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ABSTRACT

The tube-crested hadrosaurid dinosaur Parasaurolophus is remarkable for its unusual

cranial ornamentation, but little is known about its growth and development, partic-

ularly relative to well-documented ontogenetic series for lambeosaurin hadrosaurids

(such as Corythosaurus, Lambeosaurus, and Hypacrosaurus). The skull and skeleton

of a juvenile Parasaurolophus from the late Campanian-aged (∼75.5 Ma) Kaiparow-

its Formation of southern Utah, USA, represents the smallest and most complete

specimen yet described for this taxon. The individual was approximately 2.5 m in

body length (∼25% maximum adult body length) at death, with a skull measuring

246 mm long and a femur 329 mm long. A histological section of the tibia shows well-

vascularized, woven and parallel-fibered primary cortical bone typical of juvenile

ornithopods. The histological section revealed no lines of arrested growth or annuli,

suggesting the animal may have still been in its first year at the time of death. Impres-

sions of the upper rhamphotheca are preserved in association with the skull, showing

that the soft tissue component for the beak extended for some distance beyond the

limits of the oral margin of the premaxilla. In marked contrast with the lengthy

tube-like crest in adult Parasaurolophus, the crest of the juvenile specimen is low and

hemicircular in profile, with an open premaxilla-nasal fontanelle. Unlike juvenile

lambeosaurins, the nasal passages occupy nearly the entirety of the crest in juvenile

Parasaurolophus. Furthermore, Parasaurolophus initiated development of the crest

at less than 25% maximum skull size, contrasting with 50% of maximum skull size

in hadrosaurs such as Corythosaurus. This early development may correspond with

the larger and more derived form of the crest in Parasaurolophus, as well as the close

relationship between the crest and the respiratory system. In general, ornithischian

dinosaurs formed bony cranial ornamentation at a relatively younger age and smaller

size than seen in extant birds. This may reflect, at least in part, that ornithischians

probably reached sexual maturity prior to somatic maturity, whereas birds become

reproductively mature after reaching adult size.
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INTRODUCTION
Ontogenetic changes in the vertebrate skull have numerous functional, ecological, and

behavioral consequences (e.g., Erickson, Lappin & Vliet, 2003; Herrel & Gibb, 2006; Herrel

& O’Reilly, 2006; Cole, 2010). Variation in the timing and degree of development of these

changes relative to the ancestral condition (heterochrony; e.g., Gould, 1977; Alberch et al.,

1979; Klingenberg, 1998; Smith, 2001) is responsible, in part, for the diversity seen even

among closely related species. The ontogeny of the skull in ornithischian dinosaurs has

received particular attention, due to their elaborate horns, crests, casques and domes in a

number of species, variously interpreted to function in visual display, sound production,

and intraspecific combat (see Hone, Naish & Cuthill, 2012 for a recent summary). These

cranial modifications demonstrate considerable variation in their morphology as well

as heterochrony in their appearance and modification. For instance, the dome-headed

pachycephalosaurs show early development of peripheral spikes and knobs and late

development of an enlarged central dome (Horner & Goodwin, 2009; Schott et al., 2011;

Schott & Evans, 2012), whereas the horned dinosaurs (ceratopsians) have early and

continuous development of horns and frills with a final burst of extreme modification

to the horns and marginal bones of the frill late in ontogeny (Dodson, 1976; Sampson,

Ryan & Tanke, 1997; Horner & Goodwin, 2006; Currie, Langston & Tanke, 2008). These

developmental patterns have been leveraged to better inform speculation on cranial

function in each of these groups.

Among the hadrosaurids, or duck-billed dinosaurs, lambeosaurines are remarkable for

their heavily modified nasal passages within a bony crest. Various functional hypotheses

have been proposed for this anatomical complex, including air storage during underwater

feeding, enhanced olfaction, housing for a salt gland, vocal resonance chambers, and

visual display for mate attraction and/or species recognition (reviewed in Weishampel,

1981a). Currently, vocalization and visual display together are the most broadly accepted

hypotheses (Evans, 2006), based in part on ontogenetic patterns for the crests. These

structures are not well-manifested externally until the skull reaches approximately

50 percent of maximum adult size, and then apparently grew continuously and with

strong positive allometry relative to the rest of the skull (Dodson, 1976; Evans, 2010).

These patterns of cranial ontogeny are best documented in Lambeosaurini, the clade of

“helmet-crested” lambeosaurines that includes taxa such as Corythosaurus, Lambeosaurus,

and Hypacrosaurus (Dodson, 1975; Horner & Currie, 1994; Evans, Forster & Reisz, 2005;

Evans, Ridgely & Witmer, 2009; Evans, 2010; Bailleul, Hall & Horner, 2012). Data from

a number of well-preserved specimens representing individuals of various sizes and

ontogenetic stages allow detailed comparisons of growth and anatomy in closely related

species. Importantly, results show that some diagnostic anatomical features arise early in

development (e.g., the lack of a premaxilla-nasal fontanelle in Hypacrosaurus altispinus),

whereas others (e.g., the distinct hatchet-shaped crest of Lambeosaurus lambei) arise later

(Evans, 2010). In any case, the final adult profile is not completed until late in ontogeny,

when the animals reach nearly full adult skull size. Although these data have been critical
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in defining models of lambeosaurine ontogeny, the narrow taxonomic sampling limits

application of these models across the clade.

In gross view, the cranial crests of lambeosaurins are fairly uniform, dominated by a

hemicircular profile sometimes augmented with a caudally projecting spike. This contrasts

with the condition in Parasaurolophini, the other major clade of lambeosaurines that

includes Parasaurolophus and Charonosaurus. Parasaurolophins are notable for their

greatly elongated, tubular crests that project caudally from the skull. The differences

between adult parasaurolophins and lambeosaurins almost certainly reflect different

ontogenetic trajectories, but the ontogeny of the skull in general and the crest in particular

is poorly known in parasaurolophins. Sullivan & Bennett (2000) referred an incomplete

and disarticulated skull from New Mexico to Parasaurolophus, but this specimen

(approximately one-third the size of an adult) did not include any portion of the skull

roof except for a possible postorbital. Evans, Reisz & Dupuis (2007) referred a braincase

from Alberta to Parasaurolophus, from an individual approximately half of adult size.

Although the crest itself was not preserved, the frontal platform that supported the crest

was well-developed (in contrast with the poorly developed platform of lambeosaurins at all

ontogenetic stages), implying that the tubular crest was already at least partially developed

in that individual. This limited evidence suggests fundamental differences between the

cranial development of parasaurolophins and lambeosaurins.

Heterochrony in hadrosaurid dinosaurs has received limited attention to date, perhaps

in part due to the absence of multiple comprehensive growth series for this clade. One

of the first treatments (Weishampel & Horner, 1994) focused primarily on the interplay

between body size and age, positing a reduction in skeletal maturity at hatching. Along

with the retention of small teeth into adulthood (Weishampel, Norman & Grigorescu,

1993), this would suggest paedomorphosis (prolonged retention of juvenile characters

through development relative to the ancestral condition (Alberch et al., 1979)) as a factor

in development of these structures. Peramorphosis—acceleration and/or exaggeration of

growth in certain features relative to the ancestral condition (Alberch et al., 1979)—was

implicated in the development of cranial ornamentation and the oral margins in many

hadrosaurids (Long & McNamara, 1997). Additional work on the postcranial skeleton

showed heterochrony in some aspects of its ontogeny, such as peramorphosis of the

supraacetabular process in the ilium of Hypacrosaurus relative to other hadrosaurids

(Guenther, 2009, within the conceptual framework of sequence heterochrony). Overall,

heterochrony in the evolution of lambeosaurine cranial ornamentation has received little

detailed evaluation.

During the 2009 joint field season for The Webb Schools and the Raymond M. Alf

Museum of Paleontology (RAM, Claremont, California, USA), high school student Kevin

Terris discovered the articulated skeleton and skull of a small hadrosaurid dinosaur (total

body length ∼2.5 m). The specimen originated in the late Campanian (∼75.5 million

years old) Kaiparowits Formation, exposed within Grand Staircase-Escalante National

Monument in southern Utah (Fig. 1; Roberts, Deino & Chan, 2005; Roberts, 2007). This
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Figure 1 Outcrops of Kaiparowits Formation (orange) within the state of Utah, USA. The arrow

indicates the approximate site of RAM V200921, the locality where RAM 14000 was discovered.

fossil (RAM 14000) is here referred to Parasaurolophus, representing the ontogenetically

youngest and most complete specimen ever recovered for the genus.

The nearly complete skull, articulated postcranial skeleton, and associated soft-tissue

in RAM 14000 (Figs. 2–4) provide important new data on anatomy and ontogeny

in Parasaurolophus and hadrosaurids in general. Here, we present a comprehensive

description of RAM 14000, placing it within the broader context of ontogeny and

heterochrony in lambeosaurines and other dinosaurs. Critically, the specimen provides

the best record to date of an early ontogenetic stage in a parasaurolophin, clearly

elucidating previously suspected differences between the ontogeny in this clade and

in lambeosaurins. Furthermore, the specimen provides a starting point for a broader

discussion of heterochrony and “odd” cranial structures in dinosaurs.

Institutional abbreviations

AMNH, American Museum of Natural History, New York, New York, USA; BYU, Brigham

Young University, Provo, Utah, USA; CMN, Canadian Museum of Nature, Ottawa,

Ontario, Canada; CPC, Colección Paleontológica de Coahuila, Museo del Desierto, Saltillo,

Coahuila, México; NMMNH, New Mexico Museum of Natural History, Albuquerque,

New Mexico, USA; OUVC, Ohio University Veterinary Collection, Athens, Ohio, USA;

PIN, Paleontological Institute, Russian Academy of Sciences, Moscow, Russia; PMU,

Museum of Evolution, Uppsala University, Uppsala, Sweden; RAM, Raymond M. Alf

Museum of Paleontology, Claremont, California, USA; ROM, Royal Ontario Museum,

Toronto, Ontario, Canada; SMP, State Museum of Pennsylvania, Harrisburg, Pennsylvania,
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Figure 2 Skeleton of Parasaurolophus sp., RAM 14000, in right lateral view. (A) interpretive drawing;

(B) photograph. Bones are bounded by solid lines and colored orange; matrix is gray. Abbreviations:

f, femur; fib, fibula; il, ilium; isc, ischium; MT III, metatarsal III; MT IV, metatarsal IV; ppr, postpubic

rod; prp, prepubic process; sc, scapula; sr, sacral rib; tib, tibia. Scale bar equals 10 cm.

USA; TMP, Royal Tyrrell Museum of Paleontology, Drumheller, Alberta, Canada; UCMP,

University of California Museum of Paleontology, Berkeley, California, USA; UMNH,

Natural History Museum of Utah, Salt Lake City, Utah, USA.
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Figure 3 Skeleton of Parasaurolophus sp., RAM 14000, in left lateral view. (A) interpretive drawing;

(B) photograph. Bones are bounded by solid lines and colored orange; blue indicates areas of fragmented

and powdered bone due to weathering, and green indicates bone impressions. The pink area indicates

the location of skin impressions shown in Fig. 21. In (A), the left half of the skull is indicated. A

detailed outline of the medial surface of the right half of the skull shown in (B) is contained in Fig.

13B. Abbreviations: f, femur; fib, fibula; h, humerus; il, ilium; isc, ischium; MT III, metatarsal III; prp,

prepubic process; sc, scapula; si, skin impression; tib, tibia. Scale bar equals 10 cm.
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Figure 4 Reconstructed skeleton of juvenile Parasaurolophus sp., in left lateral view, based on RAM

14000. Missing elements are patterned after other lambeosaurines (particularly a juvenile Lambeosaurus

sp., AMNH 5340). Scale bar equals 10 cm. Reconstruction courtesy of and copyright Scott Hartman.

METHODS

Fieldwork and preparation

All fieldwork was conducted under United States Department of the Interior Bureau

of Land Management Paleontological Resources Use Permit (surface collection permit

UT06-001S and excavation permit UT10-006E-Gs). For specific locality information, see

the “Systematic Paleontology” section below.

After discovery in 2009, the specimen was stabilized with polyvinyl acetate

(VinacTMPVA-15, McGean Rohco, Inc., Cleveland, Ohio, USA) dissolved in acetone.

Because of weathering, portions of the pedal phalanges and the right half of the skull

were collected in 2009, separately from the rest of the skeleton. Surface dry screening

uncovered additional bone fragments. During the 2010 field season, the specimen was

encased in a plaster and burlap field jacket and airlifted from Grand Staircase-Escalante

National Monument by helicopter. Subsequently, the fossil was mechanically prepared

using pneumatic engravers of varying sizes (PaleoTools, Brigham City, Utah, USA; Chicago

Pneumatic, Independence, Ohio, USA). A minimal amount of matrix was left in place,

in order to support and preserve the relative positions of the bones as well as soft tissue

impressions. Full field and lab documentation are on file at RAM.

CT scanning

In order to better visualize internal cranial anatomy, the skull of RAM 14000 was CT

scanned on a Toshiba Aquilion 64 scanner at Pomona Valley Hospital Medical Center,

Claremont, California, USA. For the large skull blocks, the specimen was initially

scanned at 120 kV and 350 mA, slice thickness of 0.5 mm and reconstruction diameter

of 300 mm. This resulted in an in-plane resolution of 0.586 mm by 0.586 mm per pixel.

After additional preparation, the specimen was rescanned. The left side of the skull was

scanned at 120 kV and 400 mA, slice thickness of 0.5 mm, and reconstruction diameter

of 229.687 mm, using a standard bone reconstruction algorithm, resulting in an in-plane

resolution of 0.45 mm by 0.45 mm per pixel. The isolated portion of the braincase and
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Table 1 Summary of digital data available via Figshare. Additional information is contained in Article

S1.

