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Macronaria is a clade of gigantic body-sized sauropod
dinosaurs widely distributed from the Late Jurassic to
the Late Cretaceous globally. However, its origin, early
diversification, and dispersal are still controversial. Here, we
report a new macronarian Yuzhoulong qurenensis gen. et sp.
nov. excavated from the Middle Jurassic (Bathonian) Lower
Shaximiao Formation. Yuzhoulong qurenensis bears a unique
combination of features, such as two accessory fossae that
exist on the posterior surface of dorsal diapophyses of
anterior dorsal vertebrae. Results of phylogenetic analyses

© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.220794&domain=pdf&date_stamp=2022-11-02
mailto:laotourenxin@126.com
https://doi.org/10.6084/m9.figshare.c.6261896
https://doi.org/10.6084/m9.figshare.c.6261896
http://orcid.org/
http://orcid.org/0000-0002-9896-7193
http://creativecommons.org/licenses/by/4.0/

Downloaded from https:.//royal societypublishing.org/ on 04 November 2022

demonstrate it is one of the earliest-diverging macronarians. This new material represents a Middle
Jurassic fossil record of macronarian sauropod worldwide and improves the understanding of the
early diversity and dispersal of the Neosauropoda. This discovery further supports that sauropods
achieved a more rapid and varied morphological diversity and palaeogeographical dispersal in the
Middle Jurassic.

1. Introduction

The Lower Shaximiao Formation is widely exposed in the Sichuan Basin, China [1]. This unit comprises
massive thick purplish-red sandstones and mudstones deposited in a terrestrial (possibly shallow lake)
environment [2,3]. The age for this formation is still controversial, traditionally it has been suggested
to be Middle Jurassic, based on regional stratigraphic correlations and sedimentology [4-6] and
specifically, potentially Bajocian to Bathonian based on some invertebrate remains [7-12], but
Bathonian-Callovian-Oxfordian based on recent detrital zircon geochronological age (e.g. [13-19]). The
Lower Shaximiao Formation has yielded the remains of several diverse faunas of terrestrial vertebrates
[20-38], including seven sauropod genera (Shunosaurus, Protognathus, Omeisaurus, Abrosaurus,
Dashanpusaurus, Datousaurus, Bashunosaurus).

In 2016, a new Middle Jurassic dinosaur quarry from the Lower Shaximiao Formation was discovered
in Pu’an Town, Yunyang, Chongqing Municipality, northeastern Sichuan Basin [38,39]. Here we report a
new sauropod specimen, Yuzhoulong qurenensis gen. et sp. nov., from this locality (figure 1). It presents a
new early branching macronarian morphology and phylogeny. This discovery increases information for a
better understanding of the origin, early evolution and paleogeographic distribution of neosauropods.

1.1. Anatomical abbreviations

4th, fourth trochanter of femur; ACDL, anterior centrodiapophyseal lamina; acf, anconeal fossa; AE
accessory fossae on the posterior surface of anterior dorsal diapophyses; AL, accessory lamina
connecting the SPOL and to the diapophysis of middle dorsal vertebra laterally; ALP, connects the
ACDL to PODL in anterior to middle dorsal neural arches; amp, ambiens process; bt, basal tuberae; ca,
carotid artery; cd, caudal vertebra; CDE centrodiapophyseal fossa; ch, chevron; co, coracoid; CPRL,
centroprezygapophyseal lamina; d, dorsal; di, diapophysis; dr, dorsal rib; eof, external occipital fenestra
for the caudal middle cerebral vein; eo-o, exoccipital-opisthotic complex; fe, femur; fc, fibular condyle;
fi, fibula; fo (VII), fenestra ovalis (VII); gl, glenoid; hf (XII), hypoglossal foramen (XII); HIR, the average
of the greatest widths of the proximal end, mid-shaft and the distal end of humerus/proximodistal
length of the humerus; hpo, hyposphene-hypantrum system; hu, humerus; il, ilium; is, ischium; Is,
lateraosphenoid; mc, metacarpal; mf (IX-XI), metotic fenestra (IX-XI); nc, nuchal crest; nsp, neural spine;
ocm (III), oculomotor nerve foramen (III); os, orbitosphenoid; pa, parapophysis; PCDL, posterior
centrodiapophyseal lamina; pf, lateral pneumatic fossa or foramen; PODL, postzygodiapophyseal
lamina; POSDE postzygapophyseal spinodiapophyseal fossa; pop, paraoccipital process; posta,
postacetabular process; poz, postzygapophysis; PPDL, paradiapophyseal lamina; ppr, parasphenoid
rostrum; prea, postacetabular process; proot, prootic; PRCDE prezygapophyseal centrodiapophyseal
fossa; prz, prezygapophysis; ptp, pterygoid process; pu, pubis; pua, pubic articulation; puf, pubic
foramen; ra, radius; s, sacral vertebra; sc, scapula; sk, skull; so, supraoccipital; SPDL, spinodiapophyseal
lamina; SPOL, spinopostzygapophyseal lamina; SPRL, spinoprezygapophyseal lamina; sr, sacral rib; tc,
tibial condyle; ti, tibia; upp, posterior process of unla; tg (V), trigeminal foramen (V); tn (IV), trochlear
nerve foramen (IV); un, unla.

1.2. Institutional abbreviations

CQ208, HEGT Chongging Laboratory of Geological Heritage Protection and Research, No. 208
Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geological and Mineral
Resource Exploration and Development Chongqing, Chongqing, China; CAGS, Institute of Geology,
Chinese Academy of Geological Sciences, Beijing, China; IVPP, Institute of Vertebrate Palaeontology and
Palaeoanthropology, Chinese Academy of Sciences, Beijing, China; ZDM, Zigong Dinosaur Museum,
Zigong, Sichuan, China.
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Figure 1. Locality and horizon of Yuzhoulong qurenensis.

1.3. Method
1.3.1. Terminology

Romanian orientational descriptors (e.g. anterior, posterior) rather than standardized terms (e.g. cranial,
caudal) were used. We follow Wilson [40,41] and Wilson et al. [42] to employ morphological and
orientational descriptors for vertebrae fossae and laminae.

1.3.2. Descriptions and comparisons

All descriptions were made directly from the holotype specimen of Yuzhoulong qurenensis. Comparisons
with other taxa in this article were made from direct observations of specimens or with published
descriptions, illustrations and photographs. For descriptive purposes, the braincase is oriented with the
dorsal surface of the occipital condyle horizontally positioned, which is coincident with a horizontal
position of the lateral semicircular canal [43]. The exoccipital and opisthotic are fused, and we described
them together. The term parabasisphenoid is used to describe the basisphenoid and parasphenoid
complex [44]. The scapula and coracoid were described with their long axis orientated horizontally.

1.3.3. Measurements

The length of the deltopectoral crest measures from the distal maximum curvature point of the
deltopectoral crest to the proximal-most point.
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1.3.4. Phylogenetic analysis

Phylogenetic analyses were carried out in TNT v. 1.5 [45]. Equal weights parsimony (EWP) and extended
implied weighting (EIW) analyses are employed in the analyses. A concavity constant (K) of 12 for extended
implied weighting was used. The New Technology Search was applied first (xmult = replications 50 hits 10
css rss ratchet 5 fuse 5). Then, the resulting MPTs were used as the starting trees for a Traditional Search
using TBR.

2. Systematic palaeontology

Dinosauria Owen, 1842
Saurischia Seeley, 1887
Sauropodomorpha von Huene, 1932
Sauropoda Marsh, 1878
Neosauropoda Bonaparte, 1986
Macronaria Wilson & Sereno, 1998
Yuzhoulong qurenensis gen. et sp. nov. (figures 2-6)

2.1. Holotype

CLGRP V00013. Partly preserved skull, 12 dorsal vertebrae, 1 sacral vertebra, 10 caudal vertebrae, left
scapula, coracoid, left and right humerus, ulna and radius, 3 metacarpals, left ilium, left and right
pubis, ischia, femur and tibia, left fibula, several dorsal ribs and chevrons (figure 2). This specimen is
a sub-mature individual according to most preserved vertebrae are partly preserved.

