evidence for a correlation between

incisor wear and diet in primates [71–73] although some [74]

suggest that incisor microwear is useful only for determining finer-

scale dietary preference, once a broader category (e.g., frugivory)

has been determined by other means.

Although the degree to which the manual manipulation of

foodstuff by primates alters the character of wear is uncertain,

some behaviors, such as leaf stripping, are strong candidates to

broadly correspond with potential food acquisition behaviors in

other organisms. Importantly, leaf stripping is known to leave

characteristic microwear patterns on incisors in Gorilla [75]. There

is also evidence that browse height impacts incisor microwear in

predictable ways, with a greater proportion of large features

appearing on the teeth of upper canopy feeders than on those of

ground-level feeders as a result of the lower concentration of grit

relative to phytoliths in food obtained at those greater heights

[72,76,77]. In the Mesozoic, it is probable that phytoliths occurred

in both understory plants (i.e., ferns; [78]) and upper-story conifers

[79]. Studies of modern plants, however, suggest that ferns

Figure 1. Snout shapes of sauropodomorph dinosaurs and ungulate mammals. Above: A) Plateosaurus, B) Camarasaurus, and C) Diplodocus
snouts. Below: Outlines of snouts from a mammalian browser D), an intermediate feeder E), and a grazer F). Sauropod snouts modified from [154];
mammal snout outlines modified from [40].
doi:10.1371/journal.pone.0018304.g001
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accumulate substantially less silica (primarily taken up as

phytoliths) than other gymnosperms, such as conifers [79];

extrapolated to the Mesozoic, this suggests that an organism

feeding on the ground cover would encounter a higher grit-to-

phytolith ratio, as suggested above. Some understory plants

(particularly Equisetum) are presumed to have been major silica

accumulators, however [79,80].

The only study to examine both molar and incisor microwear in

an ungulate (Equus quagga, a grazer; [70]), found that patterns of

molar microwear and incisor microwear were not similar, such

that pits, rather than scratches, were the dominant feature on the

incisors. This is potentially explained either as a function of

exogenous grit, as the incisors would have been the first teeth to

contact a foodstuff and would therefore encounter more of the grit,

or as a function of selective use of incisors in feeding on more

robust foodstuffs (e.g., woody plants) [70].

As noted above, several studies have discussed microwear

features in sauropod dinosaurs, most commonly in diplodocoid

sauropods [10,22,23,30]. Although the features recovered from

diplodocoid teeth (Diplodocus in [22,23,30]; Nigersaurus in [10]) are

typically similar, primarily fine scratches, the interpretation of the

behavior that caused these features differs, from high browsing

(e.g., feeding on upper canopy vegetation) [22,23] to branch

stripping [30] to ground-level browsing [10]. The uncertainty over

the functional significance of these wear features is likely

exacerbated by two factors: first, sauropod microwear has

previously been examined in the absence of other data, unlike

what has been done for modern and extinct mammals; and

second, sauropod diversity has been sampled only narrowly, and

so there has been little relevant comparative data.

The influence of jaw motion on microwear features in sauropod

dinosaurs is also worthy of discussion. The tooth row in

diplodocoids is restricted anteriorly, resulting in a dentition that

is primarily oriented transversely [34]. Because of this orientation,

it is most probable that diplodocoid sauropods utilized a shearing

bite with a primarily orthal motion, making their dentitions

coarsely analogous to the incisors of many primates [71,72], but

not necessarily ungulates [70]. Although previous work [24,26,30]

has suggested the possibility of propaliny in the bite stroke of

diplodocids, the lack of marginal dentition in diplodocoids would

mean that much of the fore-aft motion would be wasted during the

slicing phase of the bite, as the transversely-oriented tooth row

would only occlude for a fraction of the stroke before being taken

out of alignment. Additionally, when propaliny has been proposed

for other dinosaurs [64,81,82], it has been demonstrated as a

means to prolong the occlusion and increase oral processing

efficiency [83]. Sauropods, however, lack the fleshy cheek that

enables oral processing in ornithischian herbivores [84], and the

teeth were likely used purely for food acquisition rather than

processing. It is most parsimonious to assume, therefore, that the

functional component of the bite—where tooth met food—was

orthal in nature. This does not mean that there could have been

no palinal motion during the stroke; fore-aft movement of the

lower jaw may have been used to accomplish occlusion of the

upper and lower tooth rows prior to the final bite phase (as also

happens in some mammals [85,86]) or to widen the gape [26,30].

Figure 2. Examples of microwear features (exemplars indicated by arrows). A) Scratches, features at least 46 longer than wide. B) Gouges,
large features with irregular margins. C) Pits, subcircular features, typically small. D) A tooth of Nigersaurus, illustrating the paired wear facets, labial
(ewf) and lingual (lwf), seen on rebbachisaurid teeth. The labial facet is seen in most diplodocoid dentitions. Scale in A = 0.5 mm; B, C to scale with A.
Scale in D = 1 cm. D is modified from [10].
doi:10.1371/journal.pone.0018304.g002

Diplodocoid Feeding Behavior

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18304



It does suggest, however, that there was little to no retractive

component of the bite stroke during a microwear-producing phase

(i.e., where tooth-food contact occurred). Although the articulation

in many diplodocoids is known only from the quadrate and not the

lower jaw, most diplodocoid jaw joints are presumed to be similar

[30], suggesting that any in-group variation in wear features

perceived is most likely the result of diet and not jaw motion.

It is also important to note that much of the work on

mammalian microwear surrounds the grazer-browser continuum,

which necessarily cannot apply to Jurassic and Early Cretaceous

dinosaurs due to the lack of grasses at that time [87]. Therefore,

many of the assumptions about the relationship between micro-

wear patterns and ground-height feeding behavior, such as the

dominance of scratches over pits seen in grazers [56], must be re-

examined. As seen elsewhere (fig. 8A in [56]), browsers and

grazers separate along the scratch count axis, but browsers

(including low, medium, and high browsers) separate primarily

along the pit count axis (figs. 8A–D in [56]). It is probable, then,

that the ratio of pits-to-scratches is more likely to be informative of

diet in browsers such as sauropods.

Caution should be exercised when drawing parallels between

microwear on mammalian teeth (including incisors) and that found

on sauropod teeth. The chewing motion of an ungulate, with its

transverse power stroke, is highly derived and without parallel in

Sauropoda. Certain aspects of foodstuffs, particularly their

toughness and grit content, however, can be expected to influence

microwear features with reasonable consistency across taxa.

Although the relationship between incisor microwear and diet is

uncertain, inferences can still be drawn about the character of

foodstuffs ingested. In particular, feature size and texture are

expected to correspond with browse height and certain intrinsic

plant properties, such as woody vs. herbaceous stems.

To develop a testable hypothesis for diplodocoid feeding

behavior, evidence from snout shape and microwear will be

compared, not just with data from modern herbivores, but also

with each other. In this way, an approximation of the ‘‘total

evidence’’ approach will be brought to bear on this question.

Materials and Methods

Morphological data, in this case snout shape and microwear

features, can be used to distinguish between several combinations

of browse height (ground-height, mid-height, and upper canopy)

and browse strategy (selective and nonselective) in diplodocoid

sauropods. Here, ground-level feeding is defined as feeding on

vegetation within 1 m of ground height, mid-height feeding is

defined as feeding between ground height and 10 m, and upper

canopy feeding is feeding at all heights above 10 m. Ten meters is

chosen as the upper limit for mid-height browsing based on

estimated maximum head height of diplodocoids in quadrupedal

stance, using combined neck and forelimb height [30]. The

following is summarized in Table 1.

Evidence for browse height
Browse height was examined primarily through the examina-

tion of dental microwear features. The primary influence of

browse height on microwear is through the creation of pits as a

consequence of ingested grit. Grit, exogenous mineral particles,

are suspended and transported in the air through aeolian processes

and through the actions of animals (e.g., walking). These particles

then fall out of suspension and are deposited on the ground or on

plants. A proportionally larger amount of grit is deposited on plant

surfaces at lower heights than those that greater heights [88,89].

Taxa that browse at lower heights therefore typically ingest more

extraneous grit, and their teeth may have a higher proportion of

pits in their microwear features, as is seen in ground-height

browsing ungulates [90]; this trend may be particularly exagger-

ated in the incisors of those animals [70]. Recent work also

suggests that grit and dust does not have an additive effect on

scratch counts in mammals [91], so we might expect to see the

effect of increasing grit solely in the proportion of compressional

features such as pits. Ground-height browsing sauropods will

therefore be expected to have the highest proportion of pits in their

microwear features, followed by mid-height and upper canopy

browsers.

