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Abstract Macronaria, a group of mostly colossal sauropod dinosaurs, comprised the largest 
terrestrial vertebrates of Earth’s history. However, some of the smallest sauropods belong to this 
group as well. The Late Jurassic macronarian island dwarf Europasaurus holgeri is one of the most 
peculiar and best- studied sauropods worldwide. So far, the braincase material of this taxon from 
Germany pended greater attention. With the aid of micro- computed tomography (microCT), we 
report on the neuroanatomy of the nearly complete braincase of an adult individual, as well as the 
inner ears (endosseous labyrinths) of one other adult and several juveniles (the latter also containing 
novel vascular cavities). The presence of large and morphologically adult inner ears in juvenile mate-
rial suggests precociality. Our findings add to the diversity of neurovascular anatomy in sauropod 
braincases and buttress the perception of sauropods as fast- growing and autonomous giants with 
manifold facets of reproductive and social behaviour. This suggests that – apart from sheer size – 
little separated Europasaurus from its large- bodied relatives.

Editor's evaluation
The authors provide the first detailed description of the neuroanatomy of the remarkable dwarf 
sauropod Europasaurus from the Jurassic of Germany, which, at least in this regard, was not 
very different from some of its much larger relatives. The available evidence is compelling and 
convincing. The comparative sections of the manuscript are solid and provide a relatively broad 
overview. Based on remains of different individuals and growth stages, the authors suggest that 
Europasaurus was likely precocial. The authors also assess the likely auditory capabilities and their 
relevance to the reproductive and social behaviour of this island- dwelling dinosaur.

Introduction
Sauropoda is a taxon of saurischian dinosaurs and comprise popular taxa like Diplodocus, Giraffatitan, 
and Argentinosaurus (e.g., Bates et  al., 2016). Sauropods were taxonomically diverse and had a 
worldwide distribution (e.g., Bates et al., 2016; Pol et al., 2021b). Sauropods likely originated in the 
Late Triassic (e.g., Rauhut et al., 2020; Pol et al., 2021b) and their geologically youngest represen-
tatives vanished during the end- Cretaceous mass extinction event (e.g., Curry Rogers and Forster, 
2001; Bates et al., 2016). Whereas bipedal early sauropodomorphs were probably capable of swiftly 
tracking down prey (Müller et al., 2021), the later evolutionary history of the group is characterized 
by an unrivaled increase in body size (among land- dwelling vertebrates), accompanied with herbivory, 
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an extreme elongation in neck length and graviportal quadrupedality (e.g., Sander et al., 2011; Bates 
et al., 2016; Bronzati et al., 2018).

While fossil braincases are generally rare, studies of sauropod endocrania are nevertheless 
numerous (e.g., Janensch, 1935; Paulina- Carabajal, 2012; Knoll et al., 2015), serving as a good 
base for comparisons. Potentially, aspects of lifestyle can be inferred from morphological details of 
cavities that once contained the brain, inner ear, and other associated neurovascular structures within 
the bony braincase of fossil vertebrates (e.g., Neenan et al., 2017; Schwab et al., 2020; Schwab 
et al., 2021; Ezcurra et al., 2020; Hanson et al., 2021; Choiniere et al., 2021; however, see also 
Benson et al., 2017; Evers et al., 2019; Bronzati et al., 2021; David et al., 2022). Furthermore, 
ontogenetically induced morphological shifts of neuroanatomy can hint towards different ecological 
tendencies within a species, for example, in respect to bipedal or quadrupedal locomotion (Bullar 
et al., 2019).

The middle Kimmeridgian (Late Jurassic) sauropod Europasaurus (represented by a single species, 
E. holgeri) is regarded as an unequivocal example of insular dwarfism (although, see Lokatis and 
Jeschke, 2018 for a critical view on the concept of the island rule) with paedomorphic features, 
having reached adult body lengths of nearly 6 m and weighing about 800 kg (Sander et al., 2006; 
Stein et al., 2010; Carballido and Sander, 2013; Marpmann et al., 2014). From this taxon, a great 
number of cranial and postcranial fossil bones are known (housed in the Dinosaurier- Freilichtmuseum 
Münchehagen/Verein zur Förderung der Niedersächsischen Paläontologie e.V., Rehburg- Loccum, 
Münchehagen, Germany; DFMMh/FV), of which the latter hint to at least 21 individuals of different 
ontogenetic stages (Scheil et al., 2018). The fossils come from shallow- marine carbonate rocks of the 
Langenberg quarry, assigned to the Süntel Formation, having formed in the Lower Saxony basin (see 
Zuo et al., 2018).

eLife digest Dinosaurs, like all animals with spines, had their main sensory organs – the organs 
that allowed them to listen, taste, see, smell, think and even keep their balance – on their heads. 
This means that studying their fossilized skulls can provide a wealth of information about how these 
animals perceived their environment through so- called ‘endocasts’ (digital models of the cavities 
within the skull).

Endocasts of the skulls of many different dinosaur species already exist, but a small species called 
Europasaurus holgeri had so far not received this treatment. This sauropod lived in what is now 
northern Germany during the Late Jurassic period (154 million years ago), and it owed its reduced 
size to having become isolated on an island, where it became smaller after many generations. Schade 
et al. wanted to gain a better understanding of certain lifestyle aspects of the biology of E. holgeri, 
and to be able to compare the endocast anatomy of this species to other dinosaurs. To do this, the 
team studied the braincases of both very young and mature E. holgeri individuals using a technique 
called computer tomography.

The approach taken by Schade et al. allowed them to examine and describe in detail the inner 
cavities that once contained the brain, inner ears, nerves and blood supply of eight different E. holgeri 
individuals. They found that the inner ears of small and young E. holgeri individuals were almost as 
large as those of their adult counterparts, and very similar in shape. Given that inner ears have roles 
in both audition and the sense of equilibrium, this suggests that E. holgeri babies were able to leave 
their nest very soon after hatching. This makes it likely that the babies of the species were highly 
developed when they hatched, and could probably feed themselves almost immediately, possibly 
similar to chickens. Furthermore, the relatively large size of the part of the inner ear responsible for 
hearing hints at E. holgeri being well able to communicate with other members of the species using 
sound.

The findings of Schade et al. add to the diversity of the record on the anatomy of the braincases 
of dinosaurs. Additionally, the results support the idea that sauropods may have been herd- living 
animals with social interactions that grew very fast and had to be light on their feet very early in life. 
Finally, comparing the endocasts of E. holgeri to those of other dinosaurs suggests that, beyond a 
discrepancy in body size, this species was very similar to its larger relatives on the Jurassic mainland.

https://doi.org/10.7554/eLife.82190
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The paratype specimen of Europasaurus, DFMMh/FV 581.1, comprises a largely complete, artic-
ulated and probably mature braincase, with DFMMh/FV 581.2 and 3 representing the respective 
detached parietals (Figures 1–3; Figure 1—figure supplements 1–4). The outer morphology of this 
material has previously been described (Marpmann et al., 2014). For this study, the parietals were 
rearticulated with the preserved neurocranium and subsequently documented with micro- computed 
tomography (microCT). The endocranial cavities which once housed the brain, inner ears, and other 
soft neuroanatomical structures, such as nerves and blood supply, were then manually segmented. 
The articulated specimens DFMMh/FV 581.1, 2, and 3 measure about 120 mm mediolaterally, 80 mm 
anteroposteriorly, and 100 mm dorsoventrally.