2.2. Etymology

The generic name “Yuzhou' refers to the ancient name of Chongging in Chinese. ‘Long” means dragon in
Chinese Pinyin. The specific name ‘Quren’ is derived from the name of the ancient Yunyang County.

2.3. Diagnosis

A macronarian possessing the following unique combination of character states (autapomorphies are
marked by *): Cranial nerve II foramen opens anteriorly and slightly medially divided; anterior,
middle to posterior dorsal are opisthocoelous, amphicoelous, respectively; dorsal centra are
dorsoventrally compressed; height of neural arches/height of centra is below 1.0 in anterior dorsals,
and more than 1.0 in posterior dorsals; two similar sized accessory fossae exist in the posterior surface
of dorsal diapophyses of anterior dorsal vertebrae* (figure 5, AF); diapophyses of anterior to middle
dorsals are laterally projected, and posterior dorsal diapophyses are dorsolaterally oriented; anterior-
most dorsal neural spine is bifurcated, rest of anterior dorsal neural spines are transversely extended
with sub-parallel shaped lateral margins, and the distal end of middle to posterior neural spines are
prominently transversely extended compare with the bottoms; the distal surfaces of anterior dorsal
neural spines are flat, and that of middle to posterior dorsal neural spines are convex; an accessory
lamina (AL) connecting the spinopostzygapophyseal lamina (SPOL) and to the diapophysis of the
middle dorsal vertebrae laterally (figure 4b, AL) anterior caudal centra are amphicoelous and
dorsoventrally compressed; proximodistal length of humeral shaft/femoral shaft is less than 0.6;
preacetabular process of ilium is prominent dorsolaterally twisted, making the process nearly
perpendicular to the iliac blade* (figure 6e).

2.4. Locality and horizon

The materials were excavated in Laojun Village, Pu’an Town, Yunyang Country, Chongqing
Municipality, Southwest China (figure 1). Sauropod remains were found in purplish-red silty
mudstones located in the middle portion of the Lower Shaximiao Formation. The age of the Lower
Shaximiao Formation was inferred as Bathonian to Callovian age traditionally (e.g. [46,47]). Although
a series of detrital zircon U-Pb geochronology for this formation in the Sichuan Basin was carried on,
the accurate age for this formation is still controversial (e.g. [15-18]). Recently, a new zircon U-Pb age
from Yunyang geochronology yielded a maximum depositional age of 166.0 +1.5Ma (late Middle
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3. Description and comparison
3.1. Skull and mandible

Several bones of the braincase and the right dentary are preserved (figure 3). Stapes are missing in the
braincase and occiput region, as in most of the sauropod taxa [44]. The supraoccipital is a massive
single bone that forms the posterior roof of the endocranial cavity. The well-marked notch, vertically
situated at the middle portion of the dorsal surface, articulates with the parietal, which gives support
to the ventral process of the parietal. The external occipital fenestra for the posterior middle cerebral
vein [48] is present in the deepest part of the notch, which opens internally into the brain cavity. The
supraoccipital is highly fused with the prootic that forms the ventral support for the parietal,
laterodorsally. It differs from that in Europasaurus with a narrow but well-developed nuchal crest [44].

The exoccipital and opisthotic are fused in Yuzhoulong qurenensis. This condition also is observed in
Europasaurus [44]. No prominent trace above the metotic fissure marks the line of union of these two
bones, similar to that in Europasaurus [49]. It differs from that of Rapetosaurus with a slight trace [49].
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Figure 3. Braincase and dentary of Yuzhoulong qurenensis. (a), occipital view; (b), left lateral view; (c), medial view. Abbreviations:
bt, basal tuberae; ca, carotid artery; eof, external occipital fenestra for the caudal middle cerebral vein; eo-o, exoccipital-opisthotic
complex; fo (VII), fenestra ovalis (VII); hf (XII), hypoglossal foramen (XIl); Is, lateraosphenoid; mf (IX-XI), metotic fenestra (IX-XI); nc,
nucal crest; ocm (I1), oculomotor nerve foramen (IIl); os, orbitosphenoid; pop, paraoccipital process; ppr, parasphenoid rostrum;
proot, prootic; ptp, pterygoid process; so, supraoccipital; tg (V), trigeminal foramen (V); tn (IV), trochlear nerve foramen (IV).
The scale bar represents 5 cm.

The suture of the exoccipital-opisthotic complex with the underlying basioccipital is invisible in occipital
and lateral views. The paroccipital process (figure 3, pop) is ventrolaterally directed, at an angle that is
higher than in Camarasaurus [50]. The hypoglossal nerve shares two foramina at the basal portion of the
exoccipital-opisthotic complex that connects to the basipterygoid. This condition is similar to many basal
sauropods [51], whereas it differs from that in derived sauropod taxa such as Camarasaurus [50].

The prootic is generally fused with the adjoining bones on its posterior, ventral and dorsal sides. The
anterior end articulates with the laterosphenoid, the ventral portion contacts the parabasisphenoid and
the posterior portion articulates with exoccipital-opisthotic complex and supraoccipital.
The basioccipital, situated at the base of the foramen magnum, has a minor contribution to it. Most of
the dorsal surface of the basioccipital articulates the exoccipital. A narrow sulcus could be observed in
the conjunction between the basioccipital and exoccipital, a product of the extensive lateromedial
ventral expansion of the exoccipital, as occurred in some camarasauromorphs such as Camarasaurus
and Giraffatitan [50,52]. In the occipital view, the occipital is crescent-shaped, and the width is about
1.41 the height. This ratio is generally similar to that in Limaysaurus tessonei (MUCPv 205: 1.37) and
Europasaurus (1.5), but greater than that of most neosauropods [53]. A deep fossa exists on the ventral
surface between the basal tubera and the basipterygoid fossa. This condition is widespread in
macronarians that are more derived than Camarasaurus [54]. The width of the basal tubera is about 1.2
the width of the occipital condyle, generally similar to Limaysaurus tessonei (MUCPv 205: 1.37),
Diplodocus longus (USNM 2673, 1.26), and Camarasaurus lentus (CM 11338, 1.32) [53].
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Figure 4. Well-preserved anterior (a), middle (b) and posterior (c) dorsal vertebrae of Yuzhoulong qurenensis in anterior (1), posterior
(I1) and left lateral (IIl) views. AL, accessory lamina connecting the SPOL and to the diapophysis of middle dorsal vertebrae laterally;
(PRL, centroprezygapophyseal lamina; di, diapophysis; hpo, hyposphene-hypantrum system; nsp, neural spine; SPDL,
spinodiapophyseal lamina; SPOL, spinopostzygapophyseal lamina; SPRL, spinoprezygapophyseal lamina; pa, parapophysis; PCDL,
posterior centrodiapophyseal lamina; pf, lateral pneumatic fossa or foramen; poz, postzygapophysis; POSDF, postzygapophyseal
spinodiapophyseal fossa; PPDL, paradiapophyseal lamina; prz, prezygapophysis. The scale bar represents 5 cm.