The incisors of ground-height feeding primates also display a

slightly different character than those of taxa browsing at greater

heights. Mean scratch breadth is lower in taxa browsing at or near

ground height, as a function of mean particle size and the ratio of

soil particles to phytoliths [72,92]. Because the teeth of sauropod

dinosaurs are assumed to be functionally analogous to the incisors

of mammalian herbivores (see above), it is expected that the

scratch breadth in ground-height browsing sauropods will also be

smaller than in those that browse at different heights. Although a

diet heavy on plants with substantial silica accumulation (e.g.,

modern Equisetum; [80]) may skew scratch breadth towards the

broad end of the spectrum, such plants were rarely a dominant

component of relevant ecosystems (see Environmental Signal,

below), and silica accumulation in other ground-height forage is

assumed to be lower than that of mid- and upper-canopy browse

[79]. Additionally, the impact of woody browse (likely a

component of selective browser diets) may overwhelm the signal

from phytolith components, resulting in still broader scratches in

selective browsers. Nonetheless, the potential impact of diet on

scratch breadth will need to be accounted for where appropriate.

Evidence for browsing strategy
Browsing strategy (selective vs. nonselective) was examined

using both microwear and snout shape indices. Snout shapes in

selective browsers were predicted to be narrower than those of

nonselective browsers, as in herbivorous mammals. Two micro-

wear features can indicate browse type: scratch orientation

consistency and feature size. Consistency of scratch orientation

has been related to food texture, such that softer (e.g., herbaceous)

foods result in more unimodally distributed scratch orientations,

whereas low consistency of orientation (i.e., cross-scratches) is

related to eating harder or more brittle foods [93,94]. Cross-

scratching of this type has been seen on the shearing facets of cat

carnassials, where it has been hypothesized to be the result of the

Table 1. Feeding strategies and the predicted snout shape
and microwear features associated with each.

Feeding strategy Snout Shape Microwear features

Browsing: Ground-height Square high proportion of pits relative
to other features, fine
scratches

Browsing: Mid-height
(1–10 m)

Square/Round fewer pits relative to other
features

Browsing: Upper canopy Square/Round few pits

Browsing: Non-selective Square subparallel scratches, fine
features (i.e. fine scratches, no
pits)

Browsing: Selective Round cross-scratches, large features
(i.e. coarse scratches, gouges)

doi:10.1371/journal.pone.0018304.t001
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multiple bite actions observed in those animals when attempting to

bite through tough materials [93,95]; movement of incompletely

sheared foodstuffs across the facet during this process would create

cross-scratching on a shearing facet [93,96]. Note that this does

not require complex jaw movements, as the cheek teeth in cats are

in precise occlusion [93,96]. Harder foods encountered by a

sauropod would likely have included thick stems, indicating woody

browse that is selectively browsed upon. Larger features (i.e.,

gouges, coarse scratches) also indicate selective browsing, either as

a result of woody stems (coarse scratches) or large particles such as

seeds or spores (gouges).

Quantifying snout shape
Six genera of diplodocoid sauropod dinosaur (Apatosaurus,

Dicraeosaurus, Diplodocus, Nigersaurus, Suuwassea and Tornieria) pre-

serve enough of the skull to reconstruct the snout shape. The skulls

of these six genera were reconstructed in dorsal view based on

examination of the original materials (Table S1). These recon-

structions are prone to some error, and the amount of material

available necessarily influences their accuracy; Diplodocus, for

example, is known from multiple articulated skulls, whereas

Dicraeosaurus is known only from disarticulated braincases and

fragmentary dermal elements. Nonetheless, these were produced

with as much rigor as possible, and so should vary in ways

consistent with their variation in life.

These reconstructions (Fig. 3) were measured using two

squareness indices: the upper arcade index (uAI) and the

premaxillary-maxillary index (PMI). A third method, measuring

the divergence angle of the premaxillae, enables the direct

measurement of squareness from fossils, as it does not require a

reconstruction to remove deformation. These indices were then

compared among taxa, first to test the null hypothesis that there is

no difference in snout squareness among diplodocoids, and second

to test the hypothesis that any variation in snout shape is correlated

with phylogeny, not diet. The non-diplodocoid neosauropods

Brachiosaurus and Camarasaurus were also examined, as taxa widely

recognized as relatively selective browsers and as outgroups to the

diplodocoids. To further elucidate trends in snout shape, the basal

eusauropods Jobaria (based on [97]), Mamenchisaurus (based on [98];

this shape is extrapolated from a dentary), Patagosaurus (extrapo-

lated from the dentary MPEF-PV 1670), and Shunosaurus

(extrapolated from the dentary ZG65430) were also examined,

as was the basal sauropodomorph Plateosaurus (based on [34]). In

the absence of microwear or other contextual data for these latter

organisms, interpretation of their feeding behavior is limited.

uAI. The uAI is a modification of the AI introduced by Boué

[34]. Although the original metric measured the ratio of the depth

and breadth in the lower dental arcade, the uAI utilizes the upper

jaw instead, because upper jaws are more commonly preserved in

diplodocoid dinosaurs. In order to retain 1.0 as the dividing score

between square and round jaws, the uAI measures only the right

or left half of the snout (Fig. 4), although Boué’s metric included

both right and left jaws in its width measurement. In both metrics,

the measured variable is the width of the dental arcade (in the uAI,

the half-width) divided by the anteroposterior depth.

PMI. The PMI is also a modification of an older metric; in

this case it is a modification of the premaxillary shape index (PSI)

[44]. Because the sauropod snout includes both the premaxilla and

the maxilla, the PSI is only slightly modified as the premaxillary-

maxillary index (PMI). This index is otherwise calculated in much

the same way as the PSI (Fig. 4). First, a line is drawn

perpendicular to the sagittal midline of the skull and tangent to

the anterior-most point on the skull. A second line is drawn

parallel to the midline tangent to the broadest point of the snout. A

third line is then drawn at 26u from the long axis of the skull

connecting the first two lines, forming a right triangle; 26u is used

to be consistent both with the PSI and with work predating the

PSI. The area of the skull within that triangle is calculated (using

the measure tool in Adobe Photoshop CS4) and compared to the

area of the triangle as a whole to compute the PMI. In cases where

the snout narrows behind its broadest part (e.g., Nigersaurus, certain

hadrosaurs), the shape posterior to the broadest point is

disregarded, and the snout is considered to have continued in a

straight line to the point of intersection with the hypotenuse.

Although this may inflate the PMI score slightly, it more

accurately reflects the effective shape of the snout.

Premaxilla Divergence Angle. Due to the often

fragmentary or deformed nature of fossil material, the prior two

metrics rely on reconstructions of skulls; measurements based on

deformed materials would necessarily represent an unrealistic

shape. Although every effort was made to accurately reconstruct

morphology, this has resulted in a small sample size. One method

to measure squareness directly from fossil material (reducing

potential error inherent in reconstruction) and increase sample size

involves comparing the angles of divergence on the anterior

margin of the premaxilla (PMDA). This is measured here by

orienting the specimen in strict dorsal or ventral view and

measuring the angle formed between the anterolateral and

anteromedial corners of the premaxilla and a line drawn

perpendicular to symphysis (Fig. 4).

Quantifying microwear
Forty-seven teeth belonging to seven genera were examined for

microwear features (Table S2); of these, only 12 were subsequently

deemed suitable for analysis (Table 4). Damaged or heavily

weathered teeth were deemed unsuitable and not examined,

following [99]. The suitable teeth were molded using a high-

resolution polyvinylsiloxane dental molding material (Coltene

Whaledent President microSystem 6012). Casts were made in

water-clear epoxy and examined at 706 using transmitted light

microscopy, following [56]. Images were taken using a Spot CCD

camera (Spot Insight 11.2 Color Mosaic, Diagnostic Instruments)

at the highest resolution available (36 bits/pixel, 300 dpi),

mounted on a Nikon SMZ 1500 microscope. Image analysis was

performed in Microware 4.02 [100]. Where possible, wear was

examined from multiple sites on the same tooth and averaged.

Features measured were scratch number, scratch orientation, pit

number, and pit size. Patterns of microwear were examined

against patterns characteristic of feeding behavior in modern

mammals (see below). Following recent criticisms of purely

quantitative analyses of microwear [101], analysis of microwear

features is based solely on qualitative comparisons (e.g., average

size, shape) and feature-to-feature ratios; raw counts and counts

per unit area are provided but not analyzed.

Although sauropod remains are abundant globally, skulls are a

rare component of sauropod fossil assemblages [32]. Even

Diplodocoidea, the clade most completely represented by cranial

material, contains only six genera with tooth-bearing elements

associated with them (see above). Isolated, shed teeth are common

finds, but are not identifiable to a useful degree, and can only be

assigned to large clades (e.g., Diplodocoidea). In some instances,

particularly involving Morrison Formation sauropods, isolated

dentigerous elements are also not identifiable to the genus level,

due to the paucity of non-basicranial autapomorphies in the clade.