Element Data type URL

Braincase Segmentation data http://dx.doi.org/10.6084/m9.figshare.664171

Braincase CT scan data http://dx.doi.org/10.6084/m9.figshare.664167

Braincase Surface models http://dx.doi.org/10.6084/m9.figshare.692150

Maxilla CT scan data http://dx.doi.org/10.6084/m9.figshare.664168

Skull (left half) CT scan data http://dx.doi.org/10.6084/m9.figshare.664169

Skull (left half) Segmentation data http://dx.doi.org/10.6084/m9.figshare.691047

Skull (left half with structures) Surface models http://dx.doi.org/10.6084/m9.figshare.692151

Skull (left half) Surface model http://dx.doi.org/10.6084/m9.figshare.692152

Skull and neck (right half) CT scan data http://dx.doi.org/10.6084/m9.figshare.664170

Skull and neck (right half) Segmentation data http://dx.doi.org/10.6084/m9.figshare.691053

Skull and neck (right half) Surface models http://dx.doi.org/10.6084/m9.figshare.692153

Squamosal (right) Surface models http://dx.doi.org/10.6084/m9.figshare.797519

Skeleton (right side) Surface model http://dx.doi.org/10.6084/m9.figshare.796442

Humerus (right) Surface model http://dx.doi.org/10.6084/m9.figshare.692155

Hind limb (right) Surface model http://dx.doi.org/10.6084/m9.figshare.796441

Pedal phalanges (right) Surface models http://dx.doi.org/10.6084/m9.figshare.797520

Pedal ungual (right) Surface models http://dx.doi.org/10.6084/m9.figshare.797515

maxilla were also scanned at identical parameters except for a reconstruction diameter of

140.625 mm, resulting in an in-plane resolution of 0.274 mm by 0.274 mm. The resulting

data were then segmented and measured in 3D Slicer 4.2 (available at www.slicer.org;

Gering et al., 1999; Pieper, Halle & Kikinis, 2004; Pieper et al., 2006). Because of internal

fracturing of the specimen and areas of poor contrast between bone and matrix, a combi-

nation of automatic thresholding and manual segmentation were used in order to visualize

endocranial features. All CT scan and segmentation data are reposited at Figshare (Table 1,

Article S1), and downsampled versions of the mesh are contained in Figs. S1 and S2.

Photogrammetry

Because the humerus was preserved as a natural mold, we produced a digital cast of the

element using photogrammetry. 12 color photos at 4000 × 3000 pixel resolution were

acquired with a Nikon CoolPix L22 digital camera (Nikon Inc., Melville, New York,

USA), and were resized to 2000 × 1500 pixels. Data were processed using BundlerTools

(available at server.topoi.hu-berlin.de/groups/bundlertools/), which in turn uses Bundler

0.4, CMVS, and PMVS2. The resulting raw point cloud was processed further in MeshLab

1.3.0 (available at www.meshlab.org), in which a surface mesh was produced using a

Poisson surface reconstruction algorithm (Octree Depth = 10, Solver Divide = 9, 1 sample

per node, Surface Offsetting = 1). Because the original mesh represented a natural mold,

normals were inverted to produce a digital cast. The mesh was scaled by comparison with

measurements of the original specimen, and data were exported in STL file format. A

downsampled version of the mesh is contained in Fig. S4.
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A similar procedure was used with a series of photos of the right side of the skeleton,

to produce additional 3D renderings. Photographs at 2848 × 4288 pixel resolution were

acquired with a Nikon D90 SLR digital camera (Nikon, Inc., Melville, New York, USA)

fitted with a Tamron 179D lens (Tamron Co., Ltd., Saitama, Japan), and were resized to

2000 × 1500 pixels. Ten separate reconstructions were generated, for the ventral, central,

and caudal portions of the rib cage (utilizing 15, 24, and 24 photos, respectively), femur

(16 photos), tibia and fibula (29 photos), pes (27 photos), pelvic region (21 photos), skull

(17 photos), tail (24 photos), and dorsal view of the skeletal block (18 photos). The point

clouds were aligned and meshed in MeshLab (Poisson surface reconstruction algorithm,

Octree Depth = 12, Solver Divide = 12, 5 samples per node, Surface Offsetting = 1). The

original point clouds and surface mesh are reposited at Figshare. A downsampled version

of the mesh is contained in Fig. S3. The point clouds for the hind limb were combined and

meshed to produce a separate rendering of this part of the body; a downsampled version

of this mesh is contained in Fig. S5. All surface meshes are reposited at Figshare (Table 1,

Article S1).

Laser scanning

A disarticulated squamosal and pedal phalanges were laser scanned to produce full-color

digital models. The original point clouds were captured using a NextEngine 3D color

laser scanner (NextEngine, Inc., Santa Monica, California). For each element, a series of

individual scans (varying depending upon the complexity of the element) were acquired

at a resolution of 6,200 points/cm2. The individual scans were stitched together in

ScanStudio HD Pro 1.3.2 (NextEngine, Inc., Santa Monica, California) and fused into a

single watertight mesh. All surface meshes, along with full technical details, are reposited at

Figshare (Table 1, Article S1).

Histological sampling

Two samples from the right tibia were extracted for histological analysis. This bone was

chosen because of its excellent preservation and easy accessibility on the specimen. Addi-

tionally, studies in other ornithischian dinosaurs (the basal iguanodontian Tenontosaurus

tilletti and the hadrosaurine hadrosaurid Maiasaura peeblesorum) suggest that the tibia

undergoes less remodeling at midshaft than do other skeletal elements, a characteristic

critical for estimating the age of the animal at death using lines of arrested growth

(Horner, de Ricqlès & Padian, 2000; Werning, 2012). Thus, the tibia is an ideal element

for histological study.

The position of natural cracks in the bone precluded sampling exactly at the tibial

mid-diaphysis. However, we were able to sample at two points slightly proximal to this

point. The more proximal sample “A” was taken 120 mm from the proximal end of

the bone (∼39 percent of the total tibial length, 307 mm), and sample “B” was taken

135 mm (∼44 percent total length) from the proximal end of the bone (Fig. 18D). Prior to

sampling, we photographed and molded the surface of this region to document original

morphology. Afterward, the sampled region was refilled with plaster to approximate the

original anatomy.
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We removed both samples using a Dremel Moto-Tool Model 395 rotary tool (Dremel,

Inc., Racine, Wisconsin, USA) and small chisel. Because the tibia is partially embedded in

matrix, only the caudolateral quadrant of the shaft, rather than a full cross-section, was

extracted. We estimate the maximum craniocaudal diameter of the tibia at these points to

be 40 mm. Both samples include both compact and cancellous bone; the cortex of sample

A is ∼12 mm thick, and sample B is ∼15–16 mm thick. The longitudinal sections made

from sample A span 12 mm (proximo-distally) along the diaphysis. Given the maximum

diameter relative to the thickness of the sections, and that the medullary cavity is open

(i.e., not completely filled by cancellous bone) at both points, we think our samples likely

capture most if not all of the preserved histology in this quadrant of the bone.

Histological samples were prepared by S Werning at UCMP. Before embedding, the

periosteal surfaces were cleaned with acetone to remove any traces of polyvinyl acetate.

Both samples were then embedded in Silmar-41 clear polyester casting resin (Interplastic

Corporation, Saint Paul, Minnesota, USA) catalyzed with methyl ethyl ketone peroxide

(Norac, Inc., Helena, Arkansas, USA) at 1 percent by mass and allowed them to cure

for 48 h at room temperature. Thick transverse (cross-sectional) sections (1–1.5 mm)

were cut using a diamond-tipped wafering blade on a low-speed Isomet lapidary saw

(Buehler, Inc., Lake Bluff, Illinois), mounted to glass slides, and ground to optical clarity

using the materials and methods described in Werning (2012). Two slides in transverse

section were made from sample A and three from sample B. Additionally, two slides in

longitudinal section were made from some of the remaining embedded portion of sample

A. All histological slides are reposited at RAM.

Histological imaging

All slides were examined under regular transmitted light, elliptically polarized light

(i.e., using a full wave retarder or red tint plate, λ = 530 nm) and crossed plane polarizing

filters. The filters were used to enhance birefringence. Overlapping digital images pho-

tographs (50% overlap by eye in X and Y directions) were taken using a D300 DSLR camera

(Nikon Inc., Melville, New York, USA) mounted to an Optiphot2-Pol light transmission

microscope (Nikon Inc.). To image the entire slide or radial “transects”, digital images were

photomontaged using Autopano Giga 2.0 64Bit (Kolor, Challes-les-Eaux, France), using

the program settings described in Werning (2012).

High-resolution histological images are digitally reposited online for scholarly use at

MorphoBank (http://morphobank.org/permalink/?P836, project p836; see Table 2 for a

list of accession numbers). Digital images larger than 25,000 pixels in either dimension

were digitally reduced (preserving original dimension ratios) to allow processing on

MorphoBank. These edits were made after scale bars had been added.

Linear measurements

Linear measurements under 300 mm were measured to the nearest 0.l mm with digital

calipers, and non-linear measurements as well as those over 300 mm were measured to the

nearest mm with a cloth measuring tape. Landmarks for most cranial measurements were
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Table 2 MorphoBank (project 836) accession numbers for high-resolution histological images used

in this study.

Section View Accession # Image contents

A XS M193513 Entire section A (entire slide), brightfield

M193511 Radial transect through section A, brightfield

M283554 Inner cortex, brightfield

M283547 Inner cortex, brightfield

M283550 Inner cortex, elliptically polarized light

M283548 Mid-cortex, brightfield

M283551 Mid-cortex, elliptically polarized light

M283553 Outer cortex, brightfield

M283549 Outer cortex, brightfield

M283552 Outer cortex, elliptically polarized light

M193514 Osteocytes

M193515 Osteocytes

A LS M193522 Entire section A (entire slide), brightfield

M283543 Inner cortex, brightfield

M283544 Mid-cortex, brightfield

M283545 Outer cortex, brightfield

M283546 Osteocytes

B XS M151601 Entire section B (entire slide), brightfield

M193512 Radial transect through section B, brightfield

M283539 Inner cancellous region, brightfield

M283540 Outer cancellous region, brightfield

M283537 Inner cortex, brightfield

M283541 Inner/mid-cortex, brightfield

M283538 Outer cortex, brightfield

M283542 Outer cortex, brightfield

Notes.

LS, longitudinal section; XS, cross (transverse) section.
These images can be accessed online at: http://www.morphobank.org/permalink/?P836.

patterned after those in Dodson (1975) and Evans (2010), and are diagrammed along with

postcranial measurements in Fig. 5. Relevant measurements are contained in Tables 3–10.

Skeletal completeness

In order to assess relative skeletal representation for the three most complete specimens of

Parasaurolophus (FMNH P 27393, RAM 14000, and ROM 768), we tallied the preserved

elements for each. The skull and mandible were considered a single unit, as were the

sacrum and sacral ribs. Partial elements were counted as present in the specimen, and we

only counted bilateral elements once (e.g., even if both humeri were present, this element

was counted only once). Tallies are contained in Table S1.

Nomenclatural conventions

In this paper, the following conventions are utilized. These are defined here so as to avoid

confusion in the event of future systematic or phylogenetic revisions. Following the recent
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Figure 5 Standards for skeletal measurements. Those for the skull and lower jaw augment standards

published elsewhere (Dodson, 1975; Evans, 2010). Numbers associated with each measurement corre-

spond to those in Tables 3–9. (A) and (B) skull in left lateral view; (C) right half of caudal section of

skull in dorsal view; (D) mandible in left lateral view; (E) scapula; (F) ilium; (G) ischium; (H) pubis;

(I) humerus; (J) femur; (K) tibia; (L) fibula; (M) calcaneum; (N) pedal phalanx; (O) pedal ungual; (P)

caudal vertebra (also used for other vertebrae); (Q) cervical rib (also used for sacral rib); (R) dorsal rib.

(A–M) and (P–R) are in right lateral view; (N) and (O) are in dorsal view. Drawings are not to scale.
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Table 3 Measurements of the skull of Parasaurolophus sp., RAM 14000. The standards for these measurements (modified from those in Dodson,

1975, and Evans, 2010) are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Left Right

Skull 1 Length from tip of rostrum to paroccipital process, parallel to maxillary tooth row 246.0 —

2 Length from tip of rostrum to quadrate, parallel to maxillary tooth row 211.2 —

3 Preorbital length, parallel to maxillary tooth row 125.2 —

4 Height at caudal end, perpendicular to maxillary tooth row 142.0 —

5 Height from maxillary tooth row to top of crest 120.1 —

6 Length from caudal end of crest to paroccipital process 112.8 —

7 Maximum width across postorbitals from midline 46.1 —

8 Height of caudal plane, perpendicular to tooth row 81.6 —

External naris 38 Maximum length 55.1 —

39 Maximum width 21.9 —

Orbit 40 Maximum length 62.4 58.9

41 Maximum height 53.5 48.0

Infratemporal fenestra 42 Maximum length 63.7 —

43 Maximum width 18.8 20.1

Supratemporal fenestra 44 Maximum length on lateral edge 42.6 —

Notes.

Dashes indicate missing measurements.

formal definition by Prieto-Márquez and colleagues (2013), the clade Lambeosaurini

(lambeosaurins) includes all taxa closer to Lambeosaurus lambei than to Parasaurolophus

walkeri, Tsintaosaurus spinorhinus, or Aralosaurus tuberiferus. This clade is approximately

equivalent to the informally used but never formally defined “Corythosaurini” (Godefroit,

Alifanov & Bolotsky, 2004; Evans & Reisz, 2007). Unless otherwise specified, comparisons

here involve the North American genera Corythosaurus, Lambeosaurus, Hypacrosaurus,

and Velafrons, as well as the Asian taxon Nipponosaurus. The clade Parasaurolophini

(parasaurolophins) includes all taxa closer to Parasaurolophus walkeri than to Lam-

beosaurus lambei, Tsintaosaurus spinorhinus, or Aralosaurus tuberiferus (Godefroit, Alifanov

& Bolotsky, 2004; Evans & Reisz, 2007; Prieto-Márquez et al., 2013). This includes two

genera, Parasaurolophus and Charonosaurus. Unless otherwise specified, usage of the name

Parasaurolophus alone refers to all three named species, P. walkeri, P. cyrtocristatus, and

P. tubicen.

RESULTS

Systematic paleontology

Dinosauria Owen, 1842

Ornithischia Seeley, 1888

Hadrosauridae Cope, 1869

Lambeosaurinae Parks, 1923
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Table 4 Measurements of individual cranial bones of Parasaurolophus sp., RAM 14000. The standards for these measurements (modified from

those in Dodson, 1975; Evans, 2010) are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Left Right

Crest 9 Length from rostrum to crest midpoint, parallel to tooth row 118.7 —

10 Angle between crest and snout 120◦ —

11 Length parallel to tooth row, level with skull roof 61.8 —

12 Length of crest at half-height 46.9 —

13 Crest height above orbit, from postorbital/prefrontal suture 61.8 —

14 Height of crest above skull roof 25.1 —

15 Maximum width of crest from midline 46.1 —

16 Maximum width of premaxillary-nasal fontanelle 9.4 —

Maxilla 17 Length along tooth row 117.7 110.1*

18 Height from tooth row to jugal-maxilla suture 44.4* 31.8

Premaxilla 19 Straight-line length of oral margin, from midline 42.9 —

20 Depression of oral margin below maxillary tooth row 32.6 —

Jugal 21 Maximum length 113.1* 107.7

22 Maximum width of rostral process — 35.6

23 Minimum width below orbit 19.2 19.2

24 Maximum width of blade 30.9 31.8

25 Minimum width of quadrate process 22.2 21.7

Postorbital 26 Maximum length 83.7 —

27 Maximum height 53.4 —

28 Minimum width of caudal process 13.3 —

Quadrate 29 Maximum length 109.9 112.3

30 Rostrocaudal length of lateral edge of distal condyle 18.2 17.6

31 Mediolateral width of distal condyle (not shown) 21.4 —

Frontal 32 Length at midline 34.2 —

33 Maximum width from midline 31.7 —

Paroccipital process 34 Maximum width 18.3 —

35 Maximum length 32.4 —

36 Maximum separation from quadrate 15.9 11.0

37 Minimum separation from quadrate 11.1 9.9

Notes.