In ventral view, the parabasisphenoid forms a deep medial fossa that contacts the basioccipital. The
basipterygoid processes are formed by the parabasisphenoid ventrally with a deep anteroposteriorly
extended fossa, and the two processes generally form a 45° angle, similar to that in the basal tubera.
The basipterygoid processes are mediolaterally compressed, about perpendicular to the horizontal
plane when the braincase is positioned in its presumed neutral position horizontally. The distal end of
the process is slightly deformed during the preservation which makes it posteriorly projected in
lateral view. Cranial nerve II foramen opens anteriorly, located at the centre of the orbitosphenoid.
This foramen is slightly medially divided, as occurred in Suuwassea and Europasaurus [44,55,56]. Note
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Figure 5. Dorsal (a—k), sacral (/) and caudal (m,n) vertebrae of Yuzhoulong qurenensis. ALP, connects the ACDL to PODL in anterior
to middle dorsal neural arches; AS, accessory strut connects to the CPRL and PCDL of anterior dorsal vertebrate; CPRL,
centroprezygapophyseal lamina; di, diapophysis; hpo, hyposphene-hypantrum system; nsp, neural spine; SPDL, spinodiapophyseal
lamina; SPOL, spinopostzygapophyseal lamina; SPRL, spinoprezygapophyseal lamina; PCDL, posterior centrodiapophyseal lamina;
pf, lateral pneumatic fossa or foramen; POSDF, postzygapophyseal spinodiapophyseal fossa; poz, postzygapophysis; pa,
parapophysis; PPDL, paradiapophyseal lamina; prz, prezygapophysis. The scale bar represents 5 cm.
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)

Figure 6. Appendicular elements of Yuzhoulong qurenensis. (a,b), left scapula and coracoid in medial view; (c), left humerus in
posterior view; (d), left unla in posterior view and left radius in anterior view; (e), left ilium in medial view; (f), right pubis,
tibia, and right fibula in anterior view; (g), ischia in posterior view; (h), left femur in posterior view. 4th, fourth trochanter of
femur; acf; anconeal fossa; amp, ambiens process; fc, fibular condyle; gl, glenoid; posta, postacetabular process; prea,
postacetabular process; pua, pubic articulation; puf, pubic foramen; tc, tibial condyle; upp, posterior process of unla. The scale
bar represents 5 cm.

that cranial nerve II foramen is not medially divided but instead forms a single anterior foramen, as
described for Shunosaurus [57], and Mamenchisaurus [58], but the division is much-limited compared
with other later diverged sauropods such as Amargasaurus, Camarasaurus and Giraffatitan [50,52,59].
The preserved right dentary is incomplete with the posterior-most portion missing, but all alveoli are
completely preserved. As in other sauropod taxa, the articulated dentaries share a U-shaped morphology
in dorsal or ventral view. According to the preserved portion, the angular articulation of the dentary
situated at the posterior end of the dentary with a broad channel-like concave surface extends
posterodorsally from around a fourth of the dentary up to the dorsal surface laterally. A well-
developed, V-shaped Meckelian canal originates posteriorly from the dorsal and ventral rami and
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Table 1. Measurements of vertebrae of Yuzhoulong qurenensis. ACH, anterior centrum dorsoventral height; ACW, anterior centrum
transverse width; (D, caudal vertebrae; (LB, centrum length (including ball); D, dorsal vertebrae; DFA, distance from anterior end
of centrum to anterior margin of neural arch; DFP, distance from posterior end of centrum to posterior margin of neural arch;
NAH, neural arch dorsoventral height (measured from dorsal margin of centrum up to the base of the postzygapophyses); NSH,
neural spine dorsoventral height (measured from base of postzygapophyses up to neural spine summit); NSL, neural spine
maximum anteroposterior length (measured above SPOLs); NSW, neural spine maximum transverse width; PCH, posterior centrum
dorsoventral height; PCW, posterior centrum transverse width; Vn, vertebrae number (the number of dorsal and caudal vertebrae
only presents the sequence of vertebrae).
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®denotes a measurement based on an incomplete element.

shallowly anteriorly extended up to the level of about the eighth alveolus. This fossa enhances the
strength to support the prearticular and the splenial, similar to other sauropods. The preserved
dentary has 13 alveoli, but the teeth are not preserved. This condition is similar to that of some
derived camarasauromorphs such as Camarasaurus (12 or 13), and Euhelopus (13) [50,60,61]. It differs
from some non-neosauropod taxa of the Lower Shaximiao Formation (e.g. Shunosaurus lii (14 or 15)).

3.2. Dorsal vertebrae

Twelve dorsal vertebrae are isolated and preserved in the quarry (figures 4 and 5, table 1 for
measurements). Most of the dorsal vertebrae are partly preserved with most parts still preserved in
the location. Only a few views could be observed from most of them. D1 is partly extracted with the
posterior portion still buried in the field. D2, D7, and D10 are completely excavated, but only D2 is
well preserved. The D10 was excessively repaired, making the internal pneumatic cavity observable in
the anterior and lateral views. D3, D4, and D7 are partly preserved with neural arches and neural
spines explored. D7 is partly observed with the right view and the right diapophysis is missing. D11
is generally complete with the posterior surface visible. Only neural arch and centrum are preserved
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with posterior surface observable. The exact number of dorsal vertebrae of Yuzhoulong qurenensis is [ 11 |

unknown. According to the preserved feature and number of dorsal vertebrae, the actual number of
dorsal vertebrae is more than 12. This condition may be similar to that in some macronarians (e.g.
Euhelopus zdanskyi) with 13 dorsal vertebrae [60]. Rather than fully describing the anatomical features
of vertebrae, we described the preserved dorsal series in one part and documented changes along the
vertebral sequence. Dorsal vertebrae (D) 1 and 3 are presumed as the anterior dorsal vertebrae
according to the parapophysis is still in contact with the centrum; the preserved centra are
opisthocoelous (referred [54,62]) and the postzygapophyses are generally horizontally extended. D4 to
D8 are defined as the middle dorsal vertebrae considering the zygapophyses are about 45° to
horizontal; the diapophysis processes are laterally projected. The rest of the preserved dorsal vertebrae
(D9 to D12) are numbered as the posterior dorsal vertebrae according to the diapophyses processes
are dorsolaterally extended; the parapophyses are located near the same level as the prezygapophyses.
According to the preserved dorsal vertebrae, the centra of the dorsal vertebrae are solid.

The centrum of anterior dorsal vertebrae is opisthocoelous with a prominently extended anterior
condyle (figures 4a and 5a—c). By contrast, the middle to posterior dorsal centra are amphiplatyan and
amphicoelous (figures 4b,c and 5k,j). This condition is similar to some early diverging eusauropods (e.g.
Shunosaurus and Patagosaurus) and some diplodocids such as Lingwulong [61,63,64]. Both anterior and
posterior articular surfaces are dorsoventrally compressed, as occurred in most other macronarians [65].
The ventral surfaces of the centra are transversely convex and concave anteroposteriorly. The midline
keel only exists in D1, and two shallow concavities are situated on both sides of this middle convexity.
By contrast, the midline keels are present till D4 in Dashanpusaurus dongi [34]. The ventrolateral ridge is
absent on the ventral surfaces of the centra. The lateral pneumatic fossa is elliptical-shaped in outline
with no septum divided, similar to that in many early diverging macronarians [66,67]. The parapophyses
are located at the middle portion dorsoventrally near the anterior articular condyle in D1, then ascent in
subsequent dorsal vertebrae with the bottom portion of D2 extended from the centrum and located
between centrum and prezygapophyses in the middle dorsal vertebrae, finally nearly at the same level
with the articular surface of prezygapophysis of posterior dorsal vertebrae.