Even among those teeth that are both worn and assignable to a

particular taxon, preserved wear features are rare, resulting in the

relatively small sample size seen here.
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Statistical analyses
The distributions of three variables were examined statistically:

snout shape (for browsing strategy), scratch breadth (for browse

height), and pit/gouge size (for both height and strategy). For two-

sample comparisons, non-parametric Mann-Whitney U tests were

performed; sample sizes for snout shape were too small to meet

normality criteria, and both scratch breadth and pit/gouge size

failed a normality test (Shapiro-Wilk) for all samples. The Kruskal-

Wallis test (an extension of the Mann-Whitney U) was used for

instances where multiple comparisons were desirable. For

significant results of Kruskal-Wallis tests, pairwise comparisons

(following the method of [102]) with an adjusted P-value were used

to determine which samples were distinguishable from each other.

Institutional Abbreviations
AMNH, American Museum of Natural History, New York,

New York, USA; ANSP, Academy of Natural Sciences,

Philadelphia, Pennsylvania, USA; CM, Carnegie Museum of

Natural History, Pittsburgh, Pennsylvania, USA; CMC, Cincin-

nati Museum Center, Cincinnati, Ohio, USA; CMN, Canadian

Museum of Nature, Ottawa, Ontario, Canada; CPC, Colección

Paleontológica de

Coahuila, Saltillo, Coahuila, Mexico; MB.R., Humboldt

Museum für Naturkunde, Berlin, Germany; MNN, Museé

National du Niger, Niamey, Niger; MPEF, Museo Paleontológico

Egidio Feruglio, Trelew, Chubut, Argentina; MOR, Museum of

the Rockies, Bozeman, Montana, USA; PU, Museum of Natural

Figure 3. Reconstructions of diplodocoid skulls used in this analysis. Reconstructions of Nigersaurus and Diplodocus modified from [10] and
[34], respectively. All other reconstructions based on material listed in Table S1. Skulls scaled to equivalent anteroposterior lengths.
doi:10.1371/journal.pone.0018304.g003
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Connecticut, USA; ZG, Zigong Dinosaur Museum, Zigong,

Sichuan, People’s Republic of China.

Results

Snout shape
Results of the snout shape analyses (uAI, PMI, PMDA) are

summarized in Tables 2 and 3.

uAI. Four taxa (Apatosaurus, Dicraeosaurus, Diplodocus, and

Nigersaurus) preserve enough of the maxilla that the uAI can be

calculated. This metric could not be determined for Suuwassea and

Tornieria; the only known maxillae of those taxa are distally

incomplete and the position of the posterior-most tooth cannot be

accurately determined. Nigersaurus had the highest uAI score and

therefore the squarest snout (4.0), followed by Apatosaurus (1.5) and

Diplodocus (1.2). Dicraeosaurus has the lowest uAI score (0.6). The

non-diplodocoid sauropods Brachiosaurus and Camarasaurus have

uAI scores similar to those of Dicraeosaurus (0.6 and 0.4,

respectively).

PMI. As above, Nigersaurus had the highest PMI value (95%).

Apatosaurus (84%) and Diplodocus (84%) had the next highest PMI,

followed by Dicraeosaurus (74%) and Suuwassea (74%). Tornieria

(71%) had the lowest PMI score of the ingroup taxa. Diplodocoids

had higher PMI scores (and therefore squarer snouts) than all

outgroup taxa (Brachiosaurus = 68%; Camarasaurus = 63%). Snouts of

the basal eusaruopods Jobaria (55%), Mamenchisaurus (58%), and

Shunosaurus (58%) were rounder than those of all examined

neosauropods, although Patagosaurus (65%) has a snout shape

intermediate between Brachiosaurus and Camarasaurus. The basal

sauropodomorph Plateosaurus (44%) was roundest of all.

Premaxillary Divergence Angle. The initial sample

included 16 premaxillae. Of those 16, 12 were deemed complete

enough to measure (Table 3). In the incomplete premaxillae, the

thin ‘lateral plate’ [30] that extends ventrally from the labial

margin of the premaxilla and forms the ventral-most portion of the

element was missing or heavily damaged, preventing accurate

assessment of the PMDA from those elements.

The diplodocoids again appear to have segregated into two

groups, with Dicraeosaurus (24u), Suuwassea (25u), and Tornieria (25u)
having high divergence angles compared to Apatosaurus (6u),
Diplodocus (7u), and Nigersaurus (4u). The snout of Nigersaurus is

again the squarest; those of Suuwassea and Tornieria are the

roundest. The difference between Nigersaurus and Apatosaurus is less

Figure 4. Metrics used to determine snout shape in this study. Snout depicted based on Diplodocus in Figure 3, anterior towards top of page.
From left to right: the upper arcade index (uAI) measures snout breadth by taking the ratio of arcade width to arcade depth (higher numbers indicate
squarer snouts); the premaxilla-maxilla index (PMI) is determined by taking the ratio of an area covered by the snout within a predetermined triangle
to the area of that triangle (higher numbers indicate squarer snouts); the premaxillary divergence angle (PMDA) determines squareness by measuring
the divergence of the anterior margin of the premaxilla from perfectly square (higher numbers indicate greater divergence from square and therefore
roundness). The angle of the hypotenuse of the triangle used to calculate PMI (26u; 64u internal angle) is based on the angle used in the PMI’s parent
metric, the PSI [44].
doi:10.1371/journal.pone.0018304.g004

Table 2. Snout shape scores by taxon.

uAI PMI PMDA

Apatosaurus 1.5 84% 6.3u

Dicraeosaurus 0.6 74% 24.4u

Diplodocus 1.2 84% 7.4u

Nigersaurus 4.0 95% 3.5u

Suuwassea — 74% 25u

Tornieria — 71% 25.4u

Brachiosaurus 0.6 68% 33u

Camarasaurus 0.4 63% 40u

doi:10.1371/journal.pone.0018304.t002
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marked (2u) than with previous metrics. The PMDA of

Brachiosaurus (35u, 30u; average = 33u) and Camarasaurus (27u,
45.4u, 46.5u; average = 40u) are higher than for any diplodocoid.

The variation observed in Camarasaurus is potentially the result of

ontogeny; the element that provided the 27u PMDA measurement

(UUVP 3999) is much larger and presumably came from an adult,

whereas CM 11338 is a subadult individual.

Microwear
Although 47 teeth were examined for microwear features, only

11 (23%) were found to have features that record diet. Of these,

only seven teeth belonging to five taxa (Brachiosaurus, Camarasaurus,

Dicraeosaurus, Diplodocus, and Nigersaurus) appeared to preserve an

accurate sample of wear. Figure 5 illustrates representative wear

features for these five taxa. The remaining four teeth preserve

microwear that cannot be directly attributed to diet, either due to

taphonomic alteration (Apatosaurus), location (not on the wear facet

itself; Diplodocus USNM 2673, Nigersaurus G100), or because the

preserved features are so few in number (Rebbachisaurus).These final

four teeth and their microwear features are described below and

compared qualitatively. Full results are presented in Table 4; raw

data (including individual feature dimensions) are available in

Table S3.

Apatosaurus. The probable Apatosaurus skull CMC VP 7180

contains multiple teeth in-situ, although the majority of these teeth

were broken apically. Wear features were only recovered from one

tooth, the first tooth in the left dentary. Although this tooth was

heavily abraded post-mortem, as indicated by a ‘sugary’ texture

[54], many small, subcircular features can be seen dotting the

surface of the dentine. No scratches are recorded in the dentin,

and no features were recovered from the enamel of any tooth.

Dicraeosaurus. Two teeth (MB.R. 2204 and 2197),

tentatively assigned to D. hansemanni, preserve some microwear

features. Features are recovered from both dentine and enamel

surfaces of MB.R. 2204. On both surfaces, pits and gouges

outnumber scratches, and large irregular features (gouges) are

more common than the smaller, subcircular pits. On both

surfaces, scratches lack a preferred orientation and cross-

scratches are common. Features on the dentine are finer than

those on the enamel surface.

The second tooth, MB.R. 2197, does not preserve a large

amount of microwear, although some features are present on the

labial enamel edge. Here, two exceptionally large gouges are

preserved. No scratches or smaller pits were observed, and it is

probable (although not certain) that these gouges are not the result

of tooth-food or tooth-tooth contact.

Diplodocus. Three teeth from two specimens (CM 11161

and USNM 2673) preserve microwear features on the enamel.

Microwear features were recovered from small areas of the

labial enamel margin of the facet on the second right premaxillary

tooth and the first left premaxillary tooth of CM 11161.

Identification of features was hampered here and on other

diplodocid specimens by the application of a preservative lacquer,

likely around the turn of the century. Attempts to remove this

lacquer using alcohol-based solvents were generally unsuccessful.