Additionally, the specimens DFMMh/FV 1077 (Figure 4; Figure 4—figure supplements 1 and 2; 
adult fragmentary braincase, complete endosseous labyrinth), DFMMh/FV 466+205 (Figures 5 and 6; 
Figure 5—figure supplement 1; Figure 7—figure supplements 1 and 2; Figure 8—figure supple-
ments 1 and 2; juvenile prootic and otoccipital, nearly complete endosseous labyrinth; the common 
bond of these two specimens has not been recognized in former studies; Marpmann et al., 2014), 
DFMMh/FV 964 and DFMMh/FV 561 (Figure 7; Figure 7—figure supplements 1 and 2; prootics 
of uncertain maturity, anterior labyrinth), DFMMh/FV 981.2, DFMMh/FV 898, and DFMMh/FV 249 
(Figure 8; Figure 8—figure supplements 1 and 2; juvenile otoccipitals, posterior labyrinth) were 
documented with microCT. Since the isolated specimens contain different parts of the endosseous 
labyrinths, cranial nerves and vascular cavities, the respective digital models were reconstructed in 
order to describe, compare, and contextualize their characteristics. Whereas the smallest of these 
specimens (DFMMh/FV 898) hints to an approximate posterior skull width of under 50 mm, the largest 
specimens DFMMh/FV 581.1 and DFMMh/FV 1077 suggest a mediolateral width of about 140 mm.

The microCT data and our digital reconstructions (Europasaurus holgeri - neuroanatomy - DFMMh/
FV - Schade et al. 2023 // MorphoSource) of different Europasaurus individuals add to the knowledge 
of diversity of dinosaur neuroanatomy and allow a better understanding of ontogenetic development. 
We discuss our findings in context of insights into the lifestyle of this long- necked insular dwarf from 
the Late Jurassic of Germany.

Results
Cranial endocast, innervation, and blood supply
As is generally the case in non- maniraptoriform dinosaurs (e.g., Witmer and Ridgely, 2008a; Witmer 
and Ridgely, 2009; Knoll et al., 2015; Knoll et al., 2021), many characteristics of the mid- and hind-
brain are not perceivable with certainty (however, see Evans, 2005; Morhardt, 2016; Fabbri et al., 
2017) on the braincase endocast of DFMMh/FV 581.1 (Figure 1A), which implies scarce correlation 
of the actual brain and the inner surface of the endocranial cavity (see Watanabe et al., 2019, for 
ontogenetic variations in recent archosaurs).

This endocast suggests low angles in the cerebral and pontine flexures. There is a prominent dorsal 
expansion, spanning from around the posterodorsal skull roof to approximately the anteroposterior 
mid- length of the endocast (Figures 1 and 2). In posterior view, the dorsal expansion is T- shaped with 
a more or less straight top and dorsolateral beams that become dorsoventrally higher and gradually 
lead over anteriorly to the area where the posterior part of the cerebral hemispheres are expected. 
In lateral view, the posterior- most extent of the dorsal expansion is separated from the dorsal margin 
of the medulla oblongata by a concavity. Anterolaterally to this concavity, the eminence for the vena 
capitis media is present. Although the respective openings are identifiable on DFMMh/FV 581.1 (close 
to a kink on the posterodorsal contact between the parietals and the supraoccipital, called ‘external 
occipital fenestra for the caudal middle cerebral vein‘ in Marpmann et al., 2014), only an approx-
imate reconstruction of the course of the veins was possible (due to low contrast in the microCT 
data; Figures 1 and 3). There is a large semicircular depression on the posterodorsolateral aspect 
of the endocast, being anterodorsally bordered by the dorsal expansion and anteroventrally by the 
eminence of the vena capitis media. On the anterodorsal skull roof, a mediolateral expansion of the 
endocast possibly marks the position of the cerebral hemisphere (Figures 2 and 3). In lateral view, 
there is a distinct ventral step on top of the endocast (also present in many other sauropod taxa; 
see, e.g., Knoll and Schwarz- Wings, 2009; Paulina- Carabajal, 2012; Knoll et al., 2013), between 
the anterior- most part of the dorsal expansion and the posterior part of the cerebral hemispheres, 

https://doi.org/10.7554/eLife.82190
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Figure 1. Europasaurus holgeri, 3D model of the braincase endocast with endosseous labyrinths and neurovascular canals of DFMMh/FV 581.1, 2, 
and 3 with transparent (A,C,E) and covering (B,D,F) volume rendering of the bony braincase in (A,B) right lateral, (C,D) dorsal, and (E,F) posterior 
view. Note that scale mainly applies to posterior perspective (E,F).?fl, potential floccular recess; ?nh, potential canal for the neurohypophysis; ?sa/ah, 
potential sphenoidal artery/canal for the adenohypophysis; bpp, basipterygoid process; bt, basal tuber; cp, cultriform process; de, dorsal expansion; ic, 
internal carotid; fm, foramen magnum; fo, fenestra ovalis; lab, endosseous labyrinth; mcv, mid cerebral vein; mr, median ridge; nc, sagittal nuchal crest; 
oc, occipital condyle; par, parietal; pit, pituitary; pop, paroccipital process; stf, supratemporal fenestra; vcm, vena capitis media; vf, vagal foramen; V, 
trigeminal nerve; VI, abducens nerve; VII, facial nerve; XII, hypoglossal nerve.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page

https://doi.org/10.7554/eLife.82190
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Figure supplement 1. Europasaurus holgeri, close- up of left lateral aspect of DFMMh/FV 581.1.

Figure supplement 2. Europasaurus holgeri, close- up of anterior endocranial floor of DFMMh/FV 581.1 in dorsal view.

Figure supplement 3. Europasaurus holgeri, close- up of 3D model of anterior endocranial floor of DFMMh/FV 581.1 in dorsal view.

Figure supplement 4. Europasaurus holgeri, close- up of right posterior endocranial wall of DFMMh/FV 581.1, viewed through the foramen magnum.