Dashes indicate missing measurements.
* indicates approximate measurement.

Parasaurolophus Parks, 1922

Parasaurolophus sp.

Referred material

RAM 14000, a partial skull and articulated skeleton (Figs. 2 and 3).

Locality and horizon

RAM V200921, Grand Staircase-Escalante National Monument, Garfield County, Utah,

USA (Fig. 1); upper part of middle unit (sensu Roberts, 2007) of the Kaiparowits
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Table 5 Measurements of the lower jaw of Parasaurolophus sp., RAM 14000. The standards for these

measurements (modified from those in Dodson, 1975) are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Left Right

Mandible 45 Maximum length 223.5 —

Dentary 46 Maximum length along ventral edge 134.2 142.1

47 Length of edentulous process to caudal edge of predentary 15.3 —

48 Maximum height from ventral edge to alveoli 30.7 33.1

49 Maximum height at coronoid process — 72

50 Maximum width of coronoid process — 27.9

Predentary 51 Length parallel to midline 49.8 —

Surangular 52 Maximum length 54.8 46.2

53 Length of retroarticular process 42.6 38.5

Notes.

Dashes indicate missing measurements.

Formation; Late Cretaceous (late Campanian; Roberts, Deino & Chan, 2005). The site is

stratigraphically between two locally prominent bentonites, tentatively correlated with

bentonites KBC-109 and KBC-144 of Roberts, Deino & Chan (2005), both exposed less

than 10 km away from RAM V200921 and dated to 75.51 + −0.15 Ma (Roberts et al.,

2013). The specimen was preserved within a cross-bedded tabular sandstone, tentatively

interpreted as a channel deposit following previous literature (Roberts, 2007). Detailed

locality data are on file at the RAM and are available to qualified investigators upon request.

DESCRIPTION
RAM 14000 is preserved in nearly perfect articulation, with the neck, hip, lower leg and

metatarsals strongly flexed (opisthotonic posture, probably resulting from the fresh

carcass’s immersion in water; Reisdorf & Wuttke, 2012; Figs. 2 and 3, Fig. S3). The right

humerus and pedal digits are gently extended. The specimen was lying on its left side;

although more bones are represented on this side, they are much more badly weathered

than on the right. Tree roots, freeze-thaw cycles, and recent rodent activity fragmented and

displaced many of the elements on the left side. In contrast, the right side is less complete

in terms of element representation, but the quality of bone preservation is generally better

than on the left side.

Skull and mandible

The skull of RAM 14000 was split in two (parasagittally) by erosion; in order to preserve

visibility of internal structures, the two halves have not been reassembled. The skull and

mandible are in articulation, with only slight displacement of the quadrate and mandible

relative to each other. The left side is more complete, preserving nearly all elements (with

the exception of a portion of the premaxilla). The dorsal and rostral portions of the

right side are missing, with the exception of some elements (such as the maxilla, parts

of the dentary, and braincase) that were separated from the main block by erosion.
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Table 6 Measurements of the vertebrae of Parasaurolophus sp., RAM 14000. The standards for these

measurements are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Cervical vertebra ?5 101 Maximum length of centrum 20.0

Cervical vertebra ?6 101 Maximum length of centrum 20.0

Dorsal vertebra ?14 101 Maximum length of centrum 28.8

Dorsal vertebra ?15 101 Maximum length of centrum 27.3

Dorsal vertebra ?16 101 Maximum length of centrum 26.7

Dorsal vertebra ?17 101 Maximum length of centrum 30.8

Dorsal vertebra ?18 101 Maximum length of centrum 35.8

Caudal vertebra ?2 103 Maximum craniocaudal length of neural spine 16.5

Caudal vertebra ?3 101 Maximum length of centrum 21.0

103 Maximum craniocaudal length of neural spine 16.1

Caudal vertebra ?4 101 Maximum length of centrum 20.3

103 Maximum craniocaudal length of neural spine 15.9

Caudal vertebra ?5 101 Maximum length of centrum 18.5

103 Maximum craniocaudal length of neural spine 14.9

Caudal vertebra ?6 101 Maximum length of centrum 16.7

102 Maximum proximodistal length of neural spine 107.9*

103 Maximum craniocaudal length of neural spine 13.6

Caudal vertebra ?7 101 Maximum length of centrum 19.4

103 Maximum craniocaudal length of neural spine 15.0

Caudal vertebra ?8 101 Maximum length of centrum 16.5

103 Maximum craniocaudal length of neural spine 11.5

Caudal vertebra ?9 101 Maximum length of centrum 67.3

103 Maximum craniocaudal length of neural spine 13.6

Caudal vertebra ?10 103 Maximum craniocaudal length of neural spine 10.3

Caudal vertebra ?12 101 Maximum length of centrum 19.3

103 Maximum craniocaudal length of neural spine 8.6

Caudal vertebra ?13 101 Maximum length of centrum 19.5

102 Maximum proximodistal length of neural spine 30.9

Caudal vertebra ?14 101 Maximum length of centrum 18.3

102 Maximum proximodistal length of neural spine 29.2

Caudal vertebra ?15 101 Maximum length of centrum 19.1

102 Maximum proximodistal length of neural spine 29.2

Caudal vertebra ?16 101 Maximum length of centrum 20.5

103 Maximum craniocaudal length of neural spine 9.8

Caudal vertebra ?17 101 Maximum length of centrum 20.3

103 Maximum craniocaudal length of neural spine 9.4

Caudal vertebra ?18 101 Maximum length of centrum 21.3

Caudal vertebra ?19 102 Maximum proximodistal length of neural spine 49.1

Notes.
* indicates approximate measurement.
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Table 7 Measurements of the ribs of Parasaurolophus sp., RAM 14000. The standards for these mea-

surements are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Cervical rib ?4 104 Maximum width between capitulum and tuberculum 19.6

105 Maximum length from capitulum to distal end of shaft 27.1

Cervical rib ?5 104 Maximum width between capitulum and tuberculum 19.7

105 Maximum length from capitulum to distal end of shaft 29.3

Cervical rib ?6 104 Maximum width between capitulum and tuberculum 17.9

105 Maximum length from capitulum to distal end of shaft 30.8

Dorsal rib 1 (left) 106 Maximum length from capitulum to distal end of shaft 235.0

Dorsal rib 2 (left) 106 Maximum length from capitulum to distal end of shaft 285.0

Dorsal rib 3 (left) 106 Maximum length from capitulum to distal end of shaft 325.0

Sacral rib 1 104 Maximum width between capitulum and tuberculum 39.4

Sacral rib 1 105 Maximum length from capitulum to distal end of shaft 54.3

Torso length (left) Distance between scapular glenoid and pelvic acetabulum 620.0

Rib cage Maximum depth 339.0

Table 8 Measurements of the pectoral and pelvic elements of Parasaurolophus sp., RAM 14000. The

standards for these measurements are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Scapula (left) 52 Maximum length 267.6*

53 Maximum width of blade 55.0

54 Minimum width of blade 36.3

Ilium 55 Greatest length 300.8

56 Length of preacetabular process 120.7

57 Minimum height of preacetabular process 21.5

58 Maximum height of preacetabular process 36.8

59 Maximum height of ilium 60.9

60 Length of postacetabular process, ventral 89.9

61 Length of postacetabular process, dorsal 104.7

62 Minimum height of postacetabular process 30.8

63 Mediolateral width of supraacetabular process 28.4

64 Length of ischiadic peduncle 28.7

65 Length of pubic peduncle 31.6

66 Width of acetabulum 52.1

Ischium (left) 67 Maximum length 243.1

68 Maximum width of distal end 30.0

Pubis 69 Length of prepubic blade 147.3

70 Maximum depth of prepubic blade 83.0

71 Minimum depth of prepubic blade 46.2

Notes.
* indicates approximate measurement.
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Table 9 Measurements of the limb bones of Parasaurolophus sp., RAM 14000. The standards for these

measurements are diagrammed in Fig. 5.

Element Measurement and description Value (mm)

Humerus 72 Maximum length 174.6

73 Length of deltopectoral crest (1) 101.1

74 Length of deltopectoral crest (2) 96.6

75 Maximum width at deltopectoral crest 38.1

76 Maximum width at proximal end 50.5

77 Minimum diameter of diaphysis 24.5

78 Maximum width at distal end 35.2

Femur 79 Maximum length 328.9

80 Craniocaudal width of proximal end on lateral surface 66.8

81 Craniocaudal length of cranial trochanter 25.8

82 Proximodistal length of 4th trochanter 73.3

83 Craniocaudal height of 4th trochanter 15.6

84 Craniocaudal length at midshaft excluding 4th trochanter 40.9

85 Distance between distal ends of 4th trochanter and femur 127.2

Tibia 86 Maximum length 306.9

87 Maximum craniocaudal width at proximal end 80.6

88 Maximum projection of cnemial crest 22.1

89 Maximum proximodistal length of cnemial crest 113.0

90 Maximum craniocaudal width at distal end 47.5

Fibula 91 Maximum length 288.3

92 Maximum craniocaudal diameter at proximal end 43.2

93 Minimum craniocaudal diameter of diaphysis 15.7

94 Maximum craniocaudal diameter at distal end 25.2

Calcaneum 95 Maximum craniocaudal length 25.4

96 Minimum proximodistal length 14.6

Metatarsal IV 97 Maximum length on dorsal midline (not shown) 100.1

Phalanx IV-1 98 Maximum length on dorsal midline 25.9

Phalanx IV-2 98 Maximum length on dorsal midline 8.8

Phalanx IV-3 98 Maximum length on dorsal midline 7.3

Phalanx IV-4 98 Maximum length on dorsal midline 2.3

Phalanx IV-5 99 Maximum length on dorsal midline 31.3

Phalanx IV-5 100 Maximum mediolateral width (estimated) 25.6

Phalanx III-2 98 Maximum length on dorsal midline 7.3

Phalanx III-3 98 Maximum length on dorsal midline 5.1

Phalanx III-4 99 Maximum length on dorsal midline 29.0

A digital reconstruction, based on RAM 14000 with missing sections modeled after

juvenile lambeosaurins, is presented in Fig. 6. Measurements are included in Tables 3–5.

In lateral view (Fig. 7), the skull has a profile typical of a juvenile hadrosaur–squared

caudally and triangular rostrally. The orbit is proportionately large and slightly longer

than tall. The infratemporal fenestra is inclined caudally and quite narrow, with a slight

constriction at its midpoint. Because the midline of the skull is missing, the exact shape
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Table 10 Measurements of Parasaurolophus sp., RAM 14000, compared with those for selected other lambeosaurines. Measurements of

Parasaurolophus sp., RAM 14000, compared with those for selected other lambeosaurines. Measurements for FMNH P 27393 are from Ostrom (1963),

and measurements for other lambeosaurines (excepting RAM 14000) are from Lull & Wright (1942), Evans (2010), and Sullivan & Williamson (1999).

The crest length for AMNH 5340 is estimated from photographs; the crest length for FMNH P 27393 is approximate. All cranial measurements follow

those of Dodson (1975) and Evans (2010); crest length is from the top of the orbit to the maximum extent of the crest. AMNH 5340 is included as the

most complete and best-known associated skeleton of a juvenile lambeosaurine. Complete measurements, as well as a description of the landmarks

used for each measurement, are contained in Fig. 5 and Tables 2–8.

Taxon Parasaurolophus sp. P. cyrtocristatus P. walkeri Lambeosaurus sp.

Specimen RAM 14000 FMNH P27393 ROM 768 AMNH 5340

Humerus length (mm) 175 565 (0.31) 520 (0.34) 305 (0.57)

Ilium length (mm) 301 975 (0.31) 1015 (0.30) 570 (0.53)

Prepubis length (mm) 147 430 (0.34) 516 (0.28) 260* (0.57)

Ischium length (mm) 243* 1040 (0.23) – 630* (0.39)

Femur length (mm) 329 1105 (0.30) 1032 (0.32) 590 (0.56)

Tibia length (mm) 307 – – 550 (0.56)

Fibula length (mm) 288 890 (0.32) – 530* (0.54)

MT IV length (mm) 100 335 (0.30) – –

Fibula/femur 0.88 0.80 – 0.90

Skull length (mm) 246 – 745 (0.33) 380 (0.65)

Quadrate length (mm) 111 – 272 (0.41) 165 (0.67)

Orbit length (mm) 60 – 105 (0.57) 77 (0.78)

Orbit height (mm) 50 – 170 (0.29) 82 (0.61)

Dentary length (mm) 138 – 455 (0.30) –

Crest length (mm) 62 404* (0.15) 970 (0.06) 90* (0.69)

Notes.

The number in parentheses in each entry indicates the size relative to RAM 14000.
* indicates an incomplete or estimated element length.

of the supratemporal fenestra is unknown. However, the preserved portion is roughly

trapezoidal. Individual bones and skull regions are described below.

Premaxilla

The premaxilla is the most prominent cranial bone in lateral view, extending from the

upper “beak” to the dorsum of the skull. The bone is roughly divisible into three portions:

a lower portion including the oral margin and external (bony) naris as well as caudodorsal

and caudolateral processes that form the remainder of the premaxilla and much of the

crest.