As also seen in Dicraeosaurus, pits and gouges outnumber

scratches on the enamel of teeth from CM 11161. Of the two

features, small subcircular pits are substantially more common

than large gouges. Scratches are generally subparallel, although

cross-scratching does rarely occur, and oriented roughly along the

apicobasal axis. Scratches extend over the edge of the facet and

onto the lingual surface of the tooth for a short distance.

Seven loose teeth are associated with the Diplodocus longus skull

USNM 2673. None of these teeth have wear facets, and based on the

size and position of one tooth, some of them may have been unworn

replacement teeth. One tooth, however, an incomplete crown

recovered separately from the other six loose teeth, does preserve

what appear to be wear features on the presumed labial surface some

distance from the apex. Based on size comparisons with the intact

teeth of USNM 2673, this crown appears to be an upper tooth.

The wear features recovered from this surface differ from those

seen on the labial facet in CM 11161 in both size and character.

Table 3. PMDA scores by element.

Containing clade Family Genus Species Specimen # PMDA Position

Diplodocoidea Diplodocidae Diplodocus longus AMNH 969 4.5 L

7 R

USNM 2673 9.8 L

carnegii CMNH 11161 8.3 L

Apatosaurus sp. CMNH 11162 12.4 L

4 R

sp. CMC VP 7800 3 L

5.8 R

Tornieria africana MB.R.2346 25.4 L

Dicraeosauridae Suuwassea emilieae ANS 21122 25 L

Dicraeosaurus sp. MB.R.2339 24.4 L

Rebbachisauridae Nigersaurus taqueti MNN GAD-512 3.5 L

Macronaria Brachiosaurus brancai 34.5 L

30.2 R

Camarasaurus lentus CM 11338 45.4 R

46.5 L

sp. UUVP 3999 27 R

doi:10.1371/journal.pone.0018304.t003
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Scratches are substantially longer and broader than those from the

facet margin. They are generally sub-parallel with rare-cross

scratching, but the orientation is nearly perpendicular to the long

axis of the tooth, with only a slight apicobasal component. Pits are

also larger than those observed on the facet, although they are

proportionally identical to those from CM 11161. Because these

features do not come from either a facet or from the apical surface of

the crown, they cannot be confirmed as the result of a bite stroke.

Nigersaurus. Wear features were recovered from two

crowns, one each from the the G2 and G100 assemblages.

Wear features were observed on the labial enamel margin of the

labial facet on the G2 crown. As in Diplodocus, scratches are

elongate and narrow. Scratch orientation is generally apicobasal,

without cross-scratching. Small pits are the most common feature

on the facet. The proportions of these pits are more oblate than

those of Diplodocus and Apatosaurus, but substantially rounder than

those observed in the enamel of Dicraeosaurus.

No wear features were recovered from the facet of the crown

from G100, perhaps as a result of post-mortem wear. Features

were observed on the lingual surface of the enamel basal to the

Figure 5. Microwear features recovered from sauropod dinosaurs. A, Diplodocus. B, E, Dicraeosaurus. C, Nigersaurus. D, Apatosaurus. F. c.f.
Rebbachisaurus. A, C, D, and F dominated by small pits and fine scratches, interpreted as indications of ground-height, non-selective browsing; B and
E are dominated by large gouges and coarse scratches, interpreted as indications of mid-height, selective browsing. A–F to scale; scale bar in A,
E = 0.5 mm.
doi:10.1371/journal.pone.0018304.g005

Table 4. Microwear features recovered from teeth.

Taxon Specimen Pit # L:B Area (mm2) Circ. (mm) S. # S. L. (mm) S. B. (mm) C.S.

Apatosaurus CMC VP7180 109 1.27:1 73.37 46.43 — — — n/a

Dicraeosaurus MB.R. 2204D 359 1.64:1 99.74 31.32 228 54.93 3.73 Y

MB.R. 2204E 227 1:75:1 160.06 43.75 176 49.12 4.93 Y

Diplodocus CM 11161 LP1 14 1.28:1 33.43 24.90 19 94.35 2.65 N

CM 11161 RP2 37 1.38:1 16.54 18.43 26 52.46 3.4 N

USNM 2673* 15 1.32:1 423.26 69.17 37 236.17 4.33 Y

Nigersaurus G2 276 1.48:1 34.64 26.80 138 678.49 2.69 N

G100* 9 2.28:1 208.04 70.19 30 137.53 3.84 Y

Rebbachisaurus MNHN 1512a 14 1.2:1 174.73 69.17 7 166.29 3.57 Y

Brachiosaurus MB.R. 2190 49 1.48:1 520.57 51.12 72 57.52 3.86 Y

Camarasaurus UUVP 1949 124 1.95:1 80.03 31.83 99 47.32 3.76 N

UUVP 3986 203 1.74:1 93.46 33.31 185 80.21 4.02 Y

Abbreviations: L:B, average length:breadth ratio of pits/gouges; S. #, number of scratches; S. L., average scratch length; S. B., average scratch breadth; C.S., cross-
scratches.
doi:10.1371/journal.pone.0018304.t004
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actively worn surface. Of the features observed, the majority were

scratches. All features were generally larger than those observed

on the facet of G2. Similar to the wear recovered from USNM

2673, scratch orientation is more mesiodistal than apicobasal,

although there is still a minor apicobasal component. Cross

scratching occurs but is rare. Pit size was also substantially larger

than those seen in the G2 tooth. Because these features are located

away from surfaces of active wear, it is likely that they were caused

by some contact outside of the bite stroke.

Rebbachisaurus. A single loose tooth of rebbachisaurid type

(MNHN 1512a; see [103]) is referable to Rebbachisaurus. Wear

features were recovered from the enamel near the smaller facet

(presumably the labial surface). Scratches were very long and

narrow. Cross scratching did occur, although scratches appear to

be predominantly mesiodistally oriented. Pits were quite large but

generally subcircular.

Camarasaurus. Two teeth (UUVP 1949, UUVP 3986)

preserved a substantial amount of quantifiable microwear

features. In both cases, pits outnumber scratches. The pits are

large, similar in size to those seen in Dicraeosaurus. Scratch length

varies but is generally shorter than that seen in Diplodocus and

Nigersaurus. Scratch breadth is broad and most similar to that seen

in Dicraeosaurus. Cross scratches are rarer than in Dicraeosaurus but

do occur.

Brachiosaurus. Wear features were recovered from a single

tooth, MB.R. 2190. Scratches dominate the preserved features.

The pits that are preserved are often quite large, larger than but

most similar to those preserved in Dicraeosaurus. These largest pits

are typical of the wear found at the outermost margin of the facet;

basal to the facet, the pits are more typical of the size seen in

Diplodocus and Nigersaurus. Scratches are comparatively short, and

cross-scratches are common. Scratch breadth is intermediate,

occurring between the ranges of Diplodocus and Dicraeosaurus.

Discussion

Snout Shape
The six ingroup taxa examined can be broadly divided into two

categories: square and round. Square-snouted diplodocoids include

the diplodocids Apatosaurus and Diplodocus and the rebbachisaurid

Nigersaurus. Round-snouted diplodocoids include the dicraeosaurids

Dicraeosaurus and Suuwassea, and the diplodocid Tornieria. Round-

snouted diplodocoids are generally squarer in profile than outgroup

taxa such as Brachiosaurus and Camarasaurus, however.

Testing this statistically proves somewhat problematic, however.

Grouping the sauropods a priori into three groups—‘‘square’’

diplodocoids (Apatosaurus, Diplodocus, and Nigersaurus), ‘‘round’’

diplodocoids (Dicraeosaurus, Suuwassea, and Tornieria), and outgroup

sauropods (Brachiosaurus and Camarasaurus)—permits examination of

any differences in their means, although at such low sample sizes,

the power of statistical tests to avoid Type II errors (erroneously

failing to reject the null hypothesis) is reduced, and two populations

may be construed as falsely similar. A Kruskal-Wallis test rejects the

null hypothesis, that all samples have the same median, for both

PMI (H = 6.402, d.f. = 2, P = 0.041) and PMDA scores (H = 13.176,

d.f. = 2, P = 0.001). Pairwise comparisons found that, for both

metrics, only the square population could be distinguished from the

outgroup (P = 0.038). All other pairwise comparisons (round vs.

outgroup, P = 0.773; square vs. round, P = 0.387) were found to be

indistinguishable. The small sample size hampers the power of

statistical tests to separate these groups, however.

This pattern of snout shapes is reminiscent of the pattern seen in

modern ungulates. In light of that comparison, the broad-

snoutedness seen in Apatosaurus, Diplodocus, and Nigersaurus is

interpreted as an adaptation to ground-level, non-selective

browsing in at least some diplodocoid sauropods. The narrower,

rounded snouts of Dicraeosaurus, Suuwassea, and Tornieria are

interpreted as evidence for greater subsistence on mid-height,

selective browse, although the intermediacy of these shapes

between the squarest diplodocoids and the roundest outgroups

may indicate at least partial reliance on non-selective browsing in

these taxa.