Figure 1 continued

Figure 2. Europasaurus holgeri, 3D model of the braincase endocast with endosseous labyrinths and neurovascular canals of DFMMh/FV 581.1, 2, 
and 3 with transparent (A,C) and covering (B,D) volume rendering of the bony braincase in (A,B) anterior (C,D) and ventral view. Note that scale mainly 
applies to ventral perspective (C,D). ?cerh, potential cerebral hemisphere; ?nh, potential canal for the neurohypophysis; ?sa/ah, potential sphenoidal 
artery/canal for the adenohypophysis; bd, blind depression; bpp, basipterygoid process; bt, basal tuber; cp, cultriform process; de, dorsal expansion; 
ic, internal carotid; fm, foramen magnum; lab, endosseous labyrinth; ls; laterosphenoid; mcv, mid cerebral vein; mp, median protuberance; mr, median 
ridge; oc, occipital condyle; os, orbitosphenoid; par, parietal; pit, pituitary; pop, paroccipital process; uo, unclear opening; vf, vagal foramen; II, optic 
nerve; III, oculomotor nerve; IV, trochlear nerve; V, trigeminal nerve; VI, abducens nerve; VII, facial nerve; XII, hypoglossal nerve.

https://doi.org/10.7554/eLife.82190
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followed by a slight ascent in anterior direction. The left side of the endocast suggests that the cere-
bral hemisphere impressions are delimited approximately by the contact between the orbitosphe-
noid and the laterosphenoid anteriorly, and by the trochlear nerve (CN IV) ventrally. Anteriorly, the 
orbitosphenoid bears a prominent medial incision for the optic nerve (CN II). Posteroventrally to 
the optic nerve canal and anteroventrally to the trochlear nerve canal, the canal of the oculomotor 
nerve (CN III) is situated. On the anteroventral aspect of the endocast, the pituitary reaches slightly-
more ventrally than the ventral- most margin of the medulla oblongata, producing an angle of about 
50° to the lateral semicircular canal (LSC) of the endosseous labyrinth (see Paulina- Carabajal et al., 
2020). On the anterodorsal aspect of the pituitary, two small and dorsolaterally diverging canals of 

Figure 3. Europasaurus holgeri, 3D model of the braincase endocast with endosseous labyrinths and neurovascular canals of DFMMh/FV 581.1, 2, and 
3 with transparent (A,C) and covering (B,D) volume rendering of the bony braincase in (A,B) right ventrolateral and (C,D) left lateral view. ?ab, potential 
basilar artery; ?cerh, potential cerebral hemisphere; ?nh, potential canal for the neurohypophysis; ?sa/ah, potential sphenoidal artery/canal for the 
adenohypophysis; bpp, basipterygoid process; bt, basal tuber; cp, cultriform process; ic, internal carotid; fo, fenestra ovalis; fp, fenestra pseudorotunda; 
mp, median protuberance; mr, median ridge; oc, occipital condyle; os, orbitosphenoid; pit, pituitary; pop, paroccipital process; uo, unclear opening; 
vcm, vena capitis media; vf, vagal foramen; II, optic nerve; III, oculomotor nerve; IV, trochlear nerve; V, trigeminal nerve; VI, abducens nerve; VII, facial 
nerve; XII, hypoglossal nerve.

https://doi.org/10.7554/eLife.82190
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uncertain identity branch off (Figures 1–3; Marpmann et al., 2014 labelled the openings as carotid 
artery: Figure 13D). In the titanosaur specimen CCMGE 628/12457 and Sarmientosaurus, structures 
of a similar position were identified as sphenoidal arteries (Sues et al., 2015; Martínez et al., 2016). 
However, in Bonatitan and the titanosaur braincase MPCA- PV- 80, anterolateral openings on the pitu-
itary, close to the abducens nerve (CN VI) canal, have been assigned to canals leading to the adeno-
hypophysis (Paulina- Carabajal, 2012). Posterolaterally to these canals, the abducens nerve (CN VI) 
canals trend in an anteroposterior direction (Figures 1–3; Figure 1—figure supplements 1–3). The 
specimen DFMMh/FV 581.1 suggests a natural connection between the pituitary fossa and the left 
CN VI canal, close to its anterior opening. However, this condition may be due to breakage, since 
the microCT data suggests a continuous wall on the right side. In ventrolateral view, the left side of 
DFMMh/FV 581.1 shows an additional small medial opening dorsally within the depression for CN VI 
(Figures 2A, B and 3C, D; Figure 1—figure supplements 1–3). Because of its smooth curvature, this 
opening seems natural, but for preservational reasons this is not visible on the right side of the spec-
imen. On the ventrolateral part of the pituitary, two short canals of uncertain identity are branching 
off ventrolaterally (Figures 1–3; Figure 1—figure supplement 1; in Bonatitan, anterolateral canals on 
the ventral portion of the pituitary have been identified as leading to the neurohypophysis; Paulina- 
Carabajal, 2012). Directly behind, the pituitary bears the long internal carotid canals, branching off 
ventrolaterally as well.

The endosseous labyrinth is situated within an anteroventrally inclined lateral depression of the 
endocast, directly ventral to the vena capitis media eminence. Here, an opening is present, leading 
to the medial aspect of the common crus in DFMMh/FV 581.1 and 1077 (the opening is considerably 
larger in the latter specimen; Figures 4 and 6; Figure 1—figure supplement 4; Figure 4—figure 

Figure 4. Europasaurus holgeri, 3D model of the left endosseous labyrinth region in DFMMh/FV 1077 with transparent (A) and covering (B) volume 
rendering of the bony braincase in medial view. asc, anterior semicircular canal; cc, common crus; cd, cochlear duct; fp, fenestra pseudorotunda; lsc, 
lateral semicircular canal; macc, medial aspect of common crus; psc, posterior semicircular canal; rst, recessus scalae tympani; V, trigeminal nerve 
opening; VII, facial nerve; VIIIa/b, both branches of the vestibulocochlear nerve; XII, hypoglossal nerve.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Europasaurus holgeri, fragmentary braincase DFMMh/FV 1077 in (A) ventral and (B) posterior view.

Figure supplement 2. Europasaurus holgeri, close- up of medial aspect of the fragmentary braincase DFMMh/FV 1077.

https://doi.org/10.7554/eLife.82190
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supplement 2). Whereas the trigeminal (CN V), facial (CN VII), and vestibulocochlear (CN VIII; two 
openings) nerve canals are mainly anterior to the endosseous labyrinth, the vagal foramen (=jugular 
foramen for CN IX- XI and jugular vein) and two canals for the hypoglossal nerves are situated poste-
rior to the cochlear duct (Figures 1–3). Within the depression for CN V, dorsally, a very small opening 
for the mid- cerebral vein is situated on both sides of DFMMh/FV 581.1. However, only the right canal 
could approximately be reconstructed (Figures 1A and 2A). Dorsal to the right slit- like opening for CN 
VII, a small depression is present in DFMMh/FV 581.1. The microCT data do not suggest penetration. 