According to the preserved dorsal elements, the neural arch is shorter than the centrum in the anterior
dorsal neural arches, whereas the height of the neural arch/height of the centrum is larger than 1.0 in
posterior dorsal vertebrae. This condition differs from that in Dashanpusaurus dongi with a ratio of
approximately 1.1 to 1.2 in the whole dorsal vertebrate series [34]. In anterior dorsal vertebrae, the
prezygapophyses are dorsally oriented with the articular surface generally parallel to the horizontal. By
contrast, prezygapophyses are approximately 45° to horizontal in the middle and posterior dorsal
vertebrate series. The prezygapophyses extend beyond the centra and are supported by the transversely
thin undivided CPRL. The diapophyses are robust and situated on the dorsal margin of the neural
arches. The articular surfaces of the diapophyses are sub-triangular shaped in outline, and slightly
concave. Diapophyses of anterior to middle dorsal vertebrae are laterally extended, and these processes
of posterior dorsal vertebrae are dorsolaterally projected. A dorsolaterally oriented middle to posterior
diapophysis is similar to that in many early diverging sauropods such as Shunosaurus lii, and Cetiosaurus
oxoniensis [61,68], but these dorsolaterally projected diapophyses are present in middle to posterior
dorsal vertebrae, rather than limited in posterior dorsal vertebrate series. Accessory lamina (figure 5d—f,
ALP), dorsomedially extended, connects the PCDL to PODL in anterior to middle dorsal neural arches.
The POCDF of anterior to middle dorsal vertebrae are divided by this lamina into two shallow fossae.
PPDL of D1 is a thin lamina, extended from the base of CPRL, that connects to the CPRL and PCDL. The
hyposphene-hypantrum system is prominent. It is rather a robust convexity that is situated on the dorsal
margin of the neural canal. In preserved dorsal vertebrae (D2, D7 and D10), the PRCDF and CDF are
many deep concavities situated on dorsal neural arches. These are divided by the PPDL. According to
D10 (figure 4c), the internal pneumatic cavity exists in the posterior dorsal vertebrae but lacks the
external opening on the neural arch. It differs from that in some early diverging non-neosauropod
eusauropods (e.g. Patagosaurus) and Dashanpusaurus with internal cavities and lateral openings on the
middle/ posterior dorsal neural arch [34,63].

The neural spine of D1 is bifurcated, whereas the rest of the preserved dorsal neural spines are non-
bifurcated. The bifurcated condition is similar to some macronarians (e.g. Camarasaurus, Bellusaurus,
Lourinhasaurus and Opisthocoelicaudia) [69-71], and some non-neosauropod eusauropod taxa such as
Mamenchisaurus [57]. The neural spine of D1 is shallowly bifurcated, as occurred in Dashanpusaurus,
Bashunosaurus and Bellusaurus [30,34,67], whereas it differs from the more strongly bifurcated taxa
with the bifurcation beginning from the basal portion of the neural spine of the anterior dorsal
vertebrae (e.g. Camarasaurus) and usually with the medial process occupied between the two
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metapophyses (e.g. Apatosaurus) [69,72]. A strongly limited number of bifurcated dorsal vertebrae (only [ 12 |

anterior-most dorsal vertebra share a bifurcated neural spine) of Yuzhoulong qurenensis is different from
other bifurcated taxa that share with more than one bifurcated dorsal neural spine. The neural spines are
anteroposteriorly compressed throughout the rest of the non-bifurcated anterior dorsal vertebrae series
and have a thick, plate-like appearance in outline. By contrast, the middle dorsal neural spine is
transversely extended distally compared with the bottom portion. This condition differs from that in
Bashunosaurus with a prominently convex distal end in the middle dorsal neural spine [30]. SPRL and
SPDL are extended to the middle portion of neural spines. By contrast, most of the SPOLs are
approximately extended to the summit of neural spines. Moreover, an accessory lamina (AL) connects
the SPOL and to the diapophysis of the middle dorsal vertebrae in lateral view (figure 4bIII, AL). This
thin lamina dorsoposteriorly extends from the dorsoposterior margin of diapophysis to the middle
portion of SPOL.

3.3. Dorsal ribs

At least two dorsal ribs are partly preserved. Two proximal portions and one distal portion are visible
(figure 2). The proximal part of the rib shaft is directed ventrally and slightly laterally relative to the
vertically oriented tuberculum. According to the preserved portion, the cross-section of the ribs is elliptical-
shaped. No coel exists on the preserved proximal rib head. The internal structure of the rib is not known.

3.4. Sacral vertebrae

One sacral vertebra has been partly preserved with the bottom of the neural arch and the centrum
missing (figure 5I). We suggest this vertebra from the sacral vertebrate series for the following reason:
the diapophysis of this vertebra is dorsoventrally projected, and this condition is much different from
that of dorsal vertebrate series with laterally or dorsolaterally oriented diapophyses. The diapophysis
of this vertebra is more robust than any other diapophyses of dorsal vertebrae with SPDL
prominently laterally extended dorsally to enhance the mechanical strength of diapophyses. It may be
the caudosacral vertebra of sacral series. The preserved height of the neural arch is about equal to the
height of the neural spine. As mentioned above, the diapophyses are robust with the basal portion
distinctly dorsoventrally extended. The postzygapophyses are generally ventrally oriented with the
articular surfaces approximately parallel to the horizontal.

3.5. Caudal vertebrae

Ten caudal vertebrae (Cd) are incomplete with the centrum preserved and most of the portions still buried in
the quarry (figure 5m, table 1 for measurements). Additionally, the other four vertebrae are partly preserved
with centra missing (figure 51). According to the morphology (e.g. the size of these centra), these caudal can
be identified as anterior caudal vertebrae. The centra of all preserved caudal vertebrae are amphicoelous.
This condition resembles Camarasaurus lewisi and most of the early diverging sauropod taxa such as
Shumnosaurus lii and Omeisaurus tianfuensis [61,66]. By contrast to the two articular surfaces of the caudal
centra, the anterior articular surfaces are much more concave than the posterior ones. All the preserved
caudal vertebrae are dorsoventrally compressed, similar to most macronarians (e.g. Bellusaurus) and
many non-neosauropod eusauropods such as Cetiosaurus oxoniensis [65]. This condition differs from that
in Dashanpusaurus with most of the anterior centra being transversely compressed. The ventral surface of
the caudal centra is transversely convex and anteroposteriorly concave with no excavations or ridges.
The lateral pneumatic fossa is absent in the preserved caudal series.

In lateral view, the prezygapophyses are steeply inclined anterodorsally on the anterior neural arches
of preserved caudal vertebrae. Lamination of the caudal vertebra is poorly developed, similar to that in
many macronarians. PRDL, SPRL and SPOL exist in anterior caudal vertebrae. The neural spines are
vertically and slightly posteriorly projected, with an anteroposterior length larger than the transverse
width. The distal ends of neural spines are transversely convex and flat anteroposteriorly with an
irregularly flat central portion in the anterior view.

3.6. Chevrons

At least two anterior chevrons are preserved (figure 2). The expanded proximal ends of the haemal
arches form a continuous bridge of bone over the haemal canal. This condition is similar to many
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early diverging sauropods (e.g. Omeisaurus tianfuensis). Both left and right articular surfaces are mildly [ 13 |

concave transversely and convex anteroposteriorly, with the long-axis of the haemal arch held
vertically. In dorsal view, the anterior parts of the articular surfaces are smaller than the posterior
parts in the anterior ones. The haemal canal of anterior chevrons is a dorsoventally elongated ellipse
in anterior or posterior view. The left and right rami are transversely compressed with slightly convex
medial surface and more strongly convex lateral surfaces. Laterally, the distal blade of each anterior
chevron is broad and rounded. It narrows transversely with a slightly posteriorly curved distal tip.

3.7. Scapula and coracoid

Only the anterior portion of the left scapular is partly preserved, with the medial surface of the scapular
acromion and the anterior portion of the scapular blade visible (figure 6, table 2 for measurements).
According to the observable portion, the scapular blade is ‘D’-shaped, similar to many sauropod
taxa such as Camarasaurus [66]. The acromion process is a slightly dorsally expanded plate, with acute
dorsal expansion. In lateral view, the coracoid articulation site is about 70° to the long axis of
the scapular blade, whereas that in Dashanpusaurus is generally perpendicular to the long axis. The
scapular glenoid surface is slightly excavated and anterolaterally oriented. The medial surface of the
expanded proximal portion of the scapular blade is flat, and increasingly dorsoventrally expanded
near the scapular acromion naturally.