The snout shapes of macronarian sauropods like Brachiosaurus

and Camarasaurus are consistently rounder than those of diplodo-

coid sauropods. If this difference is reflective of a different feeding

behavior, it may be due to the difference in browse height.

Brachiosaurus and Camarasaurus were both probably mid- to upper-

canopy browsers, based on studies of neck posture [27,28,104,105]

(but see [106]) and limb proportions [30,34,107]. Diplodocids and

dicraeosaurids, however, were likely browsing near or at ground

level [27,28,30]. Differences in available vegetation at such lower

heights (herbaceous plants at low heights, woody browse at mid-

and upper heights), potentially resulting in the occasional non-

selective exploitation of browse, may have influenced the relative

breadth of the snout in Dicraeosaurus, Suuwassea, and Tornieria.

Alternatively, there may be a phylogenetic component to the

difference in snout shapes between selectively browsing diplodo-

coids and macronarians—if broad snouts are plesiomorphic for

Diplodocoidea, there may be some constraint on the degree of

roundness attained.

Examination of sauropod taxa outside the neosauropod

radiation (Jobaria, Mamenchisaurus, Patagosaurus, and Shunosaurus)

suggests that neosauropods as a whole display increased snout

squareness over more basal taxa (U = 1, P = 0.01), although taxa

like Patagosaurus appear to have achieved macronarian-type snout

broadness early in eusauropod evolution. Eusauropods, in turn,

are squarer than basal sauropodomorphs like Plateosaurus. This

general trend towards increasingly square snouts may be related to

an increased reliance on bulk herbivory [30,108] and is possibly

also related to the observed trend towards larger tooth crowns in

sauropod and eusauropod dinosaurs [9]. The variation seen in

basal eusauropods may be related to feeding behavior, but more

research (particularly the acquisition of microwear data) is

required to fully evaluate this hypothesis.

Comparisons with hadrosaurids. As discussed previously

(see Reconstructing Diets, above), Carrano et al. [46] noted a general

dichotomy of form between hadrosaurine and lambeosaurine

hadrosaurs—hadrosaurines had broad snouts, lambeosaurines had

narrow snouts—and related this difference to a division in dietary

habit, such that the hadrosaurines (H) were interpreted as non-

selective browsers and the lambeosaurines (L) were selective

browsers. As large bodied dinosaurian herbivores, hadrosaurids

are a potentially useful comparison for sauropods, particularly with

regard to snout shape. PMI scores were determined for Anatotitan

copei (H; [109]; this may be referrable to Edmontosaurus, however

[110]), Edmontosaurus regalis (H; [109]), Maiasaura peeblesorum

(H; [111]), Prosaurolophus maximus (H; [112]), Saurolophus osborni

(H; [113]), Corythosaurus sp. (L; CMN 34825), Hypacrosaurus altispinus

(L; ROM 702), Lambeosaurus sp. (L; ROM 758) and Velafrons

coahuilensis (L; [114]). Although the premaxilla would have been

covered in a keratinous beak in vivo, it is not unreasonable to

assume the shape in life closely mirrored that of the bony

supporting elements beneath. Although CMN 34825 and ROM

758 most likely represent juveniles, no study has yet noted shape

change associated with the snout through ontogeny in ornithopods

[115–117] or other dinosaurs, excluding only Diplodocus [32].

Furthermore, examination of an embryonic specimen of

Hypacrosaurus (RTMP 87.79.334, [115]) results in an identical
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PMI to that of the adult (ROM 702), suggesting that snout shape

was conserved in these taxa. Snout shape (PMI) scores and

material used for reconstructions are given in Table S4.

Broad-snouted diplodocids group within the range of PMI

scores seen in hadrosaurines; in both clades, scores cluster around

80–85% (Fig. 6; only those taxa examined by Carrano et al. [46]

are plotted). The exceedingly square snout of Nigersaurus (95%) is

nearly matched by that of Anatotitan (93%). Lambeosaurines,

particularly Hypacrosaurus (76%) and Lambeosaurus (74%), typically

have rounder snouts than hadrosaurines, although there is some

overlap (e.g., Corythosaurus, 80%). There is also overlap in the range

of scores between the upper end of the round-snouted diplodocoid

range (Dicraeosaurus, 74%) and lower end of the lambeosaurine

range (Lambeosaurus, 74%), although the PMI of Tornieria (71%) is

lower than in any hadrosaurid examined. The lambeosaurine

Velafrons, which was not included by Carrano et al. [46] and was

not plotted in Figure 6, has a PMI score (85%) more similar to

those of square-snouted diplodocids and hadrosaurines, which

suggests the potential for non-selective browsing in Lambeosaur-

inae.

A Mann-Whitney U test comparing the PMI scores recorded for

combined diplodocoid and hadrosaurid ‘‘square’’ (Apatosaurus,

Diplodocus, Nigersaurus, and the hadrosaurines) and ‘‘round’’

(Dicraeosaurus, Suuwassea, Tornieria, and the lambeosaurines) groups

demonstrates that the two groups can be distinguished (U = 1,

P = 0.002). The overall similarity between snout shape in

putatively nonselective and selective browsers in both diplodocoids

and hadrosaurids suggests that a) PMI is a valid measure of an

ecomorphological variable and b) hypotheses of non-selective and

selective browsing based on snout shape in diplodocoid sauropods

are well-founded.

Microwear
Although the relationship between wear on molar and

incisiform teeth is uncertain, the pattern of variation in wear

features between round-snouted (Dicraeosaurus) and square-snouted

(Apatosaurus, Diplodocus, Nigersaurus) diplodocoids is quite similar to

that expressed in the molariform teeth of mammals. Dicraeosaurus

featured larger, coarser features in general, with less orientational

consistency than in the square-snouted taxa. These features can be

tentatively interpreted as evidence for variation in both browse

height and type (e.g., woody vs. herbaceous, high vs. low

concentrations of phytoliths/sclerenchyma, selective vs. non-

selective).

Browse height. Dicraeosaurus, Diplodocus, and Nigersaurus all

had a large proportion of pits in their microwear features.

Nigersaurus had the highest proportion of pits to scratches (2:1),

followed by Dicraeosaurus (1.3:1) and Diplodocus (1.1:1); the lowest

proportion occurred in the putatively higher-browsing taxon

Brachiosaurus (0.7:1), although the mid-height browser Camarasaurus

had a ratio similar to that of Diplodocus and Dicraeosaurus (1.2:1).

The ratio of pits to scratches in Diplodocus may be artificially low;

only 96 total features were recovered from two teeth (compared to

414 in Nigersaurus and 403 in Dicraeosaurus). The proportion of those

features varies between teeth, such that the first left premaxillary

tooth has a pit:scratch ratio of 0.7:1, while the second right

premaxillary tooth has a ratio of 1.4:1. Regardless, it is clear that

Nigersaurus has a higher proportion of pits to scratches than

Dicraeosaurus, which suggests that Nigersaurus ate at a lower browse

height (i.e., at ground level). The same is potentially true for

Diplodocus, even allowing for the potentially misleading results from

the left premaxillary tooth. The similarity in pits-to-scratches ratios

in Diplodocus, Camarasaurus and Dicraeosaurus may indicate some

overlap in browse height (and indeed, the two categories do

overlap as defined here; Table 1), although the distinctly larger

features present in Camarasaurus and Dicraeosaurus (see below)

suggest that the subcircular features in each taxon had different

root causes, most likely different browse types.