Figure 5. Europasaurus holgeri, 3D model of the right endosseous labyrinth in DFMMh/FV 466+205 with transparent (A,C,E,G,I,K) and covering 
(B,D,F,H,J,L) volume rendering of the bony braincase remains in (A,B) lateral, (C,D) posterior, (E,F) medial, (G,H) anterolateroventral, (I,J) dorsolateral, 
and (K,L) lateroventral view; in respect to the endosseous labyrinth. Note that scale mainly applies to posterior perspective (C,D), and that VII and VIIIa/b 
are not shown in (A) and (B). asc, anterior semicircular canal; cc, common crus; cd, cochlear duct; fm, foramen magnum; fo, fenestra ovalis; lsc, lateral 
semicircular canal; pop, paroccipital process; psc, posterior semicircular canal; VII, facial nerve; VIIIa/b, both branches of the vestibulocochlear nerve.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Europasaurus holgeri, isolated otoccipital (DFMMh/FV 205; A,B) and prootic (DFMMh/FV 466; C,D) in (A) posterior, (B) anterior, 
(C) lateral, and (D) medial view; prootic and otoccipital conjoined in (E) posterolateral, (F) lateral, (G) medial, (H) dorsal, and (I) ventral view.

https://doi.org/10.7554/eLife.82190
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Figure 6. Europasaurus holgeri, 3D models of the endosseous labyrinth of DFMMh/FV 581.1 (A–D), DFMMh/FV 1077 (E–H; note that this model is 
mirrored) and DFMMh/FV 466+205 (I–L) in (A,E,I) lateral, (B,F,J) dorsal, (C,G,K), anterior and (D,H,L) posterior view. Note that scale mainly applies to 
dorsal perspective (B,F,J). asc, anterior semicircular canal; cc, common crus; cd, cochlear duct; fo, fenestra ovalis; fp, fenestra pseudorotunda; lsc, lateral 
semicircular canal; macc, medial aspect of common crus; psc, posterior semicircular canal.

https://doi.org/10.7554/eLife.82190
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Whereas the posterior canals for the hypoglossal nerve (CN XII) are clearly discernable in the microCT 
data, the anterior ones are not as obvious to detect. However, because of the expression of their 
respective openings on the actual fossil, their course could be established. Marpmann et al., 2014, 
only identified one hypoglossal canal (CN XII). However, the specimens considered herein support the 
presence of two openings on each side. Furthermore, anterior to the proximal openings of the ante-
rior CN XII canals, one depression each is visible in DFMMh/FV 581.1, however, the microCT data do 
not suggest a penetration. Anterodorsally to the endosseous labyrinth, the cerebellum appears as a 
mediolaterally expanded part of the endocast, almost reaching the trigeminal nerve (CN V) anteriorly 
and being delimited by the eminence of the vena capitis media posterodorsally (Figure 1A). Further-
more, a small floccular recess is present close to the mid- length of the anterior semicircular canal (ASC) 

Figure 7. Europasaurus holgeri, 3D models of the anterior portions of the endosseous labyrinth in (A,B; note that this model is mirrored) DFMMh/FV 
466, (C,D) DFMMh/FV 561 and (E,F) DFMMh/FV 964 in (A,C,E) lateral and (B,D,F) anterolateral view; in respect to the endosseous labyrinth. Note that 
scale mainly applies to anterolateral perspective (B,D,F). asc, anterior semicircular canal; cd, cochlear duct; lsc, lateral semicircular canal; vc, vascular 
cavity; V, trigeminal nerve opening.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Europasaurus holgeri, isolated prootics (DFMMh/FV 466, A,B; DFMMh/FV 964, C,D; DFMMh/FV 561, E,F) in (A,C,E) lateral and 
(B,D,F) medial view.

Figure supplement 2. Europasaurus holgeri, 3D models of isolated prootics and inner features (DFMMh/FV 466, A; DFMMh/FV 561, B; DFMMh/FV 964, 
C) in (A–C) medial view.

https://doi.org/10.7554/eLife.82190
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in DFMMh/FV 581.1. The ventral aspect of the endocast is anterodorsally inclined and bears a median 
ridge (becoming mediolaterally narrower in anterior direction; Figures 1A, 2C,3A), reaching between 
the foramen magnum and the anteroventral portion of the endocast (not considering the pituitary). 
Posteroventral to the abducens nerve (CN VI), a single median protuberance is present on the endo-
cast, produced by a fossa on the floor of the endocranial cavity (Figures 2C and 3; Figure 1—figure 
supplements 2 and 3). In addition, anterodorsally to the proximal openings for the abducens nerve 
(CN VI), a single median opening is present on the braincase floor, producing a connection to the 
pituitary fossa (probably for vascularization; see Paulina- Carabajal, 2012; Sues et al., 2015 for argu-
ments on arterial or venous identity). The general osteological configuration of the endocranial floor 
(Figure 1—figure supplements 2 and 3) seems very similar in the macronarian Giraffatitan (Janensch, 
1935: Figure 117). The anterodorsally incomplete endocranial cavity of DFMMh/FV 581.1, 2, and 3 
comprises a volume of about 35 cm3 (including the pituitary fossa). On the ventral aspect of DFMMh/
FV 581.1, a small funnel- like depression anterior to the occipital condyle ends blindly (Figure 2D).

Endosseous labyrinth
Both vestibular systems are preserved and are ventrally connected to the respective cochlea in 
DFMMh/FV 581.1 (the semicircular canals of the left inner ear were only vaguely perceptible in some 

Figure 8. Europasaurus holgeri, 3D models of the posterior portions of the endosseous labyrinth in (A,B) DFMMh/FV 898, (C,D) DFMMh/FV 981.2, 
(E,F) DFMMh/FV 249, and (G,H) DFMMh/FV 205 in (A,C,E,G) anterolateral and (B,D,F,H) posterior view. Note that scale mainly applies to posterior 
perspective (B,D,F,H). fm, foramen magnum; lsc, lateral semicircular canal; pop, paroccipital process; psc, posterior semicircular canal; vc, vascular cavity.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Europasaurus holgeri, isolated otoccipitals (DFMMh/FV 898, A,B; DFMMh/FV 981.2, C,D; DFMMh/FV 249, E,F; DFMMh/FV 205, 
G,H) in (A,C,E,G) posterior and (B,D,F,H) anterior view.