The left coracoid is partly preserved with the middle portion restored by plaster and only the medial
surface is observable (figure 6). The most robust portion of the coracoid is situated at the glenoid. It is
transversely narrow from the bottom to the dorsal distal. The medial surface of the coracoid is
concave, and the deepest portion is located at the centre. The articular surface of the glenoid is the
sub-triangular-shaped outline. The anterodorsal margin of the coracoid is sub-rounded, as occurred in
many sauropod taxa (e.g. Camarasaurus) [66]. The coracoid foramen is not preserved. In the lateral
view, the dorsal and anterior margins of the coracoid merge smoothly. The infraglenoid lip of the
coracoid is absent, resembling that in most macronarians such as Camarasaurus [66].

3.8. Humerus

The left and right humeri are well-preserved and the middle portion of the right humerus is restored,
only posterior surfaces could be observed with most other portions buried (figure 6, table 2 for
measurements). The HRI (the average of the greatest widths of the proximal end, mid-shaft and the
distal end of the humerus/proximodistal length of the humerus) values are 0.30 (left) and 0.27 (right),
respectively. These ratios are similar to most other eusauropods [65]. In posterior view, both proximal
and distal ends are transversely extended compared with the middle portion. The proximal width is
0.44 (left) the total length of the humeral shaft, greater than that in Camarasaurus lewisi (36%) and
Lourinhasaurus alenquerensis (39%) [66,70]. According to the preserved portion, the cross-section of the
mid-shaft is elliptical, similar to most other macronarians (e.g. Bellusaurus) [67]. The shape of the
humeral distal end is quadrilateral. The two condyles are not divided with slightly convex coarse
surfaces. The distal width is 0.30 (left) and 0.32 (right) proximodistal length of the humerus, respectively.

3.9. Ulna and radius

The two ulnas are well preserved, but only posterior surfaces are observable (figure 6, table 2 for
measurements). The ulna is slightly longer than the radius, and the ulnar length is about 1.01 (left) the
total length of each radius. The total proximodistal length of the ulna is about 0.70 the proximodistal
length of each humerus. The posterior process and the olecranon process are weakly developed. The
expanded proximal end is transformed into a sub-circular cross-section at mid-shaft, as occurred in most
other sauropods such as Camarasaurus lewisi [66]. The distal surface of the ulna is an elliptical-shaped
outline.

Two radii are well preserved. Only anterior surfaces are visible (figure 6). The length of each radius is
0.69 the length of each side of the humerus. This ratio is generally similar to some macronarians such as
Camarasaurus lewisi (0.71) and Lourinhasaurus alenquerensis (0.73), but bigger than that in Bellusaurus sui
(0.60) [66,67,70]. The maximum length of the long-axis in the proximal end is 0.25 of the total radial
length, as in Lourinhasaurus alenquerensis (0.25) and Camarasaurus lewisi (0.24) [66,70]. The proximal
end is an elliptical shaped outline with the anterior margin distinctly extended. The articular surface
of the proximal end is nearly perpendicular to the long axis of the shaft, similar to that in
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Table 2. Measurements of pectoral girdle and forelimb of Yuzhoulong qurenensis. HRI: the average of the greatest widths of the [JEZJ}
proximal end, mid-shaft and distal end of humerus/length of humerus.

element dimension measurement

scapular (left) length of glenoid surface along its long-axis 241
transverse width of the glenoid (measured at the junction with the coracoid) 158

S (Ieft) B an'terbn'o's'teridf 'Ie'n'g't'n S
humerus (left) length 734

. vprox|ma| end f— med|o|ateral Wld'[h S

» bprOXImaI end maximum anteroposterior W|dth - m

. med|olateral W|dth ; m|dshaft S

» anteroposterior W|dth at mldshaft o ‘ S 58"‘ -
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. dlstal end maximum medlolateral W|dth - 217
e (nght) B Iength T
prOX|maI end maximum medlolateral W|dth S 237‘" -
BT S
distal end maximum mediolateral width 0.27
. ulna(left) e Iength SR
ulna (right) Iength 7 510
rad|us(|eft) SR engt e
» bprOX|maI end maximum medlolateral W|dth S 126 -
. poina end moimum nteoposteor w|dth S
e ‘(right)‘ R engt . . e
. vpr0x|ma| end maimum med|o|atera| w|dth S
wprommal end maximum anteroposterior W|dth S ‘85 -
. anteropostenor e T
metacarpal i (left) Iength 135
R pmx'mal L
maximum W|dth of dlsatal end 66
. meta(arpalu(left) B Iength e
maximum W|dth of prommal end ‘ . o 82 '
. w|dth of e shaft e
. ’max|mum w|dth ofd|sata| end S
. metacarpalv(left) B vlength T O
» maximum W|dth of prommal end o ‘ S ‘70 -
e S
‘max|mumw|dthofd|sta|end - S

"'denotes a measurement based on an incomplete element. AII measurements are in m|II|metres

Camarasaurus lewisi and Bellusaurus sui [66,67]. The distal articular surface of the radius is an irregularly
comma-shaped outline. Similar to the proximal end, the distal end is nearly perpendicular to the long
axis of the shaft with a rugose articular surface.

3.10. Metacarpals

Three left metacarpals are well preserved with most portions still buried in the quarry (figure 2). These
three elements are defined as the Mc. I, Mc. II and Mc. V according to the proximal and distal articular
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facts. Mc. I is a robust and rod-like element with expanded proximal and distal ends. In ventral view, the [ 15 |

proximal end is prominently transversely extended. The distal condyle of Mc. I is divided. The lateral
portion of the distal end is distinctly laterally extended, which makes the transverse axis of the distal
condyle of Mc. I bevelled about 20° with respect to the axis of the shaft. This condition is similar to
many other eusauropod taxa (e.g. Omeisaurus tianfuensis). The length of Mc. Il is larger than the other
two metacarpals. Both proximal and distal ends are prominently expanded. The shaft is slightly
twisted which means the long-axis of proximal and distal ends are generally not on the same plane.
The Mc. V is a slender element with prominently laterally extended proximal end. The outline of the
proximal surface is sub-triangular.

3.11. llium

The left ilium is completely preserved (figure 6, table 3 for measurements). Laterally, the dorsal margin of
the ilium is semicircular shaped, as occurred in almost all eusauropods such as Camarasaurus lewisi and
Bellusaurus sui [66,67]. The preacetabular process projects anterolaterally, beyond the anterior end of the
pubic peduncle in lateral view, resembling most eusauropods such as macronarians (e.g. Camarasaurus
lewisi) [66]. By contrast to that in Dashanpusaurus, the preacetabular process projects much more
laterally in Yuzhoulong qurenensis, and the transverse width of the dorsal portion of preacetabular in
Yuzhoulong qurenensis is much thicker than that in Dashanpusaurus. It indicates that Yuzhoulong
qurenensis shares a more robust and laterally projected preacetabular process. The preacetabular
process of the ilium is prominent dorsolaterally twisted, making the process nearly perpendicular to
the iliac blade (figure 6e). This condition differs from other eusauropod with the preacetabular process
of the ilium laterally projected, rather than prominently dorsolaterally twisted (e.g. [73]). The highest
point of the iliac dorsal margin is situated anterior to the base of the pubic peduncle, similar to many
other neosauropods such as Euhelopus zdanskyi [60]. The angle between the ventral surface of the
preacetabular process and the anterior face of the pubic peduncle is about 90°, as occurred in
Dashanpusaurus dongi, Bellusaurus sui, and many other eusauropods (e.g. Cetiosaurus oxoniensis)
[34,67,68]. The distal end of the postacetabular process is rounded laterally. The pubic
peduncle curves slightly anteroventrally with a mildly convex anterior surface. By contrast, the ischial
peduncle is prominently reduced, as in Camarasaurus lewisi, Bellusaurus sui, and most gravisaurians
[64,66,67].