The rostroventral-most segment of the premaxilla forms the dorsal oral margin. In

lateral view (Fig. 7), most of the edge of the beak is straight and only slightly inclined

(relative to the maxillary tooth row), contrasting with the more inclined surface seen in

most other lambeosaurine specimens (Evans, 2010), including Parasaurolophus walkeri

(ROM 768). Furthermore, the caudal corner of the beak is sharply hooked to form a

tab-like process below a broadly concave postoral margin. Although this process occurs

to varying degrees in many lambeosaurines of all ontogenetic stages (Evans, 2010), the

condition in RAM 14000 is unusually prominent and most similar to that in Parasaurolo-

phus walkeri (Parks, 1922; Sullivan & Williamson, 1999), particularly in the combination
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Figure 6 Reconstruction of the skull of Parasaurolophus sp., RAM 14000. (A) lateral view; (B) dorsal

view; (C) rostral view. Missing elements (including sutural relationships that are not visible in RAM

14000) are patterned after other lambeosaurines, and the rhamphotheca is shown in place. Reconstruc-

tion copyright Ville Sinkkonen.

of the tab-like process and rounded postoral margin. The only major difference is that the

concavity in the postoral margin is sharper in ROM 768 (Parasaurolophus walkeri) than

in RAM 14000. Measuring from the midline, the mediolateral width of the oral margin is

estimated at 26 mm, and the estimated entire width of the free oral margin (perpendicular

to the midline) is thus 52 mm. The oral margin is fairly uniform in outline, with no major

denticulations.

The lower portion of the premaxilla encloses the external (bony) naris. The dorsal

margin of the bone is eroded away, but its impression is preserved along the narial margin.

The bony naris is roughly lenticular, rounded at its distal (rostroventral) end and pointed

at its proximal (caudodorsal) end. The depression in the lateral surface of the premaxilla

that houses the naris is delimited from the rest of the skull by a gentle ridge that is most

prominent caudodorsally.

The caudolateral process of the premaxilla forms the ventral margin of the external

(bony) naris and extends caudolaterally. Dorsally, the process contacts the caudodorsal

process of the premaxilla. Although much of this suture is extremely fragmented, it appears
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Figure 7 Left half of the skull of Parasaurolophus sp., RAM 14000, in lateral view. (A) interpretive

drawing; (B) photograph. Abbreviations: an, angular; cb, first ceratobranchial; d, dentary; en, external

naris; exo, exoccipital-opisthotic; f, frontal; itf, infratemporal fenestra; j, jugal; m, maxilla; n, nasal; o,

orbit; pd, predentary; pm, premaxilla; pnf, premaxilla-nasal fontanelle; po, postorbital; prf, prefrontal;

q, quadrate; ri, extent of impressions of upper rhamphotheca; sa, surangular; sq, squamosal. Scale bar

equals 10 cm.
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quite straight along its preserved portions (Fig. 7A). This contrasts with the more sinuous

suture seen in juvenile and adult Hypacrosaurus, Corythosaurus, and Lambeosaurus (Evans,

2010; Brink et al., 2011), but more closely matches the fairly straight suture (where it can

be discerned) in specimens of Parasaurolophus (Sullivan & Williamson, 1999). Similarly,

the sutures with the maxilla, lacrimal, and prefrontal, where they can be discerned, are

straight, much closer to the condition in Parasaurolophus than in lambeosaurins. This

may reflect the internal absence of an “S-loop” in the narial passages, a feature that

occurs in lambeosaurins (e.g., Weishampel, 1981b; Evans, Ridgely & Witmer, 2009). The

ventral portions of the process are comparatively narrow, but the process expands dorsally,

where it forms part of the crest. The caudolateral process forms the ventral border of the

premaxilla-nasal fontanelle and presumably contacts the nasal at the caudal extent of the

fontanelle.

The caudodorsal process of the premaxilla, which forms much of the rostral profile

of the skull, is poorly preserved. Its contact with the nasal cannot be interpreted with

confidence due to extensive cracking, so no further comment will be offered here.

Nasal

Much of the nasal is poorly preserved in gross external view, with the exception of its suture

with the frontal and a portion along the caudal margin of the crest (Fig. 7A). The nasal

forms the rostrodorsal margin of the premaxilla-nasal fontanelle, as well as the caudal edge

of the crest. The dorsal margin of the nasal is strongly rounded and almost horizontal,

unlike the peaked margin seen in juvenile lambeosaurins ROM 758 and 759 (Lambeosaurus

sp. and Corythosaurus sp., respectively). The nasal’s suture with the prefrontal is not readily

visible, and the contact with the frontal is described with that element. The internasal

suture in the crest is flat along the suture’s medial surface.

Crest (premaxilla and nasal)

The crest is roughly dome-shaped, with a broad and rounded profile. It is semi-circular in

lateral view, with its midpoint rostral to the orbit (Fig. 7). Unlike adult lambeosaurines,

including Parasaurolophus, the crest does not overhang the frontal. Based on the position

of the premaxilla-nasal fontanelle, and its relationships in lambeosaurins, the nasal

is inferred to be the bone that bounds the dorsal and caudal margins of the crest

(Fig. 7A). The presence of a premaxilla-nasal fontanelle contrasts with its absence in adult

Parasaurolophus and Hypacrosaurus altispinus of all ontogenetic stages, but is similar to

juvenile Corythosaurus, Lambeosaurus, and Hypacrosaurus stebingeri, and probably also

Kazaklambia convincens (Bell & Brink, in press; Horner & Currie, 1994; Evans, Forster &

Reisz, 2005; Brink et al., 2011). Unlike juvenile lambeosaurins or Kazaklambia convincens,

the fontanelle is exceptionally dorsally placed relative to the rest of the crest in RAM 14000.

In dorsal and rostral view (Figs. 8A–8D), the margins of the crest are strongly rounded.

The caudal margin is only gently tapered. This contrasts with the condition in both juvenile

and adult lambeosaurins (Corythosaurus, Lambeosaurus, and Hypacrosaurus), in which a

thin flange of bone projects from the caudal edge of the crest (Weishampel, 1981b; Evans,

Ridgely & Witmer, 2009). In these animals, the flange of bone is not occupied by the nasal
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Figure 8 Left half of the skull of Parasaurolophus sp., RAM 14000. (A) and (B), rostral view; (C) and

(D), dorsal view; (F) and (G) caudal view. (E) detail of the impression of the upper rhamphotheca in

rostral view. (A), (C), (E), and (F) are photographs, and (B), (D), and (G) are interpretive line drawings.

Abbreviations: cb, first ceratobranchial; d, dentary; en, external naris; exo, exoccipital-opisthotic; f,

frontal; j, jugal; n, nasal; o, orbit; p, parietal; pd, predentary; pm, premaxilla; po, postorbital; prf,

prefrontal; pt, pterygoid; q, quadrate; ri, impression of rhamphotheca; sa, surangular; sq, squamosal;

stf, supratemporal fenestra. Scale bar equals 10 cm for (A–D) and (F–G), and 1 cm for (E). In (A) and

(B), scale bar is approximately in the plane of the crest; in (C) and (D), the scale bar is approximately in

the plane of the frontal bone; in (F) and (G), the scale bar is in the plane of the quadrate.
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passages. In RAM 14000, the nasal passages fill nearly the entirety of the crest, similar to

the condition in adult Parasaurolophus (Weishampel, 1981b; Sullivan & Williamson, 1999).

Furthermore, the crest in RAM 14000 is quite broad, whereas the crest is also fairly narrow

along its length in juvenile and adult lambeosaurins.

Nasal cavity

The nasal passages are preserved only on the left side and were studied by gross

examination of broken surfaces as well as using CT scans (Fig. 9, Fig. S1). Terminology

for anatomical structures follows that of Evans, Ridgely & Witmer (2009) and Weishampel

(1981b). The airway closest to the external naris is termed “proximal,” and the airway

furthest from the naris and closest to the internal choanae is termed “distal.” Portions

of the nasal passages and their surrounding bones, particularly the interval immediately

caudal to the external naris, are heavily fractured. Furthermore, it appears that some areas

were not completely ossified at the time of death, and we hypothesize that some aspects of

the chambers may have become more prominently separated later in ontogeny. Thus, we

must emphasize that aspects of our digital reconstructions may be subject to alternative

interpretation. Points of particular concern are noted as such at the appropriate points in

the description.

The external naris is ovoid and strongly elongated (Fig. 7). Part of the main airway distal

to this point is fragmented and poorly preserved, but has been reconstructed based on the

CT scan data as well as physical examination of the specimen itself. The reconstruction

shows the airway to be straight in lateral view (Figs. 9A–9C), with no evidence for an

S-loop as seen in lambeosaurins of all known post-embryonic stages (Horner & Currie,

1994; Evans, Ridgely & Witmer, 2009). It is possible that the S-loop simply wasn’t preserved,

but based on the contours of the better-preserved distal airway, we do not consider this

particularly likely.

The main airway progresses in the segment known as the dorsal ascending tract,

homologous to the nasal vestibule of other sauropsids (Weishampel, 1981b), and continues

to the apex of the crest (Figs. 9D and 9E), measuring 170 mm from the proximal end of

the airway to the summit of the dorsal ascending tract. At a sharp U-bend, the airway

enters the section known as the ventral ascending tract (Figs. 9D and 9E), which drops

ventrally to enter the main body of the skull. The ventral ascending tract (homologous to

the nasopharyngeal duct of other sauropsids; Weishampel, 1981b) is only 33 mm long and

much shorter than the dorsal equivalent. In lambeosaurins, this communication between

the main airway and the rest of the skull is reconstructed to occur at the midline via a

common median chamber (Evans, Ridgely & Witmer, 2009). By contrast, the airway of

RAM 14000 enters the skull separately on both right and left sides, as is more usual for

tetrapods. The common median chamber is clearly separated from the ventral aspects of

the skull by a thin lamina of bone (preserved as an impression visible in medial view as well

as a small piece of bone visible in CT scan; Figs. 9D, 9E, 9M and 10).

The common median chamber of the nasal airway is directly visible on the broken

medial surface of the left half of the skull (Figs. 9D, 9E and 10). In profile, this chamber is

oval and rostrocaudally elongated (25.5 mm long by 15 mm tall). It is positioned just above
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Figure 9 Skull of Parasaurolophus sp., RAM 14000, with digital reconstruction showing endocranial

features. (A)–(C), left lateral view; (D)–(E), medial view; (F)–(H), dorsal view; (I)–(K), rostral view;

(L)–(M), coronal section schematics. (A), (F), and (I) show the endocranial cavity (blue) and nasal

passages (green) relative to the cranium, and (B), (D), (G), and (J) show the features without the skull

bones. (C), (E), (H), and (K) show a schematic of the various parts of the nasal passages. The positions

of the planes of section for (L) and (M) are indicated on (C) (continued on next page...)
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Figure 9 (...continued)

as X–X′ and Y–Y′, respectively. Dashed lines in (C), (E), (H), and (K) indicate areas of communication

between different parts of the nasal passages. In (E), note that the dorsal ascending tract (dat) is not

continuous with the naris; this is due to a missing section of the airway. Abbreviations: cmc, common

median chamber (homologous to nasal cavity proper); dat, dorsal ascending tract (homologous to nasal

vestibule); ec, endocranial cavity; en, external naris; ld, lateral diverticulum (homologous to nasal cavity

proper); ma, main airway (homologous to nasal vestibule); or, olfactory region; vat, ventral ascending

tract (homologous to nasopharyngeal duct); vma, ventral portion of main airway. Scale bar equals 10 cm.

the level of the dorsal margin of the skull roof, at the very lower edge of the crest. Relative to

the orbit, the common median chamber is dorsal and slightly rostral. This chamber, along

with the lateral diverticulum, is probably homologous to the nasal cavity proper of other

sauropsids (Weishampel, 1981b).

The lateral diverticulum is prominent, shaped approximately like a shepherd’s crook

and coiled clockwise in left lateral view (Figs. 9A–9C). An incompletely ossified lamina

separates the diverticulum from the main airway (Figs. 9I–9K); proximally, this coincides

with a lamina of bone that may represent the premaxilla-nasal suture. Ventrally, the

lateral diverticulum appears to communicate with the main nasal airway within the skull

(Fig. 9M). In lambeosaurins, the lateral diverticulum does not communicate directly with

the main airway in the skull, but is separated by a bony lamina. We hypothesize that a

similar condition occurred in RAM 14000, but that the lamina was not completely ossified

at the ontogenetic stage represented here. Density differences in the sediment are faintly

visible in CT scan along this line. These are not definitively bone, and the morphology

is suggestive of a soft tissue pattern that may have been preserved through early infilling

of the skull by sediment (Daniel, 2012). As interpreted here, the lateral diverticulum

diverges from the main airway approximately halfway between the external naris and

the common median chamber (Fig. 9C). This is a much more proximal origination than in

Corythosaurus (subadult CMN 34825 and juvenile ROM 759) and Lambeosaurus (juvenile

ROM 758), but matches the condition seen in Hypacrosaurus (adult ROM 702). Thus, the

lateral diverticulum is quite extensive in RAM 14000. Unlike Hypacrosaurus, however, the

lateral diverticulum is not positioned ventrally to the main airway at any point; the two

passages are genuinely parallel (as reconstructed for adult Parasaurolophus; Weishampel,

1981b). The apex of the lateral diverticulum opens to the premaxilla-nasal fontanelle.

Thus, the lateral diverticulum is bordered primarily by the premaxillae, with a small

contribution from the nasals.

Compared to reconstructions for Parasaurolophus cyrtocristatus and P. walkeri

(Weishampel, 1981b), RAM 14000 displays several important departures from the adult

condition (Fig. 11). Corresponding to the small crest, the nasal passages are much shorter

in overall length. Unlike adult specimens, the ventral ascending tract of the nasal passages

of RAM 14000 is quite short relative to the dorsal ascending tract. Furthermore, the lateral

diverticulum of RAM 14000 is virtually the same length as the dorsal ascending tract. In

adult P. cyrtocristatus and P. walkeri, the lateral diverticulum only extends slightly past the

midpoint of the crest (Fig. 11A), and is reconstructed as a blind-ended chamber (Ostrom,

1963; Weishampel, 1981b). This reconstruction should be tested against CT scan data.
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Figure 10 Left half of skull of Parasaurolophus sp., RAM 14000, in medial view. (A) interpretive

drawing; (B) photograph. Abbreviations: cb, first ceratobranchial; cmc, common medial chamber; csc,

caudal semicircular canal; d, dentary; dd, dentition from dentary (displaced); en, endocranial cavity; exo,

exoccipital-opisthotic; m, maxilla; ncp, nasal cavity proper; nf, nutrient foramina; pd, predentary; pm,

premaxilla; pt, pterygoid; pti, pterygoid impression; q, quadrate; sa, surangular; st, stapes; t, tooth; v,

vomer. Scale bar equals 10 cm.
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Figure 11 Ontogenetic changes in the nasal passages and crest of Parasaurolophus. All images illustrate

the condition immediately lateral to the sagittal plane, and rostral is to the left in all images. (A),

adult individual, modified after Ostrom (1963). The lateral diverticulum has been altered based on

data from RAM 14000, indicating a more proximal origin for the chamber. (B), hypothetical subadult

Parasaurolophus. (C), juvenile, based on RAM 14000. Note that the intermediate-sized individual is

largely speculative, although the enlarged size (continued on next page...)
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Figure 11 (...continued)

of the crest is consistent with a referred braincase, CMN 8502 (Evans, Reisz & Dupuis, 2007). In (B)

and (C), the dotted lines separating the lateral diverticulum and the main airway indicate that the

diverticulum is obscuring the view of the main airway, and the two chambers run parallel to each other.