Figure supplement 2. Europasaurus holgeri, 3D models of isolated otoccipitals and inner features (DFMMh/FV 898, A; DFMMh/FV 981.2, B,C; DFMMh/
FV 249, D; DFMMh/FV 205, E) in (A,B,D,E) anterodorsomedial and (C) ventral view.

https://doi.org/10.7554/eLife.82190
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places). Whereas only the left endosseous labyrinth is preserved in DFMMh/FV 1077, only the right 
one is preserved within DFMMh/FV 466+205. The following description is based on the mentioned 
endosseous labyrinths (Figure 6). The vertical semicircular canals are relatively long and slender. Dorso-
ventrally, the ASC reaches considerably higher than the posterior one, and the ASC occupies more of 
the anteroposterior length of the vestibular system. The common crus is dorsally slightly posteriorly 
inclined (where preserved). While the posterior semicircular canal (PSC) forms a low arc, the ASC 
turns about 180° to contact the common crus dorsomedially. The medial aspect of the common crus 
is exposed to the endocranial cavity in DFMMh/FV 581.1 and DFMMh/FV 1077 (Figures 4 and 6G; 
Figure 1—figure supplement 4; Figure 4—figure supplement 2). The angle between the ASC and 
the PSC amounts 80° (measured in dorsal view with the common crus as fixpoint). The LSC is antero-
posteriorly short. In dorsal view, its anterior ampulla appears posteriorly shifted, producing a medi-
ally concave gap between the ASC and LSC (Figure 6B,F,J). Such a medial concavity is also present 
between the LSC and the PSC (best seen in dorsal view). The cochlear duct is approximately as high 
as the vestibular system dorsoventrally, points anteroventrally and very slightly medially (in DFMMh/
FV 581.1 and 1077). In lateral view, the cochlear duct is anteroposteriorly slender with sub- parallel 
anterior and posterior margins. However, mediolaterally, the cochlear duct is very wide, resulting in 
an elongated oval- shaped cross- section. The fenestra ovalis (Figures 1A, B, 2A, B and 6; Figure 4—
figure supplement 1) is situated close to the dorsoventral mid- length of the lateral aspect of the 
cochlear duct (in DFMMh/FV 581.1 and DFMMh/FV 1077). This is also true for the anteroposteriorly 
oriented fenestra pseudorotunda (Figures 4 and 6D; Figure 1—figure supplement 4), lying on the 
posteromedial aspect of the cochlear duct. The hiatus acusticus expresses as an anteromedially open 
notch (similar to the theropod Irritator; Schade et al., 2020) on the actual fenestra pseudorotunda in 
DFMMh/FV 581.1 (Figure 1—figure supplement 4).

Auditory capabilities
To get a rough idea of the audition of Europasaurus, we measured the dorsoventral cochlear duct 
length of DFMMh/FV 581.1 (c. 16 mm; as outlined by Walsh et al., 2009; however, see Gleich et al., 
2005; Witmer and Ridgely, 2008a; Paulina- Carabajal et al., 2016) and the anteroposterior basi-
cranial length (c. 55 mm; from the anterodorsal part of the pituitary fossa to the posterior- most part 
of the occipital condyle). Based on the equations of Walsh et al., 2009, our estimate of the mean 
hearing frequency of Europasaurus yields a value of 2225 Hz and a frequency bandwidth of 3702 Hz 
(374–4076 Hz). The auditory capabilities of the Late Triassic early- diverging sauropodomorph Theco-
dontosaurus from England was estimated by same means with a mean frequency of 1893 Hz and a 
band width of 3089 Hz (349–3438 Hz; Ballell et al., 2021).

Inner ears and cavities of incomplete specimens
In addition to DFMMh/FV 581.1, 2, and 3 (Figures 1–3 and Figure 6A–D; Figure 1—figure supple-
ments 1–4), eight other braincase specimens (that hold parts of the endosseous labyrinth), assigned 
to Europasaurus, were scanned and analysed. DFMMh/FV 1077 (Figures 4 and 6E–H; Figure 4—
figure supplements 1 and 2) contains a complete left endosseous labyrinth and was categorized 
as belonging to an osteological mature individual in Marpmann et al., 2014; as DFMMh/FV 581.1, 
2, and 3. Furthermore, there are two right elements (Figures 5, 6I–L, 7A,B, 8G,H; Figure 5—figure 
supplement 1; Figure 7—figure supplements 1A, B and 2A; Figure 8—figure supplements 1G, H 
and 2E; DFMMh/FV 205, a fragmentary otoccipital, and DFMMh/FV 466, a fragmentary prootic) that 
were originally found some 10 cm apart from each other in the sedimentary matrix. Whereas DFMMh/
FV 205 was thought to belong to a juvenile, DFMMh/FV 466 was supposed to belong to a consid-
erably older individual (both estimations are mainly based on size and surface texture; Marpmann 
et al., 2014). However, DFMMh/FV 205 and DFMMh/FV 466 articulate well with each other and jointly 
contain most of the endosseous labyrinth and the dorsal portion of the lagena, all in a meaningful 
manner in respect to size, position, and orientation of its compartments. DFMMh/FV 466 is of similar 
size and texture as the other prootics considered here. DFMMh/FV 205 is considerably smaller than 
the otoccipitals in the adult specimens. Hence, DFMMh/FV 466+205 are herein interpreted to belong 
to the same juvenile individual. Furthermore, there are two left fragmentary prootics (Figure 7C–F; 
Figure  7—figure supplement 1C–F, Figure  7—figure supplement 2B, C; DFMMh/FV 561 and 
DFMMh/FV 964) containing most of the ASC, the ventral base of the common crus, the anterior 

https://doi.org/10.7554/eLife.82190


 Research article      Evolutionary Biology | Neuroscience

Schade et al. eLife 2022;11:e82190. DOI: https://doi.org/10.7554/eLife.82190  13 of 22

ampulla of the LSC, and the anterior base of the lagena; both specimens were assigned to relatively 
mature individuals (Marpmann et  al., 2014). The three right fragmentary otoccipitals DFMMh/FV 
249, DFMMh/FV 898, and DFMMh/FV 981.2 (Figure 8A–F; Figure 8—figure supplements 1A–F and 
2A–D) contain at least the posterior parts of the LSC and the lagena, as well as most of their PSCs; 
these specimens were assigned to immature individuals (Marpmann et al., 2014).

In general, the morphology of the inner ears contained within these isolated specimens is consis-
tent to what can be observed in DFMMh/FV 581.1 and DFMMh/FV 1077. Since Marpmann et al., 
2014, used the vascularization (indicated by surface texture) of Europasaurus specimens as a critical 
character in judging the relative maturity, the inner cavities surrounding the endosseous labyrinths 
were examined herein.

No discrete cavities could be found in DFMMh/FV 581.1, DFMMh/FV 1077, DFMMh/FV 964, and 
DFMMh/FV 561 (all considered to represent more or less mature individuals). The otocipitals DFMMh/
FV 249, DFMMh/FV 898, and DFMMh/FV 981.2 and the articulated specimens DFMMh/FV 205 (otoc-
cipital) and DFMMh/FV 466 (prootic) show very similar, or corresponding, patterns of inner cavities 
(Figures 7 and 8; Figure 7—figure supplement 2; Figure 8—figure supplement 2). All four otoccip-
itals show dorsoventrally deep cavities posterodorsal to anteromedial to the PSC, close to the artic-
ulation surface with the supraoccipital (except for DFMMh/FV 205, in which this cavity network is not 
as much extended anteriorly). There are T- (DFMMh/FV 898 and DFMMh/FV 981.2), V- (DFMMh/FV 
205), or X- (DFMMh/FV 249) shaped (in cross- section in anterior view), dorsoventrally high and medi-
olaterally thin structures anterior to the PSC and dorsal to the LSC (close to the articulation surface 
with the prootic). Additionally, all four otoccipital specimens bear relatively small cavities ventral to the 
LSC (again, close to the articulation surface with the prootic). DFMMh/FV 981.2 shows dorsoventrally 
high cavities posteroventrally to the endosseous labyrinth (close to the articulation surface with the 
basioccipital). Generally, the cavities, likely of vascular purpose, of DFMMh/FV 205 seem not as large 
and extensive as in the other three otoccipitals. This coincides with their size and assumed relative 
maturity (DFMMh/FV 205 being the largest, smoothest and, hence, most mature of them; see Marp-
mann et al., 2014). Whereas DFMMh/FV 466 bears a small cavity ventral to the LSC (corresponding 
to the respective cavity in the otocipital DFMMh/FV 205), no other unequivocal cavities could be 
found, which is surprising when the V- shaped cavity close to the prootic contact of DFMMh/FV 205 
is considered.