3.12. Pubis and ischium

The left and right pubes are well preserved with the lateral surface of the left pubis and the lateral surface
of the right pubic distal portion being observable. The remaining portions of each pubis are still buried in
the quarry (figure 6, table 3 for measurements). The ischial articulation is medially extended with an ‘S’-
shaped outline. The pubic foramen is situated on the upper portion of the shaft, located below the
acetabular articular surface, and between the ischial and iliac articulations. It is elliptically shaped
with the long axis dorsomedially extended. The distal end is anteroposteriorly extended. The distal
end is elliptical-shaped in outline with an irregular concavity on the distal surface.

Left and right ischia are almost completely preserved and not fused with the anterior surface visible
(figure 6g). The proximal end is expanded anteroposteriorly. Both iliac and pubic articular surfaces are
generally elliptical shaped outlines. There is no tuberosity at the medial surface of the iliac articular
process. The length of the pubic articular surface is more than 0.5 the total proximodistal length of the
ischial shaft (figure 6, pua). This condition is similar to other neosauropod taxa such as Camarasaurus
lewisi [65,66]. The distal end of the ischial blade is a bladelike-shape outline, without prominent
anteroposterior extension.

3.13. Femur

The left and right femurs are well-preserved with the posterior surface of the left one and the anterior
surface of the right one visible (figure 6, table 3 for measurements). The femoral head projects
medially, similar to many sauropods such as Camarasaurus lewisi, and Bellusaurus sui [66,67]. A lateral
bulge (defined as the lateral expansion and a dorsomedial orientation of the dorsolateral margin of
the femur (refer to [74])) is absent, similar to that in Camarasaurus lewisi, Bellusaurus sui, and many
other neosauropod taxa (e.g. Apatosaurus louisae), whereas that in Dashanpusaurus is present
[34,66,67,75]. The anterior surface is smooth without ridge, whereas two ridges exist in that of
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Table 3. Measurements of pelvic girdle and hindlimb of Yuzhoulong qurenensis.

element dimension measurement

ilium (left) Iength (between the tlps of the antenor and posterlor Iobes) 960
- length of anterior lobe (from the t|p of this lobe to the base of the publc peduncle) 0
Ieng g postenor e (from o p b ot e o e o

peduncle)

. 'Iength . publc peduncle s
R pectabulr e
B porion of |I|ac bIade s
Iength e peduncle e

mhe|ght of the i b|ade o the pub|( pedunde [ o

 width of postacetabular

dlameter of acetabulum between the publc and |sch|ac peduncles - 248
- publs(left) - Iength (from dlstal end to the pomt where the |I|ac artlculatlon meets the acetabular” - 710 -
margln)
. “Iength e along P edge e
o Iength T e
R transverseW|dth e acetabularsurface ............................................................ o
N transverse e the o art|culat|on S
* maximum diameter of obturator foramen s
. 'anteropostenor d|ameter T
e of d|sta| end .
|sch|um(left) R preserved Iength s
o medmlateral W|dth g peduncle e
R helght . publc artlculatlon S
'anteropostenor Iength o proX|maI plate T
minimum dorsoventral helght of ischial blade ' 7
“maximum dorsoventral helght of ischial blade (at distal end) e

ischium dimension preserved length 730

(right) anteroposterior Iength of iliac peduncle 105

maximum mediolateral width of iliac peduncle - 50°

length of iliac artlculatlon anng its Iateral edge ' 140
e he|ght . pub|c art|culat|on T
manteropostenor Iength of prommal plate S
R he|ght of |sch|al bIade (at d|stal end) e
mmammum medlolateral width of |sch|al blade (at d|stal end) S
femdt)left) IIength S
i anteropostenor . prommal T

transverse width of prommal end ' 240°
 distance from the prOX|maI end of the femur to the top of the 4th trochanter 570

transverse W|dth of m|d shaft 125
anteropostenor Iength i

transverse width of dlstal end 7 268
'anteropostenor e condyle S
manteropostenor W|dth ofﬁbularcondyle et

(Continued.)
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Table 3. (Continued.)

element dimension measurement
femur (right) Iength 1080
. transverse e prommal end S
. transverse W|dth - m|d i e
. anteroposterlor Iength o d|5ta| end S
s T e
anteroposterlor W|dth of ﬁbular condyle - ' R Vi
e
transverse W|dthof d|stal g e
. anteropostenor W|dth e end e
» btibié ‘(bribgbht)b - maX|mum transverse dlameter of the prOX|maI end S >234‘ »
. transverse W|dth of m|d shaft T
. “maimim anteropostenor d|ameter of ~ prommal s
‘ maX|mum transverse dlameter of the prommal end (mcludlng cnemlal crest) N
. anteroposterlor Iength 0f m|d Shaft e

adenotes a measurement based on an incomplete element. All measurements are in millimetres.

Dashanpusaurus. The shaft is a transversely expanded ellipse in cross-section throughout most of its
length except the proximal and distal ends. The fourth trochanter is situated on the posteromedial
margin of the shaft. This condition is similar to Camarasaurus lewisi and many other sauropod taxa
[66]. The fourth trochanter is invisible in the anterior view. The tibial condyle is anteroposteriorly
larger than the fibular condyle in distal view. The articular surfaces of the two condyles are mildly
rough with irregular concavities. The distal articular surface is generally perpendicular to the femoral
shaft and resembles Camarasaurus lewisi [66].

3.14. Tibia and fibula

The left and right tibiae are well preserved with the posterior surface of the proximal portion of the left
tibia and the anterior surface of the right tibia observable (figure 6, table 3 for measurements). The total
length of the tibia is about 0.61 the total length of the femur. This ratio is similar to that in Dashanpusaurus
and within the typical range for sauropods [34,66,76]. The shaft of the tibia is transversely wider
than anteroposterior length, as occurred in Camarasaurus lewisi, Bellusaurus sui, and many other
eusauropods [66,67]. According to the observed proximal portion, the cnemial crest is robust. It
projects laterally and slightly posteriorly to articulate with the anteromedial surface of the fibula. The
cross-section of the mid-shaft is an elliptical-shaped outline with a transverse width of 0.14 the total
length of the shaft and 0.59 of the transverse width of the distal end. These ratios are generally near
to these of Dashanpusaurus dongi (0.28 and 0.65) and Bellusaurus sui (0.28 and 0.72). The
anteroposterior length of the distal end is greater than the transverse length with a ‘comma’-shaped
outline, which resembles Camarasaurus lewisi, and Bellusaurus sui [66,67].

Only the medial surface of the anterior portion of the left fibula is visible (figure 6). In medial view,
the fibula is a rod-like shaped slender shaft with a slightly sigmoid outline with the proximal end mildly
posteriorly projected. The tibial scar is prominent on the medial face of the proximal portion of the fibula
shaft. The articular surface of the tibial scar is slightly concave in medial view.

4. Phylogenetic analysis

Phylogenetic analyses were conducted to assess the affinities of Yuzhoulong qurenensis within Macronaria
(figure 7). To test the hypothesis that Yuzhoulong qurenensis represent an early diverging macronarian, we
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Figure 7. Strict consensus tree of EWP analysis from the main data matrix.

have scored the specimen for the data matrix of Ren ef al. [65] (the main matrix, electronic supplementary
material, Data S1). We have chosen this matrix because it is an up-to-date version of the dataset from Xu
et al. [64] and originated from the series of datasets produced by Carballido and colleagues, including
many neosauropod taxa such as some Middle Jurassic diplodocoid Lingwulong from China, thus giving
Yuzhoulong qurenensis wide freedom to cluster anywhere within known sauropod diversity. Additionally,
we have chosen three other data matrixes from Carballido et al. [77], Mannion et al. [78] and GEA
(originated from Gonzélez-Riga et al. [79]) from Moore et al. [80] (electronic supplementary material,
Data S2-54). The data matrix of Carballido et al. [77] is the most up-to-date version of Carballido et al.
which samples a phylogenetically and a spatio-temporally wide array of sauropodomorph taxa, and it
will give our specimen yield insights for the placement. The data matrixes from Mannion et al. [78] and
GEA of Moore et al. [80] are some of the largest available for eusauropods. These two datasets are a
sampling of neosauropod emphasized and sampling of mamenchisaurid emphasized, respectively.
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Figure 8. Strict consensus tree of EIW analysis from the main data matrix.