Browse type. Square-snouted diplodocoids Diplodocus and

Nigersaurus are characterized by an abundance of fine (breadth

,3.5 mm), subparallel scratches; round-snouted taxa such as

Camarasaurus and Dicraeosaurus are dominated by coarse (breadth

.3.75 mm) scratches, including a large proportion of cross-

scratches. Following a significant Kruskal-Wallace result

(H = 179.34, d.f. = 4, P = 0.000), pairwise comparisons found that

the pairs Diplodocus and Nigersaurus, Diplodocus and Brachiosaurus, and

Brachiosaurus and Camarasaurus were indistinguishable from each

other (Table 5). This suggests that Diplodocus and Nigersaurus were

both primarily browsing on similar foods, although Diplodocus may

also have incorporated a small component of hard foods in its diet;

such a diet may explain the observed similarity to Brachiosaurus. A

diet heavy on silica-accumulating plants may also have caused this;

Figure 6. Plot of PMI scores for hadrosaurid (open symbols) and sauropod (closed symbols) dinosaurs. The vertical axis separates taxa
into sauropods (top), hadrosaurines (middle) and lambeosaurines (bottom). Squares represent taxa considered to have been non-selective browsers,
circles represent taxa considered to have been selective browsers. Blue tones indicate the range of square snouts and yellow tones indicate the range
of round snouts; green tone indicates overlap; dark blue/dark yellow represent the limits of hadrosaurian snout shape diversity. Overlap in snout
shape occurs between behavioral guilds in hadrosaurs, but not in sauropods, although sample size is limited for sauropods. Sauropod snout shapes
are also more disparate than snout shapes in hadrosaurids. Inferences of hadrosaur diet based on [46]. Abbreviations: An, Anatotitan; Ap, Apatosaurus;
Br, Brachiosaurus; Ca Camarasaurus; Co, Corythosaurus; Dic, Dicraeosaurus; Dip, Diplodocus; Ed, Edmontosaurus, Hy, Hypacrosaurus; La, Lambeosaurus;
Ni, Nigersaurus; Pr, Prosaurolophus; Sa, Saurolophus; Su, Suuwassea; To, Tornieria.
doi:10.1371/journal.pone.0018304.g006
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one such plant, Equisetum, is known from the Morrison Formation,

and has previously been suggested to form a component of the diet

of Diplodocus [80]. Dicraeosaurus, which differed significantly in

scratch breadth with all other study taxa, was potentially also a

mixed feeder.

The greater orientational consistency in Diplodocus and Niger-

saurus suggests that these animals were biting through softer stems,

consistent with a hypothesis of browsing on herbaceous plants,

such as low-growing ferns. Conversely, the low consistency of

scratches in Dicraeosaurus is indicative of harder, more brittle foods,

possibly including the shearing of woody stems. The significantly

coarser scratches and larger pits/gouges observed Dicraeosaurus also

suggest a diet including coarser plants and a large proportion of

larger particles than those ingested by Diplodocus and Nigersaurus,

and probably Apatosaurus and Rebbachisaurus as well. The larger

particles in question may have been hard objects such as seeds; an

abundance of such high-quality foodstuffs in the diet indicates

selective browsing behavior [118]. Brachiosaurus and Camarasaurus

have relatively high orientational consistencies despite the

common occurrence of cross-scratches. In those taxa, the higher

than expected orientational consistency is likely a function of an

interlocking dentition and precise occlusion, two features not seen

in diplodocoids.

Pit/gouge size was also found to differ significantly between

several of the taxa (H = 229.386, df = 2, P = 0.000). Pairwise

comparisons found significant differences in pit/gouge area

between Diplodocus and all others and Nigersaurus and all others,

but not between Brachiosaurus, Camarasaurus, and Dicraeosaurus

(Table 6). Pit/gouge size appears to be able to distinguish between

selective and non-selective (or less selective) browsers, although

Diplodocus and Nigersaurus, both potentially non-selective browsers

as predicted by snout shape, had statistically distinguishable pit/

gouge size distributions as well. Average pit size in the two taxa is

quite similar (34.6 mm2 in Nigersaurus, 22.7 mm2 in Diplodocus),

however, and the next most-similar is substantially larger

(Camarasaurus, at 88.4 mm2), suggesting that the perceived differ-

ence between pit/gouge size in Diplodocus and Nigersaurus may not

be functionally significant.

In addition to their significantly larger size, the features

recovered from Camarasaurus, Dicraeosaurus and Brachiosaurus are

notably more oblate and gouge-like than the subcircular features

recovered from the other taxa. Although the meaning of this shape

difference is uncertain, it may be related to physical differences in

the particles causing the wear, or to the orientation of the force

compressing the particle into the tooth (e.g., meeting the enamel

edge obliquely vs. orthogonally). In either case, the shape

difference suggests some significant difference in diet or behavior

between Dicraeosaurus and the square-snouted diplodocoids, as has

been previously suggested [30].

Comparison with previous results
Diplodocus. Fiorillo [22,23], Calvo [26], and Upchurch and

Barrett [30] previously examined wear features on the teeth of

Diplodocus. All studies agree on the dominance of fine, subparallel

scratches oriented generally along the labiolingual axis. Neither

Fiorillo [22,23] nor Calvo [26] recovered pits or gouges. Upchurch

and Barrett [30] did recover large pits, although these were

considered larger than those normally produced by grit or

phytoliths. These features appear to have been recovered from

the dentine of a heavily worn tooth, however [30], where larger

features may be expected. The lack of pits led Fiorillo [22,23] and

Calvo [26] to suggest an upper-canopy browsing behavior for

Diplodocus, which is counter to much of the evidence for ground-level

browsing presented more recently [10,27,28,30]. High browsing

was also inferred as a possible feeding mechanism for Diplodocus by

Upchurch and Barrett [30], based on macrowear features.

The absence of pits/gouges in most previous studies is

somewhat perplexing, given their relative abundance in all teeth

Table 5. Results of pairwise comparisons (after [102]) following a Kruskal-Wallis test on samples of scratch breadth.

Brachiosaurus Camarasaurus Dicraeosaurus Diplodocus Nigersaurus

Brachiosaurus — 1.000 0.00 0.216 0.000

Camarasaurus 1.000 — 0.00 0.000 0.000

Dicraeosaurus 0.00 0.00 — 0.000 0.000

Diplodocus 0.216 0.000 0.000 — 0.164

Nigersaurus 0.000 0.000 0.000 0.164 —

Results in bold indicate cases where the null hypothesis (distributions in each sample are the same) cannot be rejected. Putative high browsers (Brachiosaurus and
Camarasaurus) cannot be distinguished based on scratch breadth. Dicraeosaurus is distinguishable from all others. Diplodocus and Nigersaurus cannot be distinguished.
doi:10.1371/journal.pone.0018304.t005

Table 6. Results of pairwise comparisons (after [102]) following a Kruskal-Wallis test on samples of pit area.

Brachiosaurus Camarasaurus Dicraeosaurus Diplodocus Nigersaurus

Brachiosaurus — 1.000 1.000 0.000 0.000

Camarasaurus 1.000 — 1.000 0.000 0.000

Dicraeosaurus 1.000 1.000 — 0.000 0.000

Diplodocus 0.000 0.000 0.000 — 0.005

Nigersaurus 0.000 0.000 0.000 0.005 —

Results in bold indicate cases where the null hypothesis (distributions in each sample are the same) cannot be rejected. None of the taxa hypothesized to be selective
browsers can be distinguished statistically from each other.
doi:10.1371/journal.pone.0018304.t006
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examined in this study. Further confusion comes from the overlap

in sample between a number of studies: this study, the study of

Upchurch and Barrett [30], and the studies of Fiorillo [22,23] all

examine the same specimen of Diplodocus (CM 11161), but obtain a

spectrum of results ranging from a majority of pits (this study), to

some pits [30], to no pits [22,23]. As a result, it is unlikely that such

biological factors as seasonality are responsible for the differences,

at least in those samples that directly overlap. The different

patterns of features may be a result of methodology, given the

reliance of previous studies on SEM images (at extremely high

magnification) as opposed to the use of low-magnification

microscopy here. It may also be the result of sample size, as all

studies (including the current study) examined relatively few teeth

per taxon compared to studies of mammals. The ubiquity of pits in

all teeth examined here, their similarity in form among broad-

snouted taxa, and their difference in form in the round-snouted

Dicraeosaurus, however, all reinforce the validity of the interpreta-

tion presented here.

Nigersaurus. Sereno et al. [10] examined microwear

features on the teeth of Nigersaurus. The results of that study are

essentially identical to those presented here, although this study

identified a significantly larger number of small pits. Both Sereno

et al. [10] and this work infer a diet based on ground-level

browsing of herbaceous plant materials based on the consistent

labiolingual orientation of fine scratches on the labial surface of the

enamel and a high pit/scratch ratio.

Leaf stripping behavior?
Ryan [75] suggested that some features of incisor microwear in

Gorilla, Pan, and Papio were indicative of leaf-stripping behavior:

polished surfaces and a preponderance of subparallel, fine

scratches on the apical surface of the incisors. However, the

proportion of features (scratches and pits) in the microwear

assemblages reported here for sauropods differ from wear

produced by leaf-stripping. In all but one sample (left premaxillary

tooth 1 of Diplodocus) from the occlusal surface of sauropod teeth,

pits outnumber scratches significantly, whereas scratches substan-

tially outnumber pits in each of the samples reported by Ryan

[75]. This latter result was suggested to have been a consequence

of repeated drawing of plant materials over the enamel surface. In

leaf stripping behavior, grit causes striations rather than

compressional features (i.e., pits) as seen in wear caused by a bite.

Because of the high proportion of pits in the sauropod microwear

sampled, leaf stripping behavior is considered to be less plausible

than ground-level browsing behavior, although it is noted that leaf

stripping and ground-level browsing do leave superficially similar

traces on incisiform teeth.