Discussion
Comparison of neurovascular anatomy and potential ecological 
implications
Although not as prominent as in Dicraeosaurus (Janensch, 1935; Paulina Carabajal et al., 2018) and 
some specimens of Diplodocus (Witmer and Ridgely, 2008a), the position and morphology of the 
dorsal expansion of Europasaurus gives a rather ‘upright’ or sigmoidal appearance to the endocast 
(Figure 1A; see also Paulina- Carabajal et al., 2020). This is partly explained by the (preservational) 
lack of its olfactory bulb and tract. The first cranial nerve is not expected to be very long in many 
sauropods, especially in the closely related macronarian taxa Camarasaurus and Giraffatitan (Witmer 
and Ridgely, 2008a; Knoll and Schwarz- Wings, 2009; see also Müller, 2021). In contrast, the brain-
case endocast is rather tubular in some taxa, for example, the early- diverging sauropodomorph Buri-
olestes (Müller et al., 2021), the rebbachisaurid Nigersaurus (Sereno et al., 2007), and the titanosaur 
specimen MCCM- HUE- 1667 (Knoll et al., 2015). Instead, the endocast of Europasaurus seems to 
be most similar to Giraffatitan (Janensch, 1935; Knoll and Schwarz- Wings, 2009; formerly Brachio-
saurus brancai, see Paul, 1988; Taylor, 2009).

Contrary to other sauropod taxa (e.g., Spinophorosaurus, Diplodocus, Camarasaurus, and Sarmien-
tosaurus; see Witmer et al., 2008b; Knoll et al., 2012; Martínez et al., 2016), there are no discrete 
canals for vascular features such as, for example, the rostral middle cerebral vein or the orbitocerebral 
vein on the endocast of Europasaurus.

A ventral ridge on the medulla, as seen in Europasaurus (Figures  1A, 2C, 3A), seems to be 
present, although not as pronounced, in Thecodontosaurus (Ballell et al., 2021), the early- diverging 
sauropod specimen OUMNH J13596 (Bronzati et al., 2018), Spinophorosaurus (Knoll et al., 2012), 
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Camarasaurus (Witmer and Ridgely, 2008a) and, potentially, Giraffatitan (Janensch, 1935; Knoll and 
Schwarz- Wings, 2009) as well.

Although not obvious on the endocast (Knoll and Schwarz- Wings, 2009), Giraffatitan seems to 
bear a median fossa posteromedially to the proximal CN VI openings (Janensch, 1935: Figure 117); 
the respective protuberance in Europasaurus marks a distinct kink on the endocast (Figures 2C and 
3; Figure 1—figure supplements 2 and 3).

The endocast of Europasaurus bears two pairs of canals on the ventrolateral aspect of the pitu-
itary, the posterior of which is interpreted to represent the internal carotid here (Figures 1A, 2,3; 
Figure 1—figure supplement 1; in accordance with Marpmann et al., 2014: Figure 13A). Whereas 
structures identified as the craniopharyngeal canal are present anterior to the carotid artery in the tita-
nosaur specimen CCMGE 628/12457 (Sues et al., 2015) and the diplodocid specimen MMCh- Pv- 232 
(assigned to Leinkupal; Garderes et al., 2022), they are situated posteriorly in Apatosaurus (Balanoff 
et al., 2010; see also Paulina- Carabajal, 2012, and Paulina Carabajal et al., 2014 for subcondylar 
foramina in the vicinity of the internal carotid arteries). However, in these taxa, the craniopharyngeal 
canal is a singular median canal. This may render the anterior of the two pairs of canals on the ventral 
aspect of the pituitary in Europasaurus the canals for the neurohypophysis (Paulina- Carabajal, 2012). 
The pituitary of the Europasaurus endocast of DFMMh/FV 581.1 does not project much more ventrally 
than the posteroventral margin of the medulla oblongata. The pituitary is slightly higher dorsoven-
trally than the ASC (Figure 1A). Usually in sauropods, the pituitary is large and inclined posteroven-
trally, reaching much more ventrally than the ventral margin of the hindbrain (see, e.g., Knoll and 
Schwarz- Wings, 2009; Martínez et al., 2016; see also Sues et al., 2015 for an extreme reached in 
the titanosaur specimen CCMGE 628/12457 with a short ASC and an enormous pituitary). The finding 
of a relatively small pituitary fossa in Europasaurus and early- diverging sauropodomorphs seem 
to support a close connection of body and pituitary size, as suggested by some authors (Nopcsa, 
1917; Edinger, 1942; Müller et al., 2021). The microCT data of DFMMh/FV 581.1 suggest that the 
right CN VI canal closely passes by the pituitary fossa without a penetration, whereas the left CN VI 
canal tangents on the pituitary fossa and opens into the latter (Figure 1—figure supplement 3). The 
feature of the CN VI canals not penetrating the pituitary fossa seems typical for titanosaurs (e.g., 
Paulina- Carabajal, 2012; Knoll et  al., 2015; Paulina- Carabajal et  al., 2020). Whereas Knoll and 
Schwarz- Wings, 2009 note such a penetration or connection on the endocast MB.R.1919, Janensch, 
1935, originally described penetrating canals in the Giraffatitan braincase specimens S 66 (on which 
the endocast MB.R.1919 is based) and Y 1. However, the Giraffatitan braincase specimen t 1 seems to 
show CN VI canals rather passing by the pituitary fossa (Janensch, 1935). This may suggest a certain 
role of individual expressions (Giraffatitan), asymmetries (Europasaurus), and/or represents a phylo-
genetically potentially reasonable intermediate state (nonetheless, this feature may also be prone to 
preservational bias).