Dashed lines indicate the positions of the left orbit and infratemporal fenestra. Abbreviations: ld, lateral

diverticulum; ma, main airway; vma, ventral portion of main airway. Scale bars equal 10 cm.

The hooked morphology of the lateral diverticulum in RAM 14000 is reminiscent of the

condition reconstructed for P. tubicen (Sullivan & Williamson, 1999).

The olfactory region of RAM 14000, as in juvenile lambeosaurins (ROM 758, 759), is

a subdivision of the nasal cavity located rostral to the olfactory bulbs and caudal to the

entrance of the main airway to the respiratory region contained within the bulk of the

skull (“antorbital region”; Figs. 9C and 9H). In lateral view, the olfactory region is strongly

dorsally arched and approximately level with the rostral half of the orbit (Figs. 9B and 9C),

as seen in other lambeosaurins for which data are available. In dorsal view (Figs. 9F–9H),

the olfactory region is less strongly tapered caudad than in lambeosaurins (ROM 758, 759;

CMN 34825).

Maxilla

Like other hadrosaurids, the maxilla is triangular in lateral view (Figs. 7 and 12B),

apparently with a straight suture with the premaxilla (unlike some lambeosaurins;

e.g., Hypacrosaurus altispinus, ROM 702). Fracturing and weathering obscure many

additional details.

The prominent ectopterygoid ridge extends from the base of the maxilla’s dorsal process

to the caudal edge of the maxilla (Fig. 12B). A marked ventral curvature in the ridge from

rostral to caudal corresponds with the shape of the ectopterygoid.

Along the flattened medial surface of the maxilla, a series of alveolar foramina, one

between each alveolus, forms a dorsally arched sequence (Fig. 10). A subtle ridge,

increasing in prominence caudally, occurs immediately dorsal to the foramina and

continues at least for the rostral third of the maxilla; the caudal extent is obscured by

fracturing. This morphology can only be evaluated on the left maxilla; the medial surface

of the right maxilla is too poorly preserved.

CT scans indicate approximately 20 tooth positions in the maxillary tooth row, with

two (rostrally) to three (at mid-point of tooth row) teeth in each file. The greatest internal

height of the tooth file is 20 mm at the middle of the bone, and the smallest height is 8 mm

at the rostral margin. As exposed on the left maxilla, there were usually two functional teeth

on the wear surface at a time. The wear surfaces on each functional tooth range from 4 to

7 mm tall and 3 to 5 mm wide, and the maximum height of the wear surface as exposed at

alveolus 5 is 15 mm. Adult Parasaurolophus have 40 or more tooth positions in the maxilla

(NMMNH P-25100, PMU.R1250; Sullivan & Williamson, 1999), twice the number in RAM

14000. This low tooth count is typical of juvenile hadrosaurids (Suzuki, Weishampel &

Minoura, 2004).
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Figure 12 Disarticulated skull elements of Parasaurolophus sp., RAM 14000. (A) partial right

squamosal in lateral view; (B) right maxilla in lateral view; (C–E) right first ceratobranchial in lateral

(C, E) and dorsal (D) views. (C) and (D) are reconstructed from CT scan data. (C) includes the caudal

portion of the element, and (E) includes the rostral portion, with the relative position of the two parts

approximating their original relationship. Abbreviations: ep, ectopterygoid; qc, quadrate cotyle. Scale bar

equals 1 cm.

Jugal

Although the left jugal is more complete, crushing obscures the sutures along the rostral

margin (Fig. 7). The right side preserves the impressions of these sutures (Figs. 13B and

13D), and the following description is thus a composite of both sides. The jugal forms part

of the rostral margin and the entire caudal margin of both the orbit and infratemporal

fenestra. The rostral process, along its contact with the maxilla and lacrimal, is triangular

and sharply pointed (Fig. 13B). The ventral edge of this rostral process is longer than

the dorsal edge, unlike most lambeosaurins of various ontogenetic stages (in which

the ventral edge is equal to or shorter in length to the dorsal edge) but similar to the

condition in Parasaurolophus walkeri (ROM 768; Fig. 14D) as well as a larger juvenile

Parasaurolophus sp. (SMP VP-1090). A distinct, slightly constricted extension occurs at

the rostral end of this rostral process, visible as an impression on the right side, which

creates a hooked ventral margin on the process. The ventral and dorsal margins of this

rostral process are more acutely angled than seen in adult P. walkeri (Figs. 14C and 14D).

These shape differences may due, at least in part, to the relatively larger orbit in juveniles.
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Figure 13 Skull and neck of Parasaurolophus sp., RAM 14000. (A) and (C) are in right lateral view;

(B) and (D) are a medial view of the same block. (A), (B), interpretive drawings; (C), (D), photographs.

Abbreviations: bo, basioccipital; cb, first ceratobranchial; cc, centrum of cervical vertebra; cr, cervical rib;

cv, cervical vertebra; d, dentary; dr, dorsal rib; ex, exoccipital; j, jugal; la, lacrimal; m, maxilla; nat, neural

arch of atlas; nax, neural spine of axis; nc, neural canal; ns, neural spine; pd, predentary; po, postorbital;

prs, presphenoid; ps, parasphenoid; q, quadrate; sa, surangular; sq, squamosal; tp, transverse process; V ,

foramen for CN V; V2,3, sulcus for CN V2 and V3. Bone is shown in white, impressions of bone are

shown in green, and rock without bone impressions is shown in gray. Scale bar equals 10 cm.

The postorbital process is inclined parallel to the quadratojugal process and tapers along

the infratemporal fenestra towards an articulation with the descending process of the

postorbital. The quadrate process is tapered and caudodorsally inclined at a 40◦ angle.

Its caudodorsal edge is exceptionally pointed compared to other lambeosaurines, and is

not expanded relative to the rest of the process as in Kazaklambia convincens. The jugal is

dorsoventrally constricted ventral to the orbit (19 mm tall) and on the quadrate process

ventral to the infratemporal fenestra (22 mm tall). Similar constrictions are also seen

in Corythosaurus, Lambeosaurus, and other Parasaurolophus (Evans, 2010). The angle
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Figure 14 Ontogenetic changes in selected cranial elements of Parasaurolophus. Juvenile elements (A,

C, E, G) are from RAM 14000; adult elements (B, D, F, H) are from the holotype of P. walkeri (ROM

768). All elements are in left lateral view. (A) and (B) postorbital; (C) and (D) jugal; (E) and (F) lower

jaw; (G) and (H) quadrate. The jugal in (C) is a composite of the bone preserved on the left side and the

impressions of the sutural regions on the right side. Parasaurolophus walkeri elements are redrawn and

modified after Evans, Reisz & Dupuis (2007). Scale bars equal 5 cm.

between the postorbital and quadrate processes is quite tight, similar to the condition

in Hypacrosaurus, Parasaurolophus, and Kazaklambia convincens (Bell & Brink, in press;

Rozhdestvensky, 1968). As preserved, the jugal forms only the ventral third and quarter of

the rostral and caudal margins of the infratemporal fenestra, respectively (Figs. 7 and 13).
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Quadrate

The quadrate is complete on both sides, but the right quadrate is slightly displaced

ventrally and both quadrates are slightly displaced laterally. The quadrate forms the

caudal margins of the infratemporal fenestra and the skull (Figs. 7 and 13). The dorsal

condyle of the quadrate articulates with the squamosal cotyle, as is typical of hadrosaurids.

Dorsal to its contact with the jugal, the quadrate is slightly concave caudally and is inclined

caudodorsally at 30◦ relative to vertical. The ventral third of the quadrate is straight.

The surface for articulation with the caudal process of the jugal is rostrally bifurcated,

resulting in an S-shaped sutural surface (Fig. 7); the dorsal half of the quadrate tapers along

the infratemporal fenestra towards this articulation. The dorsal condyle of the quadrate

is triangular (with a rounded and medially directed apex) in dorsal view, whereas it is

rounded in lateral view. The ventral end is rounded in lateral view and trapezoidal with

a saddle-shaped articular surface in ventral view. The ventral condyle of the quadrate

is 21.4 mm wide and 18.2 mm long on its lateral edge and 8.7 mm long on its medial

edge, respectively. In caudal view, the quadrate is straight but slightly bowed medially

(Figs. 8F and 8G). The quadrate articulates with the pterygoid wing rostromedially

along a V-shaped suture, extending from the quadratojugal to the dorsal margin of the

infratemporal fenestra (Fig. 10). The pterygoid flange of the quadrate is only partially

preserved, forming a plate-like and slightly concave (in medial view) region of bone

(Fig. 10). At its ventral third, the caudal edge of the quadrate is flattened; dorsally, the

element’s caudal edge tapers to a rounded ridge. The quadrate in RAM 14000 is more

gracile than seen in adult Parasaurolophus (Figs. 14G and 14H).

Quadratojugal

The quadratojugal is not visible on the left side, but CT scans indicate that the rest of

the element is displaced rostromedially relative to the jugal. The quadratojugal is a thin,

sinuous and rostrally inclined element that rostrodorsally tapers to a point and buttresses

the quadrate caudoventrally.

Squamosal

The squamosal is thin and arched dorsally, with a concave quadrate cotyle on its

ventrolateral surface (Fig. 12A). The prequadratic process is sharply pointed rostrodorsally.

The postquadratic process has a straight rostral border and a convex caudal border that

abuts the paroccipital process (Fig. 7). The squamosal forms the caudolateral margin of

the supratemporal fenestra and the dorsal margin of the infratemporal fenestra. Measuring

from its edge on the base of the paroccipital process to the dorsal margin of the squamosal,

the element is 67 mm tall. The caudomedial corner of the squamosal hooks upward in

lateral view, and the dorsal surface of the squamosal is entirely convex. The medial extents

of the squamosals are not preserved, so we cannot determine if they contacted each other

as in most lambeosaurins, Kazaklambia convincens and adult Parasaurolophus, or were

separated by the parietals as in Velafrons (Bell & Brink, in press; Gates et al., 2007; Brink et

al., 2011).
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Lacrimal

The lacrimal forms the mid-rostral margin of the orbit. Sutures with the prefrontal are

difficult to interpret, as are those with the premaxilla. Impressions on the right side (Fig.

13B) show that the lacrimal articulates ventrally with the jugal along a caudoventrally

inclined, slightly ventrally convex suture.

Postorbital

The postorbital is T-shaped in lateral view (Figs. 7 and 14A), bounding part of the dorsal

margin of the orbit and nearly the entire caudal margin as well. The postorbital articulates

with the prefrontal rostromedially along a straight suture and the frontal medially along

a more sinuous suture (Fig. 8D). The jugal process is slightly curved rostrally and forms

most of the rostrodorsal margin of the infratemporal fenestra, tapering alongside the

caudal towards articulation with the ascending process of the jugal. The caudal process of

the postorbital measures 13 mm wide at its narrowest point, but broadens caudally. The

caudal-most portion of the caudal process thins and splits into dorsal and ventral prongs

(Fig. 7A), as in Parasaurolophus and lambeosaurins except for Hypacrosaurus altispinus

(Evans, 2010); the ventral prong is more extensive. This process overlaps the dorsal surface

of the squamosal, and forms a small part of the rostrolateral margin of the supratemporal

fenestra. In lateral view, the dorsal edge of the postorbital is slightly concave, unlike the

convex margin in P. walkeri (ROM 768). The maximum length of the jugal and caudal

processes are roughly equal, similar to lambeosaurins of various sizes, but unlike adult

Parasaurolophus (where the jugal process is longer; NMMNH P-25100, ROM 768) or

Charonosaurus (where the caudal process is longer). Similarly, the rostral process of the

postorbital is much shorter in adult Parasaurolophus (e.g., ROM 768, Fig. 14B) than in

RAM 14000. Consequently, the proportion of the skull roof in RAM 14000 formed by

the postorbital is much greater than that formed by the squamosal in lateral view (Fig.

7A), unlike adult Parasaurolophus. Unlike Kazaklambia convincens or Charonosaurus

jiayinensis (Bell & Brink, in press), the postorbital lacks a dome on its rostral process in

RAM 14000.

Frontal

The left frontal is nearly completely preserved with visible sutures, except for its extreme

caudomedial portion (Figs. 8C and 8D). In dorsal view, the frontal articulates with the

prefrontal rostrolaterally along a linear suture that trends laterally along its caudal extent.

The suture with the postorbital is comparatively linear also, with a slight medial trend

from rostral to caudal. The contact with the parietal is obscured, but a small portion

of the frontal’s contribution to the supratemporal fenestra is visible. The paired nasals

form a triangular prong that laps onto the rostral end of the dorsal surface of the frontals

(Fig. 8D). This morphology is unique relative to the rounded or squared contact in

lambeosaurins and adult Parasaurolophus, where the sutures can be determined (Evans,

Reisz & Dupuis, 2007; Brink et al., 2011). It also differs from Kazaklambia convincens, where

a prong of the paired frontals inserts between the nasals on the midline (Bell & Brink,

in press). Adult and subadult Parasaurolophus have a nasofrontal suture that is expanded
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caudodorsally and sharply angled relative to the rest of the skull roof (Evans & Reisz, 2007);

there is no evidence in CT scan or direct visual observation of such a feature in RAM

14000. Thus, the condition here is comparable to the non-angled and unexpanded state

in lambeosaurin juveniles and adults, as well as the condition in K. convincens. Similarly,

the individual frontal in RAM 14000 is approximately as long at the midline (measuring

from the caudal extent of the nasal suture to the rostral extent of the parietal suture) as it is

wide (34.2 mm vs. 31.7 mm, a ratio of 1.08; doubling to approximate the width across both

frontals produces a ratio of 0.54). The median frontal dome is thus fairly elongate (Fig. 7).