Non-facet microwear features
Features recorded from the non-occlusal surfaces of presump-

tive ground-level browsing taxa such as Diplodocus and Nigersaurus

differ from the features recorded from facets in both taxa.

Specifically, larger features are recovered, and those features

(particularly scratches) are in a different orientation relative to the

tooth, nearly orthogonal to the long axis of the tooth rather than

subparallel to it. Because these features are located outside the

occlusal surface, it is highly unlikely that they represent wear

formed during the bite stroke. The implication, therefore, is that

the wear was caused by nearby vegetation, which in turn suggests a

dense (perhaps sward-like) growth form for the food resource in

question. The orientation of the wear at nearly 90u to the occlusal

features may have been the result of vegetation scraping against

the labial margin of the upper dentition as the head and neck are

moved laterally to obtain the next bite; this would fit with the

interpretation of some authors [27,28] of the long neck as a means

to increase the feeding envelope without moving the body. These

features may also be have resulted from incidental contact in leaf-

stripping behavior, although as noted above that behavior is

considered to be less likely. In either case, root causes of such

features are poorly constrained and non-facet microwear is

unlikely to serve as evidence for feeding behavior at this point in

time. Such features were not recorded from the selectively

browsing Dicraeosaurus.

Feeding Behavior: Summary
Snout shape and microwear indices suggest the presence of both

a ground-level, nonselective browsing behavior and a mid-height

(above 1 m), selective browsing behavior in diplodocoid sauro-

pods. Here, feeding behavior is examined in relation to body size,

phylogeny, and paleoecology, to determine the influence of each

on behavior in diplodocoid sauropods.

Body size and feeding behavior. Among flagellicaudatans

(the group containing Diplodocidae and Dicraeosauridae),

selectively browsing taxa had smaller skulls, and were smaller

overall, than non-selective browsers [34,119–121]. The

rebbachisaurid Nigersaurus, however, was the most specialized

non-selective browser sampled and was of similar size to

Dicraeosaurus and Tornieria. Although this rules out the hypothesis

that feeding behavior was entirely size-dependent, it does not

necessarily mean that there is no relationship between size and

behavior. It is possible that above 10–12 meters in body length,

selective browsing behavior became untenable as a feeding mode

(although this restriction does not appear to apply to upper-canopy

feeders like Brachiosaurus and Camarasaurus); non-selective browsing

behavior was clearly effective even at small (by sauropod

standards) body sizes. Other dinosaurs hypothesized to have

been ground- and mid-height selective browsers, such as

ceratopsians [47], heterodontosaurs [82], lambeosaurines [46],

and stegosaurs [122] also tended to be small in comparison to

sauropods, and even the largest rarely exceeded 12 m in body

length [47,123–126]. It is possible that above this size, handling

and forage time for selective browsing exceeded some metabolic

threshold when an animal is limited to lower-canopy browse.

Selective vs. nonselective browsing strategies do generally scale

with body size in mammals [127], although the degree to which

this analogy would be expected to hold for dinosaurs is uncertain.

The relationship in mammals is based primarily on increased

retention time as a function of increased body (and gut) size in

large mammals [128] and relatively increased metabolic

requirements in smaller mammals [129]; sauropods and other

herbivorous dinosaurs often far surpassed the body sizes of even

very large mammals [130], however, and estimates of metabolic

rate in dinosaurs are still fraught with uncertainty [131–134].

However, the relationship between body size and the relative

rarity of high-quality forage in most ecosystems and its associated

foraging cost is also documented in mammals [129,135,136],

providing some evidence for an upper size limit on selective

browsing in sauropods. Although macronarian sauropods

successfully grew large while selectively browsing in the upper

canopy, they also had exclusive dominion over those heights as no

other clade of dinosaurian herbivore was able to access those

resources [137].

Phylogenetic signal. Within individual diplodocoid clades,

feeding behavior was reasonably consistent, although snout shape

can be determined for only one rebbachisaurid (Nigersaurus; Fig. 7).

However, the diplodocid Tornieria has microwear features and a

snout shape most similar to those of the dicraeosaurids

Dicraeosaurus and Suuwassea. Because Tornieria is a relatively
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derived diplodocid [103,121], it appears that the feeding behavior

inferred for this taxon is an independent derivation within this

lineage, rather than a retained plesiomorphic behavior. This in

turn suggests that the behavior was not strictly governed by

inheritance, and that some plasticity was possible.

The ancestral condition for snout shape in diplodocoids is

difficult to determine. Although both diplodocids and rebbachi-

saurids appear to have square snouts, there is no overwhelming

evidence to suggest that this is the original condition for the group

as a whole. The ancestral state in Flagellicaudata is equivocal:

basal diplodocids have square snouts and basal dicraeosaurids

have round snouts. Furthermore, the only rebbachisaurid for

which snout shape can be determined (Nigersaurus), is a highly

derived taxon that likely does not represent the basal condition for

the group. Juvenile Diplodocus have narrow snouts [32], which may

suggest that the square-snouted condition seen in adults is derived

from an ancestral round-snoutedness. Outgroup taxa (e.g.,

macronarians, basal eusauropods) are unequivocally round-

snouted, but where, when, and how many times the transition to

square-snoutedness occurred in diplodocoidea cannot be said with

certainty. If square-snoutedness is taken as the ancestral

diplodocoid condition, one origination (at the base of Diplodo-

coidea) and two reversals (one at the base of Dicraeosauridae, once

in Tornieria) are required (three evolutionary steps). If round-

snoutedness is basal for sauropods, then at least two originations

(once at the base of Diplodocidae and once within Rebbachisaur-

idae) and one reversal (Tornieria) are required (also three steps).

Environmental signal. Similar morphological plasticity in

other dinosaurian groups (e.g., hadrosaurids) has typically been

interpreted in relation to behavior, although often behavior and

morphological divergence are correlated with phylogeny [46], and

it can be difficult to tease apart the influences of phylogeny and

behavior on morphology. However, as noted above, phylogeny is

not a perfect explanation for the diversity of snout shapes seen in

diplodocoids. It is likely, then, that this morphological variability

was driven in larger part by the browse flora available to these

animals.

Herbivory imposes two major constraints on behavior: foraging

time and digestive time [135]. Digestive time is a function of the

length of the digestive tract and may be loosely interpreted from

body size, although soft tissue structures (e.g., the rumen), which

are not typically preserved in the fossil record, can substantially

impact retention time [80,138]. Foraging time, however, can be

inferred from skeletal evidence based on models of intake rate.

Intake rate has a major influence on feeding behavior in modern

herbivores [139]; which is to say that an organism will attempt to

maximize intake rate in a given environment. Broad or square

snouts have been demonstrated to maximize intake rate in non-

selectively browsing mammals [40]; a broad snout in selective

herbivores decreases intake rate by increasing handling time and

minimizing effective bite mass cropped [140].

Variation in forage quality may also have had some influence on

behavior. Two hypotheses in particular, the forage abundance

hypothesis (FAH) [141] and the selective quality hypothesis (SQH)

Figure 7. Phylogeny of diplodocoid sauropods (modified from [103]), with ecosystem, inferred browse height, and inferred browse
behavior plotted above terminals. Data suggest that ground-height, non-selective browsing evolved in open, savanna-like environments,
whereas selective, mid-height browsing was most common in diplodocoids living in closed environments dominated by mid- and upper-canopy
browse. Blue tones indicate data suggestive of ground-height, non-selective browsing; yellow tones indicate data suggestive of mid-height, selective
browsing. Inferences for which insufficient data exists are represented in 50% grey tones. Abbreviations: S, savanna type ecosystem; F, forested
ecosystem; G, ground-height browser; M, mid-height browser; N, nonselective browser; Sl, selective browser.
doi:10.1371/journal.pone.0018304.g007
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[142], might be useful in explaining a relationship between

ecology and behavior in these sauropods. The FAH suggests that

when resources are perceived to be abundant, animals may choose

to be more selective; grazing behavior increases when resource

levels are low. In this hypothesis, forage abundance is the

controlling factor. SQH, conversely, predicts that herbivores are

actually less selective when high quality resources are plentiful and

homogenously distributed. Under SQH, food quality is the key

variable. If the regional ecology can be reconstructed for

sauropods, support for one or both of these hypotheses in the

feeding behavior may be found.

Although the ecological conditions of Niger during the Aptian-

Albian are largely unknown (particularly with regard to flora), the

paleoecology of the Late Jurassic Morrison and Tendaguru

formations, where the remaining five taxa have been found, is

better understood.

The Morrison Formation of North America is dominated by

diplodocoid sauropods, in particular the square-snouted diplodo-

cids. Diplodocids (primarily Apatosaurus and Diplodocus) are both the

most common sauropod fossils found in these beds and the most

widespread, occurring in more localities than any other clade [143]

(n.b., the macronarian Camarasaurus is the most numerous single

genus of dinosaur [144]). Only a single round-snouted diplodocoid

taxon (Suuwassea) is known from the Morrison Formation.