The endosseous labyrinth of Europasaurus (Figure  6) is most similar to Giraffatitan (Janensch, 
1935) and Spinophorosaurus (Knoll et al., 2012) in bearing a relatively long ASC and a long lagena. 
In dorsal view, the anterior ampulla of the short LSC in Europasaurus displays a medially concave gap 
between the ASC and LSC (Figure 6B,F,J). Similarly, a pronounced concavity is present between the 
LSC and the PSC (best seen in dorsal view). Both concave gaps (the ASC and the PSC project further 
laterally than the lateral outline of the LSC reaches medially) are similarly present in many Titanosauri-
formes (with the exception of FAM 03.064; Knoll et al., 2019): Giraffatitan (Janensch, 1935), Malaw-
isaurus (Andrzejewski et al., 2019), Sarmientosaurus (Martínez et al., 2016), CCMGE 628/12457 
(Sues et  al., 2015), Jainosaurus (Andrzejewski et  al., 2019), Ampelosaurus (Knoll et  al., 2013), 
Narambuenatitan (Paulina- Carabajal et  al., 2020), Bonatitan, Antarctosaurus, MCF- PVPH 765 and 
MGPIFD- GR 118 (Paulina- Carabajal, 2012), but also in the rebbachisaurids Limaysaurus and Niger-
saurus (Paulina- Carabajal and Calvo, 2021). In contrast to other sauropods, the anterior portion of the 
LSC, as well as its lateral- most extent (best seen in dorsal view), seems somewhat posteriorly shifted in 
the macronarians Camarasaurus (Witmer and Ridgely, 2008a) and Europasaurus (Figure 6B,F,J; for 
further discussion, see Supplementary file 1).

Although the mediolateral width of the lagena does not appear to be associated with auditory 
capabilities (Walsh et al., 2009), the lagena of Europasaurus is conspicuously thick mediolaterally, 
especially when compared to its anteroposterior slenderness (Figure  6). The calculated auditory 
capacities (based on Walsh et al., 2009) impute Europasaurus a relatively wide hearing range with 
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a high upper frequency limit (among non- avian dinosaurs; Lautenschlager et al., 2012; King et al., 
2020; Sakagami and Kawabe, 2020). Walsh et al., 2009, demonstrate a certain correlation between 
hearing range, complexity of vocalization, and aggregational behaviour in extant reptiles and birds 
(see also Gleich et al., 2005; Hanson et al., 2021). Following their conclusions and other studies 
suggesting (age- segregated) gregariousness in sauropodomorphs on the basis of nesting sites, body, 
and ichnofossils (e.g., Lockley et al., 2002; Sander et al., 2008; Myers and Fiorillo, 2009; Pol et al., 
2021a), it appears plausible that Europasaurus lived in groups with conspecifics (although it is not clear 
whether this took place perennial or seasonal, e.g., for ‘brooding’), which made airborne communica-
tion crucial. Furthermore, taphonomic reasons (femora count suggests at least 21 individuals in close 
temporal and spatial connection with very young and very old individuals being rarely represented; 
Scheil et al., 2018) and evidence for two morphotypes in the cranial and postcranial material of Euro-
pasaurus may suggest some form of social cohesion (Carballido and Sander, 2013; Marpmann et al., 
2014). However, while a given species is likely to perceive sounds within the frequency spectrum it 
is able to produce, it may be rather unlikely that the full range of frequencies that can be heard is 
covered by the sound production ability (see also Walsh et al., 2009; Senter, 2008). Habitat prefer-
ences potentially play a role as well: ‘acoustically cluttered’ habitats like forests seem associated with 
a tendency towards high- frequency intraspecific communication in recent mammals (Charlton et al., 
2019). Together with tropic Late Jurassic conditions in Europe (Armstrong et al., 2016), this may be 
part of the explanation of the recovered auditory capacities of Europasaurus.

Fragmentary bones and their eco-ontogenetic meaning
An interesting issue are the different morphological ontogenetic stages of DFMMh/FV 466 and 
DFMMh/FV 205 mentioned in Marpmann et al., 2014. The authors considered the prootic DFMMh/
FV 466 more mature than the otoccipital DFMMh/FV 205. Indeed, DFMMh/FV 466 is about as large as 
the prootics of DFMMh/FV 581.1, DFMMh/FV 1077, DFMMh/FV 964, and DFMMh/FV 561 (Figure 7; 
Figure 7—figure supplement 1), but the otoccipital DFMMh/FV 205 is much smaller than the ones in 
DFMMh/FV 581.1 and DFMMh/FV 1077 (and only slightly larger than DFMMh/FV 981.2, DFMMh/FV 
898, and DFMMh/FV 249; Figure 8; Figure 8—figure supplement 1).

In addition to general size of the specimens, and build and rugosity of articular facets, Marpmann 
et al., 2014 (see also Benton et al., 2010) defined the morphological ontogenetic stages also by bone 
surface smoothness, advocating for vascularization: the smoother the surface, the lesser the degree 
of vascularization and – in tendency – the more mature the individual bone. Our findings support this 
(Figures 7 and 8; Figure 7—figure supplement 2; Figure 8—figure supplement 2). While the bases 
of individual cavities described herein may represent depressions of articulation areas, their deep 
penetration into the bone is unambiguous. Apart from this, the described structures might represent 
sutures. However, the position and orientation of individual cavities do not conform to what would 
be expected. Since these cavities make sense in the frame of morphological ontogenetic stages used 
in Marpmann et al., 2014, they are considered as so far unknown vascular expressions of juvenile 
Europasaurus individuals here.

DFMMh/FV 466 and DFMMh/FV 205 articulate very well with each other, especially on their lateral 
aspects. Additionally, there are cavities ventral to the LSC that seem to have been continuous origi-
nally (Figure 5; Figure 7A, B; Figure 8G, H, Figure 5—figure supplement 1). However, whereas the 
fenestra ovalis is considerably smaller than the vagal foramen in DFMMh/FV 581.1 and DFMMh/FV 
1077 (Figure 3B; Figure 4—figure supplement 1A), it seems that in DFMMh/FV 466+205 this is vice 
versa (although this impression may be due to the fragmentary nature of the latter two specimens; 
Figure 5L; Figure 5—figure supplement 1F). If DFMMh/FV 466 and DFMMh/FV 205 are in articula-
tion, there is a large gap on their common dorsal aspect (Figure 5J; Figure 5—figure supplement 
1H). Considering DFMMh/FV 581.1 and DFMMh/FV 1077 and, for example, the braincase of Masso-
spondylus (Chapelle and Choiniere, 2018), the supraoccipital usually occupies this gap. In case our 
interpretation of a common bond between DFMMh/FV 466 and DFMMh/FV 205 is misleading and 
they actually represent two differently matured individuals, it is still noticeable that the preserved 
parts of the conjoined endosseous labyrinth of DFMMh/FV 466 and DFMMh/FV 205 displays the 
same general features as DFMMh/FV 581.1 and DFMMh/FV 1077 and is anteroposteriorly almost as 
long as the latter two specimens (Figures 5 and 6; Supplementary file 1). This suggests an allometric 
growth between the prootic and otoccipital: during growth, the prootic reaches the ‘adult’ size faster 
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than the otoccipital, producing a surprisingly small paroccipital process (or a surprisingly large prootic) 
in juvenile individuals of Europasaurus (seemingly, also seen in Massospondylus; Sues et al., 2004), 
containing a relatively large endosseous labyrinth (see also Fabbri et al., 2021, for ontogenetic trans-
formations in the cranium of sauropodomorphs). A relatively large immature endosseous labyrinth 
seems also to be present in the ornithischians Dysalotosaurus (Lautenschlager and Hübner, 2013), 
Psitaccosaurus (Bullar et al., 2019), and Triceratops (Morhardt et al., 2018). Furthermore, the endos-
seous labyrinth appears relatively large in juveniles of Massospondylus (Neenan et al., 2019) and 
the extant, precocial ostrich (Romick, 2013), and stays morphologically relatively stable throughout 
ontogeny (see also Jeffery and Spoor, 2004).