This too contrasts with the condition in adult and subadult Parasaurolophus (where the

frontal is wider than long) and is more similar to the state in lambeosaurins of various

growth stages (Evans, Reisz & Dupuis, 2007). Similar to other lambeosaurines, the frontal

does not reach the orbital rim.

Prefrontal

Only the sutures on the caudal edge of the left prefrontal are clearly visible (Figs. 7, 8C and

8D). Here, the bone forms a triangular point interposed between the medial margin of

the postorbital and the lateral margin of the frontal, as in other lambeosaurines. The bone

forms the rostrodorsal margin of the orbit and contacts the lacrimal ventrally. Based on

the extent of the premaxilla, it is unlikely that the prefrontal formed any significant portion

of the crest in RAM 14000 (unlike adult lambeosaurines but similar to many subadult

specimens; Evans, Forster & Reisz, 2005).

Ectopterygoid

The ectopterygoid sits atop the caudodorsal margin of the caudal process of the maxilla,

extending medial to the coronoid as viewed on CT scans. The element is best-preserved on

the right side (Fig. 12B), showing that the ectopterygoid is a thin and broad element with

a prominent ventral bend at its caudal third. The mediolateral width of the ectopterygoid

and its relationship to structures such as the pterygoid cannot be visualized because of

weathering.

Pterygoid

The pterygoid is visible only on the left side (Fig. 10), with just its caudal quadrate

wing preserved. The wing is thin (<1 mm) and gently concave medially, paralleling the

corresponding medial surface of the quadrate ramus. As viewed in CT scan, the nearly

complete pterygoid on the right side is typical of the condition expected for hadrosaurids

(Ostrom, 1961; Heaton, 1972).

Palatine

The palatine is not sufficiently preserved or exposed to comment upon its morphology.

Vomer

The caudodorsal portion of the vomer is exposed on the left half of the skull (Fig. 10).

The preserved dorsal edge is acutely angled, and the rostral edge of the element tapers

rostrolaterally towards its (inferred) insertion between the premaxillae. The apex of the

vomer is located just rostral to the rostral end of the orbit, at approximately the same height
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(dorso-ventral level). The vomer is not sufficiently preserved for detailed comparison with

the element in other hadrosaurids.

Braincase

Most of the braincase was partially disarticulated from the rest of the skull by weathering,

and the right side was prepared out to show relevant details (Fig. 15). Additional features

are seen as impressions on the right skull block (Figs. 13B and 13D). This section describes

only visible features. Additional internal details were reconstructed from CT scans and are

described in the section on the endocast. With the exception of the sutures between the

exoccipital and basioccipital on the occipital condyle, sutures within the braincase are not

visible due to crushing, weathering, and fusion.

The parasphenoid, represented by an impression, is 28 mm long, gently arched along

its length, and tapered to a point at its rostral end (Figs. 13B and 13D). It terminates

just caudal to the midpoint of the orbit. A shallow sulcus occupies the lateral surface

of the bone. Faint impressions tentatively identified as presphenoid occur dorsal to the

parasphenoid, but no notable details are visible. The form is generally similar to that seen

in P. tubicen (NMMNH P-25100, PMU.R1250).

A foramen interpreted as that for cranial nerve XII (hypoglossal nerve) is small (1.9 by

2.2 mm) and located roughly midway between the caudal extent of the occipital condyle

and a ridge of bone that slants caudodorsally along the braincase (Fig. 15). Additional

foramina may have occurred also, as in Hypacrosaurus altispinus (Evans, 2010), but cannot

be confirmed in the specimen’s current state of preparation and preservation.

A portion of the trigeminal foramen is exposed at the front of the right side of the

isolated braincase (Fig. 15), and the remainder of the impression is seen on the right skull

block (Figs. 13B and 13D). This impression is triangular, measuring 11 mm long and

9 mm tall. Two distinct grooves (ridges on the natural mold) extend from the foramen; one

trends directly rostrally from the rostral edge of the foramen (probably representing the

path for CN V1), and the other trends rostroventrally from the ventral edge (representing

the path for CN V2,3).

The left caudal semicircular canal is exposed through a fortuitous break (Fig. 10). The

maximum diameter of its lumen is 1.8 mm.

The occipital condyle is roughly cardoid in caudal view, composed of the basioccipital at

the ventral and ventrolateral edges and the exoccipitals at the dorsolateral edges (Fig. 15).

All three elements are bulbous on their caudal edges. The rounded basal tuberosity has

its maximum lateral extent slightly lateral to the extreme edge of the occipital condyle. In

lateral view, the exoccipitals rise to bound the exposed portion of the foramen magnum,

sweeping dorsally.

The exoccipital and opisthotic are fused both in gross examination and CT scans.

The most prominent and best-preserved aspect of these elements is the paroccipital

process, which curves rostrally and tapers dorsoventrally along the caudal margin of the

paroccipital process and upper squamosal (Figs. 7, 8F and 8G). The caudal surface of the

bones is remarkably flat, with only a slight concavity at its distal extent (Figs. 8F and 8G).

The fenestra vestibuli (fenestra ovalis) measures approximately 5 mm tall by 2.6 mm long.
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Figure 15 Partial braincase of Parasaurolophus sp., RAM 14000, in right lateral view. (A) interpretive

drawing; (B) photograph. Abbreviations: atc, atlas centrum (odontoid); ati, atlas intercentrum; axc, axis

centrum; bo, basioccipital; ex, exoccipital; fv, foramen vestibuli; nat, neural arch of atlas; XII?, foramen

tentatively identified as that for CN XII; V, foramen for CN V; V2,3, sulcus for CN V2 and V3. Bone is

shown in white, broken bone surface is shown in light gray, and matrix is shown in dark gray. Unlabeled

bones are not confidently identified, but may represent vertebral fragments. Scale bar equals 1 cm.
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The auditory recess is deepest and narrowest by the fenestra vestibuli, becoming broader

and shallower dorsocaudally (Fig. 15).

Dentary

The ramus of the left dentary has an average height of 27 mm. The edentulous process

is roughly 25 percent of the dentary’s length, and the rostral border of the process is

rostroventrally inclined (Fig. 7). The ventral border of the dentary is relatively straight,

with comparatively little declination at its rostral portion. This is comparable to the

morphology in Parasaurolophus walkeri (Fig. 14F, ROM 768; Evans, 2010), but different

from the more inclined morphology in P. tubicen (NMMNH P-25100), a dentary from the

Fruitland Formation tentatively identified as juvenile Parasaurolophus sp. (SMP VP-1090;

Sullivan & Bennett, 2000), and other lambeosaurines. The condition in P. cyrtocristatus is

unknown.

The lateral surface of the body of the dentary is strongly convex (Fig. 7). The coronoid

process is perpendicular to the ventral margin of the dentary, and, based on CT scans

and the incomplete dentary on the right half of the skull (Figs. 13B and 13D), reaches the

ventral margin of the orbit when in articulation, roughly 72 mm above the ventral margin

of the dentary. The rostral margin of the coronoid process is more prominently extended

than the caudal process. Rostrally, the dentary tapers to articulate with the caudal margin

of the predentary. Caudally, the dentary articulates with the surangular along a sinuous

suture (Fig. 7). The number of dentary teeth cannot be determined.

Predentary

Only the left side of the predentary is preserved (Figs. 7, 8A, 8B and 14E), but the element

can be mirrored to reconstruct the overall shape. In dorsal view, the element would have

been roughly horseshoe-shaped, with a moderately convex rostral margin. As exposed at

the midline, the cross-section of the rostral portion is approximately triangular (Fig. 10).

The dorsal triturating surface is approximately 14 mm long and only slightly rostrally

inclined. This inclination becomes more extreme towards the lateral and caudal wings of

the predentary, so that the triturating surface is nearly vertical and laterally facing (14 mm

tall) at its caudal end. Thus, the surface only changes its orientation and not its width.

The ventral surface of the predentary is gently convex. The caudal edge of the lateral wing

of the predentary is forked; the ventral process of this fork is slightly longer and more

sharply pointed (Fig. 7). This is in contrast to the unforked lateral wing in the holotype of

P. walkeri, ROM 768 (Fig. 14F), but similar to the condition in other lambeosaurines. The

morphology is not known in other species of Parasaurolophus. The median process of the

predentary is not definitively preserved in RAM 14000.

Surangular

The surangular (Figs. 7, 13A, 13C and 14E) buttresses the caudal margin of the coronoid

process, with a smoothly continuous lateral surface at this point. A ridge at the base of

the contribution to the coronoid process continues onto the lateral edge of the articular

surface for the quadrate. This coronoid process is also relatively broader than in ROM 768

or NMMNH P-25100. The surangular’s ventral margin is slightly convex, with a strong
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curvature caudally on the articular process. The surangular receives the ventral condyle of

the quadrate and articulates with the angular caudomedially. The retroarticular process of

the surangular is thinner and more horizontal than in P. walkeri (ROM 768, Fig. 14F).

Angular

The angular is a flattened bone that curves caudodorsally and articulates medially with the

surangular. On both sides, the element has been displaced downward so that its ventral

margins are visible beyond that of the surangular (Figs. 7, 13A and 13C). It is inferred to

receive the distal end of the quadrate. In ventral view, the element is long and narrow.

Hyoid

A bone interpreted as the caudal end of the first ceratobranchial is positioned immediately

ventral to the surangular (Figs. 7, 13A and 13C); the right first ceratobranchial is

slightly better preserved than the left. The element is partially exposed, and described

from gross examination as well as CT scan reconstructions (Figs. 12C–12E). Although

the ceratobranchials of hadrosaurids (including Hypacrosaurus sternbergii, adults of

Saurolophus osborni, Lambeosaurus lambei, and Corythosaurus casuarius, as well as

juveniles of Hypacrosaurus altispinus and H. stebingeri) previously have been described as

generally uniform (Ostrom, 1961; Gates et al., 2007; Brink et al., 2011), the morphology

of these elements in RAM 14000 has some unique aspects. These differences may be

taxonomic or perhaps ontogenetic. However, the hyoids of embryonic H. stebingeri

(RTMP 89.79.52) are quite similar to those of Corythosaurus in major details, so we

posit that taxonomic differences are most influential here. The articulated preserved

portion of each ceratobranchial in RAM 14000 is gently arched ventrally, with a slight

dorsoventral curvature. The caudal portion is dorsoventrally flattened (rather than

cylindrical, as described for other hadrosaurids; Ostrom, 1961). Rostrally, the bone twists

so that it is mediolaterally compressed at the rostral-most preserved portion. This caudal

portion is approximately 43 mm long, as preserved. The rostral end of the right first

ceratobranchial is within a disarticulated block of matrix; impressions of surrounding

elements permit confident placement of the bone. The part that connects with the rest of

the ceratobranchial is missing, but the preserved portion in this separate block (including

a partial impression) is 37 mm long. The impression is 8 mm tall at narrowest, 14 mm tall

at its rostral end, and only 3.5 mm thick mediolaterally. Such extremely expanded rostral

ends are typical of known hadrosaurid ceratobranchials (Ostrom, 1961). Including both

portions, the total ceratobranchial length was at least 80 mm. The rostral end of the left first

ceratobranchial was displaced by erosion (Fig. 10), and is similar in overall morphology to

the element on the right.

Endocast

A partial cranial endocast for RAM 14000 was reconstructed from CT scan data (Fig. 16,

Figs. S1 and S2), the first ever for Parasaurolophus of any ontogenetic stage. The endocast

was reconstructed in two sections, one on the portion of the braincase articulated with

the left half of the skull (Fig. S1) and the remainder on the disarticulated portion of

the braincase (Fig. S2). Their relative position was then approximated based on cranial
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Figure 16 Cranial endocast of Parasaurolophus sp., RAM 14000, reconstructed from CT scans. (A) left lateral view of entire endocast; (B) dorsal

view of entire endocast. The rostral and caudal portions were disarticulated, and thus their relative positions (joined by the black lines) should be

considered tentative. The caudal portion was mirrored to match the rostral portion. (C–F), endosseous labyrinth of right inner ear. (C) dorsal view;

(D) lateral view; (E) caudal view; (F) rostral view. The endocast of the brain is colored blue and the endocast of the bony labyrinth is colored orange.

Abbreviations: c, cochlear duct; cer, cerebrum; crc, crus communis; csc, caudal semicircular canal; fm, endocast of foramen magnum; fv, fenestra

vestibulae (approximate location); lab, endosseous labyrinth; lsc, lateral semicircular canal; ob, olfactory bulbs; pcer, postcerebral region; rsc, rostral

semicircular canal; rsca, ampulla of rostral semicircular canal; ve, vestibule. Scale bar at left is for (A) and (B) and equals 1 cm. Scale bar at right is

for (C–F) and equals 5 mm. Because of differences in perspective between images, the scale bar is only approximate.

landmarks and comparison with other hadrosaurids. Because of weathering, many of the

smaller neurovascular canals and foramina could not be discerned with confidence.

The overall shape of the endocast is broadly similar to that previously described for

juvenile and adult lambeosaurines (Evans, 2006; Evans, Ridgely & Witmer, 2009). In dorsal

view, the cerebrum is strongly expanded laterally (Fig. 16B), with an estimated width

across the midline of 36 mm, dorsoventral height (perpendicular to the aforementioned

width) of 28 mm, and an estimated cerebral length of 39 mm. In lateral view (Fig. 16A),

the cerebrum is very strongly arched, much more so than in larger juvenile (Lambeosaurus

sp., ROM 758; Corythosaurus sp., ROM 759), subadult (Corythosaurus sp., CMN 34825),

or adult (Hypacrosaurus altispinus, ROM 702) lambeosaurins. This may in part be due to

the young ontogenetic status of RAM 14000, in that the frontals (and hence cerebra) are

more strongly arched in young individuals (e.g., Hypacrosaurus stebingeri, MOR 548). An
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opposite trend in cerebral morphology may occur in Alligator mississippiensis, in that the

cerebral region of the endocast is less strongly arched in hatchlings than in adults (e.g., the

hatchling OUVC 10606 versus the adult OUVC 9761; A Farke, personal observation).

The olfactory bulb endocast is a maximum of 14 mm across. As reconstructed, the

olfactory bulbs are approximately half the thickness of the cerebrum in lateral view, and

are depressed considerably below the cranial roof (frontal, in this case), particularly at their

origin (Figs. 16A and 16B).