Plant fossils from the Morrison include a wide diversity of

conifers, ginkophytes, podocarpaceans, ferns, cheirolepidiaceans,

and horsetails [145–147]. Most recent work suggests that much of

the Morrison Formation was an arid to semi-arid savanna-like

environment, dominated by ground-height herbaceous browse

(e.g., ferns, bryophytes) and low- to mid-height woody shrubs

[147,148]. Taller browse (primarily conifers; e.g., Pagiophyllum,

Podozamites) was restricted to areas near watercourses and isolated

pockets, such as that preserved by the Salt Wash member [146–

148]. It is in these isolated pockets that high-browsing sauropods

like Brachiosaurus altithorax are found [148].

Low browse in the southern Morrison, particularly the ferns and

small trees, appears to have been highly nutritious and digestible,

on par with extant browse [80]. The abundance of high quality,

broadly distributed low browse and the appearance of multiple

lineages of non-selectively browsing sauropods fit well with the

predictions of the SQH and suggest a relationship between ecology

and behavior in the southern Morrison Formation.

The northern end of the Morrison Formation (e.g., Montana) has

been recognized for its unusual sauropod fauna, composed of

smaller adults and more juveniles than is typical of more southern

localities [120,149]. Additionally, dicraeosaurids such as Suuwassea

and MOR 592 are known exclusively from Montana [120,150].

Paleoenvironmental reconstructions of the northern Morrison

Formation are also quite different from those of the southern

localities. This region was likely to have been a wetter environment

than the southern Morrison Formation [107,147,151]. Morrison

Formation sediments found near central Montana are believed to

have been deposited in mires, coal swamps and/or peat bogs, and

associated riparian environments [147]. Forested habitats have

previously been thought to lead to a greater reliance on selective

browsing in other dinosaurs [46] and in modern mammals [39,135].

It is probable that the restriction of round-snouted, selectively

browsing dicraeosaurids to this type of environment in the Morrison

Formation indicates a similar constraint on sauropod dinosaurs.

The less homogenous environments of the northern Morrison may

have resulted in patches of highly nutritious vegetation, such as

Equisetum and the conifer Araucaria [80]; the increase in selectivity

when high-quality resources are restricted matches the predictions

of SQH. The relatively high concentration of juvenile diplodocoids

in the northern Morrison Formation, with their narrow snouts [32],

is also consistent with this interpretation.

Unlike that of the Morrison, the sauropod fauna of Tendaguru is

made up exclusively of round-snouted taxa, including Brachiosaurus,

Dicraeosaurus, and Tornieria. The African Brachiosaurus taxon is a much

more important component of the fauna compared to its American

relative, particularly in the Middle Saurian Beds, where it is the most

common sauropod found [152]. The most common fossil sauropod

in the Upper Tendaguru is the diplodocid Tornieria, which is rare in

the Middle Saurian Beds but common elsewhere [152]. Dicraeosaurus

is a minor component of all dinosaur-bearing layers [152].

The sediments preserved in the Tendaguru Formation encom-

pass both strictly terrestrial uplands and tidal flats/coastal regions,

but the latter appear to have been poorly vegetated [153]. In

contrast, the uplands seem to have been heavily vegetated by conifer

forests, including the very tall araucarians that would have provided

a food source for high-browsing sauropods [153]. Also present were

evergreen shrubs and small (,25 m) trees in the family Podocarpa-

ceae [153]. Minor components of the flora included cycads and

ginkophyte trees. Ferns were exceptionally rare, and only two

varieties, either Dicroidium or Pachypteris-type, have been reported

from Tendaguru [153]. The uplands of Tendaguru, therefore, were

a heterogenous mix of upper-canopy browse dominated by conifers

(Cheirolepidiaceae and Araucariaceae) and mid-height woody

browse (Podocarpaceae, cycads); comparatively little ground-level

bulk forage (ferns) would have been present.

No ground-height, non-selectively browsing sauropod dinosaurs

have been recovered from Tendaguru. The sauropods that have

been found there are exclusively mid-height (Dicraeosaurus, Tornieria)

or upper canopy (Brachiosaurus) feeders, which corresponds well with

the recovered vegetation, which is dominated by woody browse.

Although cycads and podocarpacean evergreens would have been

abundant mid-height browse, they are substantially less nutritious

than the ferns, horsetails, and other low browse plants common to

the southern Morrison Formation [80]. Here, where high-quality

food resources are limited, SQH predicts an increase in selectivity.

The lack of evidence for large bodied, non-selective browsers in

Tendaguru fits well with this prediction.

Summary. Forested habitats that are linked with riparian

environments are also associated with round-snouted sauropods in

both the Morrison (Brachiosaurus altithorax, Camarasaurus, Suuwassea)

and Tendaguru (Brachiosaurus brancai, Dicraeosaurus, Tornieria)

Formations. Square-snouted sauropods (Apatosaurus, Diplodocus)

are found in the open, savanna-like environment proposed for

the southern Morrison Formation, although the round-snouted

Camarasaurus is also found in these beds. Evidence suggests that the

riparian environments cutting through the savanna-type

environments of the Morrison had substantial tree coverage

[148], which could explain the presence of Camarasaurus in those

regions. The selective quality hypothesis predicts non-selective

browsing when high-quality resources are abundant and broadly

distributed and selective browsing when high-quality resources are

restricted [142]; both predictions match the inferences of

diplodocoid feeding strategy and floral ecology made for the

Morrison and Tendaguru Formations. The general robustness of

the relationship between diplodocoid anatomy and paleoecology

suggests that square-snoutedness is linked with ground-height,

non-selective browsing, and round-snoutedness is associated with

mid- to upper-canopy selective browsing (Fig. 7).

Conclusions
Hypotheses of feeding behaviors typical of modern mammalian

herbivores (e.g., non-selective and selective browsing) are support-

ed for diplodocoid sauropods using evidence from snout shape and
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dental microwear. Snout shapes in diplodocoids include both

rounded and square snouts, similar to those seen in hadrosaurid

dinosaurs. Square snouts have been correlated with non-selective

feeding behavior in modern and extinct mammals and in

hadrosaurine dinosaurs, whereas round snouts correlate with

selective browsing behaviors in those taxa. Dental microwear

features indicative of ground-height browsing on herbaceous

plants correspond with square snouts in diplodocoid sauropods;

microwear features suggestive of mid-height browsing on brittle,

potentially woody plants correspond with round snouts.

There is a potential correspondence between body size and

feeding behavior in diplodocoids: above 12–15 m body length,

diplodocoids are exclusively non-selective, ground-height brows-

ers; small diplodocoids include both selective and non-selective

browsers, however. There is probably not a strong phylogenetic

signal to morphology and behavior, although most diplodocids

(except Tornieria) and rebbachisaurids were ground-height brows-

ers, and dicraeosaurids (and Tornieria) were mid-height-browsers,

although potentially restricted to the lower portion of that feeding

zone. Feeding behavior corresponds well to environmental

associations, such that closed environments dominated by upper-

canopy browse lacked the ground-height, nonselective browsers

that dominated open environments.
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87. Prasad V, Strömberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur

coprolites and the early evolution of grasses and grazers. Science 310:
1177–1180.

88. Mainland IL (2003) Dental microwear in grazing and browsing Gotland sheep
(Ovis aries) and its implications for dietary reconstruction. Journal of

Archaelogical Science 30: 1513–1527.

89. Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear

mammalian teeth? Journal of Archaelogical Science 34: 526–531.

90. DeMiguel D, Fortelius M, Azanza B, Morales J (2008) Ancestral feeding state of

ruminants reconsidered: earliest grazing adaptation claims a mixed condition
for Cervidae. BMC Evolutionary Biology 13: 1–13.

91. Hoffman J, Clementz MT (2008) The effects of exogenous grit on the

microwear of extant ungulates and the implications for paleodiet interpreta-
tions. Journal of Vertebrate Paleontology 28(supplement to 3): 92A.

92. Ungar PS (1996) Dental microwear of European Miocene catarrhines:
evidence for diets and tooth use. Journal of Human Evolution 31: 335–

366.

93. Van Valkenburgh B, Teaford MF, Walker A (1990) Molar microwear and diet

in large carnivores: inferences concerning diet in the sabretooth cat, Smilodon

fatalis. Journal of Zoology 222: 319–340.

Diplodocoid Feeding Behavior

PLoS ONE | www.plosone.org 18 April 2011 | Volume 6 | Issue 4 | e18304



94. Grine FE (1986) Dental evidence for dietary differences in Australopithecus and
Paranthropus. Journal of Human Evolution 15: 783–822.
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