The vestibular apparatus detects movements with the aid of endolymphatic fluid and cilia contained 
within the semicircular canals, which is crucial for locomotion (see, e.g., Benson et al., 2017). Thus, 
a relatively large and morphologically adult- like endosseous labyrinth in expectedly very young indi-
viduals of Europasaurus suggests that hatchlings had to be light on their feet very fast in this dwarfed 
sauropod taxon.

Conclusion
Europasaurus has a rather sigmoid general braincase endocast shape, with a comparably large dorsal 
expansion, two openings for CN XII, an angle of 50° between the pituitary fossa and the LSC, and 
the ASC is clearly dorsoventrally higher than the PSC (Figures 1–4 and Figure 6). This and addi-
tional novel details, such as the highly uniform vascular cavities within the juvenile braincase material 
(Figures 7 and 8; Figure 7—figure supplement 2; Figure 8—figure supplement 2), add to our 
knowledge about dinosaur neuroanatomy. The relatively small pituitary fossa (Figure 1A) in an insular 
dwarf lends support to the old idea of being a proxy for body size (Nopcsa, 1917; Edinger, 1942; 
Müller et al., 2021).

Many sauropods were extremely large land- dwellers as adults, and still, started as tiny hatchlings, 
indicating enormously fast growth rates (e.g., Carpenter, 1999; Hallett and Wedel, 2016; Curry 
Rogers et al., 2016). The threat arising from the discrepancy of several tens of tons between adults 
and juveniles makes it, among other reasons, unlikely that these animals were able to take good 
care for their offspring (e.g., Sander et al., 2011; Curry Rogers et al., 2016). This implies a great 
mobility early in life (precociality in a broader sense; see Dial, 2003; Iwaniuk and Nelson, 2003) of 
sauropods (Sander et  al., 2011). Although Europasaurus represents an island dwarf (adults were 
probably not as dangerous for their juveniles), having roamed islands not exceeding an area of three 
times modern- day Bavaria (Sander et al., 2006), this taxon seemingly retained characteristics poten-
tially associated with precociality (and therefore potentially r- strategy; Sander et al., 2008; Myers 
and Fiorillo, 2009; Hallett and Wedel, 2016) from its large- bodied ancestors. As also suggested 
by the taphonomic circumstances (Sander et al., 2006; Carballido and Sander, 2013; Marpmann 
et  al., 2014; Scheil et  al., 2018; see also Supplementary file 1), Europasaurus individuals likely 
stayed in a certain social cohesion, and potentially practiced colonial nesting as is known from other 
sauropodomorphs (Lockley et al., 2002; Sander et al., 2008; Myers and Fiorillo, 2009; Pol et al., 
2021a). In concert with the approximate auditory capabilities offered here, our findings add hints 
towards the nature of aggregation with a certain complexity of reproductive and social behaviours for 
these little real- life titans, thriving in Europe some 154 Ma ago.

Materials and methods
The articulated braincase specimen of E. holgeri, DFMMh/FV 581.1, together with both loose pari-
etals (DFMMh/FV 581.2 and 3), is traversed by breakages but not strongly deformed, lacking parts 
of the anterior and dorsomedial skull roof, as well as the anteromedial walls of the endocranial cavity. 
The articulated and assembled braincase lacks the frontals, the right orbitosphenoid and laterosphe-
noid. The parietals are anteriorly, posterodorsomedially, and posteriorly incomplete and somewhat 
deformed (if they fit posteromedially with the supraoccipital they do not fit with the supraoccipital, 
prootic and laterosphenoid further anteriorly, and vice versa). The braincase of, for example, the 
macronarian G. brancai suggests a plain posterior skull roof not exceeding the dorsal extent of the 
sagittal nuchal crest; this served as an orientation here.

https://doi.org/10.7554/eLife.82190
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Macro-photography
All specimens, except DFMMh/FV 581.1, 2, and 3, were documented using a Canon EOS 70D reflex 
camera equipped with a Canon EFS 10–135 mm objective, extension tubes (13 or 21 mm), and a 
Canon Macro Twin Lite MT- 26EX- RT. Light was cross- polarized in order to reduce reflections of the 
specimen surface. Images were recorded in different focal planes (z- stacks) and subsequently fused 
with CombineZP (Alan Hadley). All obtained images were optimized for colour balance, saturation, 
and sharpness using Adobe Photoshop CS2.

Micro-computed tomography
MicroCT of DFMMh/FV 581.1, 2, and 3 (Figures  1–3; Figure  1—figure supplements 1–4) was 
performed using a Metrotom 1500 (Carl Zeiss Microscopy GmbH, Jena, Germany) in a subsidiary of 
Zeiss in Essingen; 1804 images were recorded with binning 1 resulting in a DICOM data set (for further 
details of settings and voxel size, see Supplementary file 1).

All other specimens (Figures 4, 5, 7 and 8; Figure 4—figure supplements 1 and 2; Figure 5—
figure supplement 1, Figure 7—figure supplements 1 and 2; Figure 8—figure supplements 1 and 
2) were documented with a Xradia MicroXCT- 200 (Carl Zeiss Microscopy GmbH, Jena, Germany) of 
the Imaging Center of the Department of Biology, University of Greifswald; 1600 projection images 
were recorded each, using 0.39× objective lens, with binning 2 (for further details of settings and voxel 
size for each specimen, see Supplementary file 1). The tomographic images were reconstructed with 
XMReconstructor software (Carl Zeiss Microscopy GmbH, Jena, Germany), binning 1 (full resolution) 
resulting in image stacks (TIFF format).

Digital segmentation and measurements were produced utilizing the software Amira (5.6), based 
on DICOM files (DFMMh/FV 581.1, 2, and 3) and tiff files (remaining material). The microCT data were 
manually segmented to create 3D surface models. In DFMMh/FV 581.1, 2, and 3, the X- ray absorp-
tion of the fossil and the sediment within is quite similar, resulting in low contrast in many places. 
Furthermore, for preservational reasons (lack of both frontals, right orbitosphenoid, laterosphenoid, 
and loose parietals), the extent of the digital model of the endocast was conservatively estimated on 
the skull roof and on the anterodorsal region; some asymmetries on the endocast are explained by 
this circumstance.
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