These provide a suitable test for our hypothesis that the taxon represents a neosauropod macronarian, rather
than a eusauropod mamenchisaurid.

We employed the analyses using equal weights parsimony (EWP) and extended implied weighting
(EIW) analyses (we use the concavity constant (K) of 12 referred to Moore et al. [80]) for each dataset
[80-83]. The EWP analysis of the main data matrix produced 6 most parsimonious trees (MPTs) with
a length of 1224 steps ((consistency index (CI)=0.373; retention index (RI)=0.702) with a generally
good resolution of the tree that supports Yuzhoulong qurenensis recovered within Neosauropoda, as a
member of Macronaria (figure 7). The Neosauropoda clade is supported by four unambiguous
synapomorphies (‘0" to ‘1" for characters 96, 120 and 225; ‘0’ to 2’ for character 106). The Macronaria
clade is supported by two unambiguous synapomorphies (‘0’ to ‘1’ for characters 162, 288).
Yuzhoulong qurenensis shares all three characters: ‘middle and posterior dorsal centrum in the
transverse section are slightly dorsoventrally compressed (character 162); ‘length of puboischial is
about the one-half total length of pubis (character 288)'. The EIW analysis of the main data matrix
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Figure. 9. Strict consensus tree of EWP analysis from supplementary data matrix (Carballido et al. [77]).

produced 3 MPTs with a length of 48.15592 steps (CI=0.373; RI=0.702) and a well-resolved strict
consensus (figure 8). In our EIW analysis, Yuzhoulong qurenensis is located at the basal-most position
of the Macronaria clade, supported by two unambiguous characters (similar to the characters of that
in EWP analysis).

Furthermore, EWP and EIW analyses ran in the referred datasets of Carballido et al. [77], Mannion
et al. [78] and GEA of Moore ef al. [80]. The EWP analysis of Carballido ef al. [77] produced 200 000
MPTs with tree lengths of 1370 steps (figure 9). The strict consensus of the result is limited resolution
in some parts of the tree, but Yuzhoulong qurenensis was recovered within Neosauropoda, as a
member of Macronaria with well-resolved in this part. The Neosauropoda clade is supported by four
unambiguous synapomorphies (‘0’ to ‘1" for character 136, 269; ‘0" to 2’ for character 115; ‘1’ to ‘0" for
character 194). The Macronaria clade is supported by five unambiguous synapomorphies (‘0" to ‘1" for
characters 195, 237, 337, 342; ‘1’ to ‘0’ for character 174). Yuzhoulong qurenensis shares all three
characters: ‘the minimum width of anterior dorsal neural spine/the length of the anterior dorsal
neural spine is 0.5 or greater (present stout and short neural spine (character 174)"; ‘middle and
posterior dorsal centra in the transverse section are slightly dorsoventrally compressed (height/width
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Figure 10. Strict consensus tree of EIW analysis from supplementary data matrix (Carballido et al. [77]).

ratio between 0.8 and 1.0) (character 195)’; ‘transverse breadth of anterior caudal neural spines are greater
than anteroposterior length (character 237)’; ‘puboischial contact is one half total length of pubis
(character 337)’; ‘Ischia pubic articulation greater than the anteroposterior length of the pubic pedicel
(character 342)". The EIW analysis of Carballido et al. [77] produced 1500 MPTs with tree lengths of
52.27954 steps (figure 10). The strict consensus of the result is limited resolution in some parts of the
tree, but Yuzhoulong qurenensis was recovered within Neosauropoda, as a member of Macronaria well-
resolved in this part. The Neosauropoda clade is supported by four unambiguous synapomorphies
(‘0" to ‘1’ for character 136, 269; ‘0’ to ‘2" for character 115; “1” to ‘0" for character 194). The Macronaria
clade is supported by six unambiguous synapomorphies (‘0" to ‘1" for characters 195, 237, 337, 342; ‘1’
to ‘0" for character 174; 2’ to ‘0’ for character 176). Yuzhoulong qurenensis shares all six characters, with
two new characters compared with the EWP analysis: ‘dorsal edge of the anterior dorsal neural spine
is flat (character 176)’; ischia pubic articulation greater than the anteroposterior length of the pubic
pedicel (character 342).

The EWP analysis of Mannion et al. [78] produced 500 000 MPTs with the tree lengths of 2593 steps
(figure 11). The strict consensus of the result is limited resolution in almost all parts of the tree, then we
use the 50% major consensus, but Yuzhoulong qurenensis was recovered within Neosauropoda. The
Neosauropoda clade is supported by three unambiguous synapomorphies (‘0" to 1" for character 25, 144,
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Figure 11. Reduced consensus (50% major consensus) tree of EWP analysis from supplementary data matrix (Mannion et al. [78]).

266). The Macronaria clade is supported by one unambiguous synapomorphy (‘0" to ‘1’ for characters 335),
and Yuzhoulong qurenensis is located at the basalmost position. The EIW analysis of Mannion et al. [78]
produced 7680 MPTs with tree lengths of 112.05173 steps (figure 12). The strict consensus is generally
well-resolved which supports Yuzhoulong qurenensis recovered within Neosauropoda, as a member of
Macronaria (figure 12). The Neosauropoda clade is supported by seven unambiguous synapomorphies
(‘0" to ‘1’ for characters 9, 59, 81, 106, 426; ‘1’ to ‘0’ for character 49, 72). The Macronaria clade is supported
by three unambiguous synapomorphies (‘0’ to ‘1’ for characters 248; ‘1’ to ‘0’ for characters 372, 531).
Yuzhoulong qurenensis shares two of the eight characters: ‘the highest point on the dorsal margin of the
ilium occurs anterior to the anterior margin of the base of the pubic process (character 248)’; ventral
margin of proximal plate of ischium is flat along its length in lateral view (character 531). Furthermore,
Yuzhoulong qurenensis share three unambiguous synapomorphies (‘0" to ‘1" for character 208; ‘1’ to ‘0" for
character 255; ‘2’ to ‘0" for character 147) with Cetiosauriscus to constitute a clade.

The EWP analysis of GEA from Moore et al. [80] produced 5000 000 MPTs with the tree lengths of
2187 steps (figure 13). The strict consensus of the result is limited resolution in almost all parts of the
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Figure 12. Strict consensus tree of EIW analysis from supplementary data matrix (Mannion et al. [78]).

tree, then we use the 50% major consensus, and Yuzhoulong qurenensis was recovered within
Neosauropoda, as a member of Macronaria well-resolved in this part. The Neosauropoda clade is
supported by nine unambiguous synapomorphies (‘0" to ‘1’ for characters 16, 52, 133, 266, 285, 341,
366; ‘1’ to ‘0" for characters 73; ‘1’ to ‘2" for characters 122). The Macronaria clade is supported by six
unambiguous synapomorphies (‘0" to ‘1’ for characters 155, 171; 267, 335; ‘1’ to ‘0" for characters 59;
272). Yuzhoulong qurenensis shares three of the six characters: dorsoventral height of ischial articulation
of the pubis divided by the proximodistal length of the pubis is 0.4 or greater (character 59); middle
to posterior dorsal diapophyses are directed laterally or slightly upwards (character 155); Height of
anterior neural canal opening of anterior dorsal neural arch is less than the width (character 335). The
EWP analysis of GEA from Moore et al. [80] produced 2592MPTs with tree lengths of 96.45098 steps
(figure 14). The strict consensus of the result is generally well-resolved resolution, and Yuzhoulong
qurenensis was recovered within Neosauropoda, as the basal-most member of Macronaria well-
resolved in this part, similar to the result in EWP analysis.
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Figure 13. Reduced consensus (50% major consensus) trees of EWP analysis from supplementary data matrix (GEA from Moore
et al. [80]).