Angulation between the cerebrum and postcerebral region (equivalent to “cephalic

flexure” as measured in endocasts of the ornithopod Dysalotosaurus lettowvorbecki by

Lautenschlager & Hübner, 2013) cannot be determined with confidence, so any taxonomic

or ontogenetic comparisons of this region cannot be conducted. The postcerebral region

(a term used here because the cerebellum itself is not well distinguished in hadrosaurid

endocasts; Evans, 2006) is much narrower and deeper than the cerebrum (Figs. 16A

and 16B). The ventral margin is broadly rounded in lateral view, contrasting with the

straighter margin seen in lambeosaurins (Evans, Ridgely & Witmer, 2009; Fig. 7). The dorsal

margin of this region, equivalent to the dural peak of Lautenschlager & Hübner (2013;

Fig. 2) is much more sharply angled (approximately 90◦) than in larger lambeosaurins

(e.g., around 120◦ in subadult Corythosaurus sp., CMN 34825). The angulation (but not

the prominence) of the dural peak is mostly unchanged through known ontogenetic

stages of the small ornithopod Dysalotosaurus lettowvorbecki (Lautenschlager & Hübner,

2013), so we hypothesize that phylogenetic differences between lambeosaurins and

parasaurolophins explain these differences among hadrosaurids.

The endosseous labyrinth is best-preserved on the right side, although not all aspects

of the labyrinth could be traced continuously on the CT scan data (Figs. 16C–16F and

Fig. S2). The rostral semicircular canal is only slightly taller than the caudal semicircular

canal (when the lateral canal is oriented horizontally; Fig. 16D), a less marked size disparity

than seen in ontogenetically older lambeosaurins (Evans, Ridgely & Witmer, 2009; Fig. 8).

We estimate the maximum breadth of the rostral canal at 11 mm (from ampulla to crus

communis), and that for the caudal canal at 10.5 mm (from ampulla to crus communis).

Between its bounding ampullae, the lateral semicircular canal spans approximately 9 mm

(Fig. 16C). The rostral canal has the tightest arch whereas the caudal canal is broadest, and

the lateral semicircular canal is the smallest. The lateral ampulla is the largest of the three.

From the foramen vestibuli, cochlea is estimated to be approximately 7.6 mm long. Note

that the ventral margins of the cochlea are poorly visible on the CT scans (Fig. 16), and

thus this measurement should be considered only an approximation. The endolymphatic

duct is not clearly visible. Overall, the morphology of the endosseous labyrinth is broadly

similar to that described for other hadrosaurids (e.g., Ostrom, 1961; Evans, Ridgely &

Witmer, 2009).

Stapes

The left stapes of RAM 14000 is immediately caudal to the quadrate and pterygoid and

rostral to the paroccipital-opisthotic process (Fig. 10), consistent with the position in

adult Corythosaurus casuarius AMNH 5338 (Colbert & Ostrom, 1958). The proximal end
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of the stapes is presumed missing, probably due to post-depositional separation of the

braincase. The remaining structure suggests that the stapes was a cylindrical, rod-like

element. The bone is slightly bent mediolaterally, probably from taphonomic deformation.

The maximum preserved length is 12.5 mm, whereas the maximum width is between 0.6

and 0.8 mm (with the widest portion proximally; i.e., towards the braincase), suggesting a

slight tapering of the bone laterally (away from the braincase). The distal end of the stapes

is positioned 8 mm dorsal to the ventral tip of the paroccipital-opisthotic process.

Postcranial axial skeleton

Vertebrae

The vertebral column is poorly preserved, with many details obscured by fragmentation

of the bones and matrix. Thus, the following description is necessarily incomplete. We are

unable to evaluate neurocentral fusion in any vertebrae, although we do note that the sacral

ribs are not fused to the sacral vertebrae. Measurements are presented in Table 6.

The complete count of cervical vertebrae cannot be determined, because the most

caudally placed cervicals are missing (Fig. 13). Individual components of the atlas are

unfused and partially exposed (Figs. 13 and 15). The atlas intercentrum, as exposed, is

triangular in cross-section, with a sharp ventral keel (Fig. 15). Its caudal, dorsal, and cranial

edges are not exposed, so the nature of their articulations is not known. The odontoid

(atlas centrum) is partially exposed and globulose, showing a convex cranial margin and

a concave caudal margin (Fig. 15). The fragmentary neural arch for the atlas shows no

remarkably morphology. An impression of the neural spine of the axis (C2; Figs. 13B and

13D) shows the element to be tall (∼26 mm) and elongate (17 mm long at its base). The

morphologies of both the atlas and axis broadly agree with those previously described for

Gryposaurus incurvimanus (Parks, 1920), although the preservation in RAM 14000 is not

sufficient to compare any details, nor has adequate comparative material been illustrated or

described for other lambeosaurines.

In the cervicals for which a centrum is preserved (?C4–?C7), the centrum is strongly

opisthocoelous and sharply pinched in mediolateral cross-section, with a strong ridge

on the lateral surface of the centrum (Figs. 13A and 13C). The dorsal edge of the lamina

connecting the zygapophyses is strongly arched, and the diapophyses in the middle of

the cervical vertebral series project laterally with a ventral inclination from medial to

lateral. The tips of the diapophyses are at approximately the upper half of the centrum. The

vertebrae themselves are partly eroded, so little more can be said about their morphology.

In both proportions and overall shape, the preserved cervical vertebrae appear similar to

comparable elements in the adult P. walkeri ROM 767 (Parks, 1922).

The dorsal vertebrae are poorly preserved (Figs. 2, 3 and 13). There were at least 17

dorsal vertebrae (determined by counting the centra, exposed transverse processes, and

ribs), but the exact count is unknown. Impressions of the neural spines for three cranial

dorsals show the spines to be strongly caudally inclined, mediolaterally compressed,

and craniocaudally narrow (Figs. 13B, 13D and 17A), contrasting with the more robust

(craniocaudally elongated) spines in adult lamebosaurines (e.g., P. walkeri, ROM 767;
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Figure 17 Ossified tendons of Parasaurolophus sp., RAM 14000. (A) ossified tendons associated with

cranial dorsal vertebra (?D4), with medial surface of tendons visible (cranial end is to left of image); (B)

impressions of ossified tendons associated with either caudally placed dorsal vertebrae or cranially placed

sacral vertebrae (cranial end is to right of image). Abbreviations: ins, impression of neural spine; iot,

impression of ossified tendon; ns, neural spine; ot, ossified tendon. Scale bars equal 1 cm.
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Corythosaurus casuarius, AMNH 5338). The associated transverse spines for these

vertebrae are triangular in lateral view and rounded along their lateral extrema (Figs.

13A and 13C). Centra are visible (but poorly preserved) only for the caudal dorsals; here,

the centra are slightly taller than long.

The sacrum is neither well exposed nor well-preserved. The fragmentary neural spines

are erect and straight (Fig. 3), similar to the condition in adult Parasaurolophus spp.

(e.g., FMNH P 27393, ROM 767; A Farke, personal observation).

The caudal vertebrae are best exposed on the left side (Fig. 3) but are poorly preserved.

As articulated, the series of caudal centra is gently arched, with an overall ventral concavity

along its margin. In contrast with the neural spines of the sacral vertebrae, the preserved

neural spines of the cranial caudal vertebrae are distinctly curved. The proximal portion

(nearest the neural arch) projects caudally at approximately 45◦ and then curves dorsally at

its distal two-thirds. Thus, the cranial margin of the neural spine is concave and the caudal

margin convex. The neural spines at the cranial end of the tail are quite tall relative to the

centra, as is typical for hadrosaurids. Moving distally along the tail, the neural spines lose

their curvature by approximately caudal 8. This contrasts with adult P. cyrtocristatus, in

which the neural spines maintain their curvature at least through the middle section of the

tail (Ostrom, 1963), but is similar to adult P. walkeri (ROM 767). The transverse processes

are most pronounced in the cranial caudal vertebrae, becoming successively less prominent

distally. By caudal 13 or 14, the transverse processes are gone. A total of 19 centra are

visible, and they exhibit the typical hexagonal shape of hadrosaurids. Assuming a typical

caudal vertebral count and proportion of the tail for lambeosaurines (see data in Lull &

Wright, 1942), just under half of the physical length of the tail is preserved in RAM 14000,

and perhaps another 30 to 40 additional vertebrae are missing.

Ribs

Cervical ribs are visible on the fourth through seventh cervical vertebrae (Figs. 13A

and 13C). The fourth cervical rib is tripartite, with a rounded capitulum and a tab-like

tuberculum of approximately the same size. The shaft of the rib is short and triangular

in cross-section, with a distinct flange on its lateral surface. This flange terminates in a

discrete knob on the lateral surface of the proximal end of the rib, equidistant between the

capitulum and tuberculum. Both the ridge and the knob become less pronounced on the

successive two cervical ribs (with C5 and C6) and are entirely absent by C7. Similarly, the

tuberculum becomes successively less pronounced relative to the capitulum on the ribs

associated with C5 and C6. All of the preserved cervical ribs are short, no longer than the

centra of their associated vertebrae. In general, the cervical ribs of RAM 14000 are less

expanded distally than seen in adult P. walkeri, ROM 768 (Parks, 1922; plate VII, Fig. 1). In

this specimen, the distal ends are expanded so as to be somewhat paddle-shaped.

Thirteen dorsal ribs are preserved with RAM 14000 (Figs. 2 and 13); some of the more

caudally placed ribs may be missing or unexposed, which may explain the discrepency

from the count of 17 dorsal ribs in adult P. walkeri (Parks, 1922). The first three ribs

drastically increase in size successively, and the third rib is the longest by far. The fourth

through seventh ribs are approximately the same length, with a drastic, successive decrease
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in size for the eighth through eleventh dorsal ribs. The twelfth and thirteenth dorsal ribs

are approximately the same size. By contrast, the successive elongation of dorsal ribs in

adult P. walkeri (ROM 767) continues through the fifth rib, and the successive shortening

of dorsal ribs commences at position nine. This may reflect ontogenetic or potentially

species-level differences. The preserved portions of the first two ribs in RAM 14000 show

that their shafts are quite straight in lateral and cranial view. The third through tenth

ribs are straight in lateral view but have a gentle medial concavity. The eleventh through

thirteenth ribs are once again straight in lateral and cranial view. As a consequence of

the flexion of the dorsal vertebrae, the first through eighth ribs converge upon each other

distally. The ninth and tenth ribs are less convergent along their shafts, but appear to be

mostly in natural position. The eleventh through thirteenth ribs are slightly disarticulated

on the right (up) side, suggesting disturbance from scavengers or water currents prior to

burial. The ribs on the left side are too fragmented to evaluate their anatomy.

The first and second sacral ribs are visible on the right side (Fig. 2), with the first better

exposed. The following description focuses on the first sacral rib. As with the caudal dorsal

ribs, this sacral rib is slightly out of articulation. Its proximal end is strongly flared; the

capitulum and tuberculum are connected by a thin web of bone. The distal termination of

the rib flares slightly relative to the shaft, at approximately 17 mm wide. Both dorsal and

ventral borders of the rib are concave, with the dorsal border more strongly so.

Measurements for the ribs are presented in Table 7.

Haemal arches

The haemal arches are fragmented. Only one cranial arch (perhaps with Ca6?) is

sufficiently preserved for description (Fig. 3). This element is exposed along its lateral

surface only, and the shaft of the bone is straight.

Appendicular skeleton

Pectoral girdle

The blades of both scapulae are preserved (Figs. 2 and 3), with the left more complete.

Measurements are presented in Table 8. The scapular neck has a distinct constriction

cranially, typical of lambeosaurines. However, the caudal expansion of the blade is less

pronounced than in adult Parasaurolophus (FMNH P 27393, ROM 768). Overall, the

scapula is more robust than seen in Corythosaurus, Lambeosaurus, or Nipponosaurus

(Suzuki, Weishampel & Minoura, 2004). The preserved ventral border of the left scapula

is entirely intact in RAM 14000, whereas the dorsal border is less complete. Only the ventral

border is intact on the right side; here, it is slightly sinuous, with a distinct constriction at

the cranial third of the element. No sternal elements are preserved.

Pelvic girdle

The pubes are somewhat fragmented, but the general shape of the prepubic process (pubic

blade) is intact (Figs. 2 and 3). The cranial end is dorsoventrally expanded (as is typical of

lambeosaurines), with the ventral margin slightly more extended cranially than the dorsal

margin. The blade narrows caudally. A short segment of the postpubic rod is exposed

(Fig. 2), showing that this was a thin process with morphology typical of lambeosaurines.

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 45/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


The right ischium is represented by bone proximally and by impressions distally (Fig. 3).

The dorsal acetabular process is longer and broader than the ventral, as seen in other

hadrosaurids. The impression of the shaft is comparatively straight, showing that the

shaft expands dorsoventrally towards its distal end. Unlike adult-sized Parasaurolophus

cyrtocristatus (FMNH P 27393), the distal extremity of the ischium is not prominently

hooked cranially. At most, there was only a slight expansion. A similar expansion of the

distal hook during ontogeny occurs in Hypacrosaurus stebingeri (Horner & Currie, 1994),

but in this taxon the hook develops at a comparatively smaller body size than that of RAM

14000.

The ilium is well-preserved, particularly on the right side (Figs. 2, 18B and 19D), but

only the lateral surface is exposed. The caudal end is tapered, rather than tab-like and

rounded as seen in P. cyrtocristatus (Fig. 19C) or P. walkeri. Little ontogenetic change

in the shape of the caudal end is evident in Hypacrosaurus stebingeri (Horner & Currie,

1994), so this may be due to taxonomic differences or individual variation. The lateral

surface of the postacetabular process is slightly concave and strongly sloped laterally, so

that the ventral edge is more laterally placed than the dorsal edge. The ventral edge of

the postacetabular process is slightly concave, but the dorsal margin of the blade is nearly

straight, up to the preacetabular blade. This contrasts with the prominent concavity seen

dorsal to the supraacetabular process in other Parasaurolophus (FMNH P 27393, Fig. 19C;

ROM 768); development of the concavity seems to be an ontogenetic feature, more

strongly pronounced in adults than juveniles (Guenther, 2009; Fig. 9). The preacetabular

blade is longer and more slender than the postacetabular blade, narrowing towards the

cranial-most tip. The ventral edge of the preacetabular blade is broadly sinuous. Compared

to adult Parasaurolophus, the preacetabular process is relatively shorter (Figs. 19C and

19D). The supraacetabular process protrudes laterally and is proportionately smaller than

seen in adult Parasaurolophus (Figs. 19C and 19D). This too is a general ontogenetic trend

across hadrosaurids (Guenther, 2009). The pubic peduncle has a gentle cranial slant and is

more robust and better defined than the smoothly curved ischiadic peduncle. In between

the peduncles the concavity of the acetabulum is shallow and hemielliptical in profile.