5. Discussion

5.1. Relationship of Yuzhoulong qurenensis with other relative eusauropods

All of our analyses recovered Yuzhoulong qurenensis as a neosauropod, with most placing it in a close
relationship with Camarasaurus and Bellusaurus though details vary (e.g. Figure 7). This position is
supported by many unambiguous synapomorphies (e.g. ‘middle and posterior dorsal centrum in the
transverse section are slightly dorsoventrally compressed’) in the main dataset. It lacks some features
that unite other later diverging macronarians, such as median tubercles are absent in posterior cervical
to anterior dorsal bifid neural spines; lateral pleurocoels in the lateral surfaces of sacral centra are
absent (present in Camarasaurus). Moreover, Yuzhoulong qurenensis shares several features with some
early diverging non-neosauropod and some diplodocoid taxa such as the anterior dorsal centra are
opisthocoelous, and the middle to posterior dorsal centra are amphicoelous. This feature exists in
some early diverging non-neosauropods (e.g. Shunosaurus) and some diplodocoids (e.g. Lingwulong).
Furthermore, noting that Yuzhoulong qurenensis shares several features with diplodocoid Cetiosauriscus
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Figure 14. Strict consensus trees of EIW analysis from supplementary data matrix (GEA from Moore et al. [80]).

such as the proximodistal length of the humerus to the femur is 0.7 or less, and such a short ratio is
frequently observed in some diplodocoids (in EWP analysis of the dataset of Mannion et al. [78]).
In general, these may further indicate the ‘basal’ position of this taxon and the possibly
mosaic morphological evolution. The partly familiar morphologies between non-neosauropod
eusauropod, macronarian, and diplodocoid taxa indicate the early diversity of feeding strategies or
locomotion evolved.

5.2. Biogeographic origin for neosauropods

Throughout almost the entire Middle Jurassic, the sea level was globally low, most notably during the
Late Bajocian-Bathonian [84]. This spurred the development of large epicontinental basins around
Pangaea (e.g. southwestern and part of eastern Laurasia (including parts of Europe and North
America, and China)) [85]. Then, the sea level gradually rises globally in Callovian [86], an interval of
continental rifting and opening of seaways [87-90]. The relationships between some invertebrate (e.g.
ammonoid) diversity patterns and sea-level changes have been demonstrated by several works (e.g.
[91-93]). During the latest Bajocian to Bathonian, the immigration of some ammonites and ostracods
reflects the opening of seaways as well as illustrating the change from a semi-enclosed inland sea to a
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Figure 15. Paleogeographic reconstruction showing the main Middle Jurassic neosauropod records. Paleogeographic reconstruction
of 170 Ma from PALEOMAP [116]. Dinosaur faunas are represented with stars. (1), Lower Shaximiao Formation; (2), Zhiluo Formation;
(3), Shishugou Formation; (4), Podosinki Formation; (5), Forest Marble Formation; (6), Guettioua Formation; (7), Cafiadén Asfalto
Formation.

continental shelf sea in basins of northwest and central Europe [93,94]. Correspondingly, that
transgression may trigger the opening of the marine strait and prevents the big terrestrial animals
from dispersing. In addition, the global occurrence data of benthic foraminifera statistically revealed
the significant differences in the foraminiferal distribution patterns between Laurasia and
Gondwanaland in Bathonian, indicating the potential disconnection in that period [95]. The
development of the middle Callovian mounds in northern Tethyan is perhaps best linked to a period
of minimum sedimentation rates and sufficient accommodation space resulting from a long-term
gradual sea-level rise commencing in the Late Bajocian [96]. Notably, in the early Middle Jurassic,
regional uplift of structural highs took place in northern Europe, resulting in a change from marine
shelf deposition in the Early Jurassic to widespread emergence, erosion and localized deposition [97].
Besides, in some intervals of the upper Bajocian and Bathonian, signs of sedimentation pauses and/or
erosion occur in a form of exhumed concretions (hiatus concretions) that were intensively bored and
encrusted in conjunctional regions of Europe, and North America [98-100]. Considering the
connection between North and South America [101,102] was probably severed in the late Middle
Jurassic, that further indicates possible Pangea was still a landmass before Bathonian. The availability
of non-marine environments has created a basal frame or is understood to be the main determinant
for biological diversification, dispersion, and adaptive radiation [103]. It could be possible for
radiation of some neosauropod lineages. In general, it seems logical to assume that the globally low
sea level in the early Middle Jurassic boosts for possibly well-developed sauropod radiation (e.g.
Neosauropoda) would have occurred in the Northern Gondwana in or before.

The origin and early diversification of Neosauropoda is one of the most controversial topics in the
evolution of Sauropoda [64,78]. In the Middle Jurassic, the non-neosauropod eusauropod taxa are
dominating the sauropod faunas globally. The best-known neosauropod taxa are widely distributed in
Late Jurassic Laurasia and Gondwana (e.g. diplodocids and some basal macronarians). However, valid
Middle Jurassic neosauropods are rarely reported before the discovery of dicraeosaurid Lingwulong
from middle/late Middle Jurassic (late Bathonian—early Callovian) (The horizon was revised from
Yan’an Formation (Aalenian-Bajocian) to Zhiluo Formation (Bathonian—early Oxfordian) [104], then
Callovian Cetiosauriscus stewarti from Oxford Clay Formation of the United Kingdom [105,106] was
phylogenetically recovered as a diplodocid (e.g. [78,107], and this study). Besides them, phylogenetic
analyses support the Middle Jurassic African sauropod Atlasaurus as a ‘basal’-most member of either
Diplodocoidea or macronarian (see also: [80,108,109]), whereas some previous studies have recovered
it outside of Neosauropoda [110,111]. Ferganasaurus, from the Callovian Balabansai Formation of
Kyrgyzstan, was described as a neosauropod [112], but subsequent analysis suggests it was positioned
outside the Neosauropoda clade [113]. Two Middle Jurassic Chinese sauropods, Dashanpusaurus from
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the bottom of the Lower Shaximiao Formation, and the other Lower Shaximiao Formation (the specific

horizon is unknown) Bashunosaurus, were morphologically recovered as macronarians [30,34]. However,
these taxa have not been described in detail to include in a phylogenetical analysis, the potential
neosauropod position for these taxa still should be treated with caution. Besides these, records of
Middle Jurassic neosauropod fragmentary materials were also reported in some regions of Pangea,
such as those in the Callovian of the United Kingdom and European Russia [107,114], and Bajocian
India [115], that further support neosauropod early diversification and related dispersal events
(figure 15). Some putative neosauropod affinities were reported from the late Early Middle Jurassic
Patagonia [117] and Middle Jurassic Madagascar [118], perhaps indicating the origin and earliest
diversity of Neosauropoda during this period.

In summary, although neosauropods lack global distribution in the Middle Jurassic compared with
the prosperous distributions of the Late Jurassic, it may further suggest the timing of its origin and
initial diversification could be as early as the late Early Jurassic. The most possible widespread
dispersal period is in Bathonian or earlier when the sea level is relatively low. Anyhow, it further
undermines the idea of the East Asia Isolation Hypothesis (EAIH).

6. Conclusion

The new genus Yuzhoulong qurenensis echoes the previous hypothesis, the macronarians readily exist in
Middle Jurassic, and this further undermines the EAIH. The morphological comparisons to other
macronarians reveal many synapomorphic similarities. Phylogenetical analyses recovered the new
taxon as an early diverging macronarian. The discovery of Yuzhoulong qurenensis allows for a better
understanding of the origin, early evolution and paleogeographic distribution of neosauropods. This
study suggests the Middle Jurassic diversity of neosauropods was substantially higher than we
previously recognized. and supporting that sauropods achieved a more rapid and varied
morphological diversity and palaeogeographical dispersal in the Middle Jurassic.
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