Measurements for the pelvic girdle are presented in Table 8.

Forelimb

The forelimbs are entirely missing, with the exception of an impression of the medial

surface of the right humerus (maximum length = 175 mm; Figs. 18A and 19B; Fig. S4).

The deltopectoral crest extends for more than half the length of the humerus (101 mm),

with a slight inward curvature at the crest’s midpoint. Compared to adult Parasaurolophus

(e.g., P. cyrtocristatus, FMNH P 27393, Fig. 19A; P. walkeri, ROM 768), the overall form

of the humerus in RAM 14000 is less sigmoidal and more slender (Fig. 19B), with a

less prominent (but just as long) deltopectoral crest. This contrasts with Hypacrosaurus

stebingeri, in which the humerus was reported to be “relatively stout” in juveniles versus

larger specimens (Horner & Currie, 1994), and with negative allometry reported for the

circumference of the midshaft of the humerus regressed upon the length of the humerus

in Maiasaura peeblesorum (Dilkes, 2001; Kilbourne & Makovicky, 2010; note that the results
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Figure 18 Major limb bones from the right side of Parasaurolophus sp., RAM 14000, in lateral

view. (A) humerus; (B) ilium; (C) femur; (D) tibia and fibula. The image in (A) is a digital surface

model generated from photogrammetric reconstruction of the natural mold. The head appears unusually

flat because some bone still fills that area. Abbreviations: cal, calcaneum; cnc, cnemial crest of tibia; ctr,

cranial trochanter; di, diaphysis of humerus; dpc, deltopectoral crest; ftr, fourth trochanter; gtr, greater

trochanter; h, head; histA, location of histology sample A; histB, location of histology sample B; ip,

ischiadic peduncle; lc, lateral condyle of humerus; mc, medial condyle of humerus; poap, postacetabular

process; pp, pubic peduncle; prap, preacetabular process; sap, supraacetabular process. Scale bars equal

10 cm; upper scale bar is for (A); lower scale bar is for (B–D).

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 47/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


Figure 19 Comparisons of selected postcranial elements in adult (A, C, E, G) and juvenile (B, D, F,

H) Parasaurolophus. (A) and (B) right humerus; (C) and (D) right ilium; (E) and (F) right femur; (G)

and (H) right fibula. Juvenile elements are from RAM 14000; adult elements represent FMNH P 27393,

Parasaurolophus cyrtocristatus, and are traced from Ostrom (1963). (A) is reversed from the original. Scale

bars equal 10 cm.
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are identical but presented differently in the two studies). Thus, RAM 14000 may suggest

that Parasaurolophus departs from the expected allometric pattern for hadrosaurids.

However, the specimen’s slender appearance could be misleading if it only preserves a

portion of the bone’s profile. More specimens are needed to evaluate this hypothesis. The

lateral distal condyle is more prominent than the medial condyle, but this is at least in part

preservational. Measurements are presented in Table 9.

Hind limb

The right femur is mostly exposed although its caudomedial surface and parts of the

distal condyles are partially obscured by rock (Figs. 2, 18C and 19F; Fig. S5). The

head and greater trochanter are separated by a broad, v-shaped sulcus. The greater

trochanter is prominent, with a flattened lateral surface and a broadly and convexly arched

dorsal (proximal) margin in lateral view (Fig. 18C). The cranial trochanter extends for

approximately one-fourth the length of the femur; this structure is a low and narrow

process situated at the craniolateral surface of the greater trochanter. The shaft of the

femur is straight, with the fourth trochanter centered at mid-shaft. The trochanter is

clearly defined but relatively less prominent in terms of length and height than in adult

lambeosaurines (e.g., P. cyrtocristatus, FMNH P 27393, Fig. 19E; P. walkeri, ROM 768). The

medial and lateral distal condyles are not well-separated on their cranial surfaces, although

a shallow depression occurs at the midline just dorsal to the condyles.

The tibia is a robust bone, approximately equal in length to the femur (Figs. 2 and 18D;

Fig. S5). The cnemial crest is prominent, extending for at least a third of the tibial shaft. The

crest is hooked laterally, wrapping around the cranial surface of the fibula at its proximal

end. The proximal third of the crest is most robust and situated farthest from the main

portion of the tibia, with the rest of the crest tapering gently towards the main shaft of the

tibia. The distal end of the tibia is flattened caudally with a craniocaudal expansion relative

to the mid-shaft in lateral view. A distinct ridge occurs on the caudo-lateral aspect of the

distal quarter of the tibia. The proximal half of the shaft is gently concave in lateral view.

The fibula (Figs. 2, 18D and 19H; Fig. S5), as is typical for hadrosaurids, is a slender

bone that tapers distally. It is strongly mediolaterally compressed, particularly at the

proximal half. The proximal articular end has a fairly linear profile in comparison to

larger hadrosaurids, and the caudal edge of the shaft is also quite straight. The cranial edge

is gently and broadly curved, particularly at the distal half. The distal end of the fibula is

gently expanded and slightly hooked cranially, articulating tightly with the calcaneum.

Overall, the element is less robust and has a less prominent distal curvature than seen in

larger Parasaurolophus (e.g., FMNH P 27393, Fig. 19G).

The calcaneum is articulated with the fibula, but only the lateral surface is exposed

(Figs. 2 and 18D). It is slightly concave and has a kidney-shaped outline, with the convex

end pointing distally. A small but bulbous lump of bone interposed between the distal

articular surfaces of the calcaneum and astragalus may represent tarsal IV. The astragalus is

insufficiently exposed to comment upon its morphology.

The right pes is poorly exposed, and only digits III and IV are represented (Figs. 2, 3 and

20). Digit IV conforms to the standard hadrosaurid phalangeal count of five phalanges. The
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Figure 20 Phalanges of right pedal digit III of Parasaurolophus sp., RAM 14000. (A) and (D) phalanx

III-2; (B) and (E) phalanx III-3; (C) and (F) phalanx III-4 (ungual); (A–C) dorsal view; (D–F) lateral

view. The distal ends of the bones are to the right of the image. Scale bar equals 1 cm.

first phalanx (IV-1) is longest, and following three (IV-2, IV-3, and IV-4) are considerably

shorter proximo-distally. The terminal phalanx (IV-5) is expanded into a triangular

ungual. Digit III has a similar pattern (Fig. 20), with the most proximal phalanx (III-1)

being longest, the next two (III-2 and III-3; Figs. 20A, 20B, 20D and 20E) quite abbreviated

proximo-distally, and a terminal ungual (III-4). Each phalanx after the most proximal one

is broader than long. The unguals in RAM 14000 are fairly narrow (Figs. 20C and 20F),

lacking the broader expansion of adults.

Measurements for the hind limb elements are presented in Table 9.

Ossified tendons

Ossified tendons or their impressions are visible at only two portions of the skeleton. The

first set occurs lateral and ventral to the neural spine of the ?fourth dorsal vertebra (Fig.

17A). Two tendons are preserved here, both of which roughly parallel the long axis of
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the vertebral column. They are approximately 0.8 mm in maximum diameter, and the

longest preserved segment is 21 mm long (including an impression of the tendon in the

measurement. Both tendons occur on the lateral surface of the caudal quarter of the neural

spine and just dorsal to the transverse process, and trend very slightly ventrally. The longest

preserved one extends at least to the cranial quarter of the next spinous process. Based on

the position and orientation of these tendons, we hypothesize that they represent portions

of M. iliocostalis or potentially M. longissimus dorsi (Organ, 2006).

A second set of ossified tendons, represented only by impressions, occurs ventral to the

margins of the impressions of the neural spines of vertebrae and dorsal to the fragments of

the transverse processes on the left side (Fig. 17B). The tendons themselves were destroyed

by weathering prior to discovery. The exact position of the tendons in the vertebral column

cannot be determined, but the tendons lie just dorsal to the cranial end of the ilium and

thus at the very caudal end of the dorsal vertebrae or cranial end of the sacral vertebrae.

At least seven parallel tendons occur here, with a maximum diameter of each impression

2.0–2.5 mm and the longest impression with a preserved length of at least 55 mm (and

probably longer). The tendons were lateral to the neural spines, moving dorsally towards

the caudal direction (i.e., caudodorsally inclined). Based on the position and orientation

of these impressions, we hypothesize that they represent tendons of M. tendinoarticularis

within M. transversospinalis (Organ, 2006).

Integument

Soft (non-bone) tissue impressions are preserved around the left foot and rostral end of

the skull. Despite careful mechanical preparation with an aim to identify other areas of soft

tissue preservation, no additional, unambiguous impressions were identified.

Upper rhamphotheca

A series of parallel, dorsoventrally oriented grooves rostral and ventral to the oral margin

of the premaxilla (Figs. 8A, 8B and 8E) are interpreted as impressions of the internal

surface of the upper rhamphotheca, in light of similarly interpreted anatomy in other

hadrosaurids (Morris, 1970). From the inferred midline, a total of eight grooves are

preserved (Fig. 8E); they may have extended farther laterally. Each groove is 2.5–3.5 mm

wide. In rostral view, the ventral edge of the series dips ventrally from medial to lateral.

This suggests a broad, inverted “V” profile for the complete series when including both

left and right sides of the skull (Fig. 6C). The greatest mediolateral width of the series is

38 mm. The greatest preserved dorsoventral depth of the preserved flutes is 16 mm, but

their proximal and lateral portions were inadvertently prepared away. Thus, the distance

between the oral margin of the premaxilla and the distal extremity of the rhamphotheca

averaged around 25 mm.

These impressions indicate that the soft-tissue profile of the oral margin extended

significantly beyond the bone (Fig. 7A). This is consistent with previous reports of an in-

ternally fluted beak that extended well beyond the premaxilla in Edmontosaurus annectens

(Versluys, 1923; Morris, 1970). The margins of the premaxilla and impressions are closely

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 51/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


parallel in E. annectens, indicating that bone shape is a fairly accurate proxy for soft tissue

shape. We hypothesize a similar pattern for Parasaurolophus based on RAM 14000.

A specimen of Corythosaurus casuarius (CMN 8676) originally preserved a portion

of the impressions of the rhamphotheca (Sternberg, 1935). Initially interpreted as the

lower rhamphotheca (Ostrom, 1961), we agree with later interpretations of the structure

as the upper rhamphotheca (Morris, 1970). Only a fragment of this impression is now

available. Based on the original photographs (Sternberg, 1935), the internal surface of the

upper rhamphotheca was grooved as in RAM 14000. However, we cannot determine with

confidence the shape of the margin of the rhamphotheca in CMN 8676 for comparison.

Although such features are not evident in RAM 14000, projections from the oral margin of

the premaxilla in many hadrosaurids may correlate with the grooves on the rhamphotheca.

Additional work is needed to verify this.

Skin impressions

Two small (<5 cm maximum dimension) patches of skin impressions are associated

with the region caudal to the right metatarsal III and phalanx III-1 (Figs. 3 and 21). This

impression is gently folded upon itself, and covered by non-imbricating, roughly circular

tubercles that average ∼2 mm in maximum diameter (Fig. 3; pebble-type basement scales

of Bell, 2012). The impression was exposed to weathering prior to discovery, and thus

surface detail is muted. The overall appearance, including the folding, is reminiscent of the

equivalent region in Corythosaurus casuarius (AMNH 5240; Brown, 1916). The only major

difference in RAM 14000 concerns the smaller tubercles relative to AMNH 5240, which are

undoubtedly related to the animal’s small body size.

Bone histology

We describe the histology of the tibia based on two samples from the caudolateral quadrant

of the proximal shaft, close to the mid-diaphysis (see Fig. 18D for positions). We follow the

terminology of Francillon-Vieillot et al. (1990), with additional terminology related to the

orientation and arrangement of osteocytes following Werning (2012).

Section B (Figs. 22 and 23) lies closer to the mid-diaphysis. The section is ∼15–16 mm

thick (= radially “deep”) including the cortical and cancellous bone. The cancellous

region comprises the inner 3–7 mm of the sample. A good deal of fracturing is visible

throughout the section. In the cancellous region, the cracks are infilled by crystals and/or a

dark, amorphous matrix, but in the cortex, many of the cracks lack infilling. It is possible

that these cortical cracks formed during extraction from the ground or extraction of the

sample for histological preparation. Crystals and the black matrix also infill the interstices

between trabecular and the canals of the cortex. The bone is strongly birefringent, but

shows a negative optical sign when viewed under elliptically polarized light (e.g., Fig. 25).

This suggests that the collagen has been secondarily replaced by apatite crystals (Lee &

O’Connor, 2013).

The internal-most portion of the cancellous region (Figs. 22A and 23A) shows thick

trabeculae that delineate large (up to 1 mm) amorphous intertrabecular chambers. The

cores of the largest trabeculae are comprised of woven or parallel-fibered primary bone
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Figure 21 Skin impressions of Parasaurolophus sp., RAM 14000, from plantar surface of right pedal

digit III. The proximal end of the digit is to the lower right end of the image, and the distal end is towards

the top middle edge of the image. The arrow indicates one individual tubercle. Abbreviations: MT III,

caudal surface of metatarsal III. Scale bar equals 1 cm.

and the edges are lined with several lamellae (true lamellar bone) or pseudolamellae

(loose layers of parallel-fibered bone). The lamellae do not appear to cut across the cores;

rather, they appear to have been deposited appositionally to them. The osteocyte density

is much higher in the trabecular cores than in the lamellar/pseudolamellar bone lining the

trabecular margins; in fact, they appear as densely packed as they are in the primary woven

bone that forms the internal-most cortex. These osteocytes are aligned along the long axis

of each trabecula and change orientation as trabecular orientation changes. This strongly

suggests that at least some of these trabeculae formed de novo rather than by resorption

of primary cortical tissues; if this is correct, these are remnants of embryonic or perinatal

bone tissue.

The appearance of the trabeculae in this region is extremely similar to that described

for embryonic ornithopods, including those of Maiasaura (Horner, de Ricqlès & Padian,

2000; Horner, Padian & de Ricqlès, 2001), Hypacrosaurus (Horner & Currie, 1994; Horner,

Padian & de Ricqlès, 2001), Dryosaurus (Horner et al., 2009) and Tenontosaurus (Horner

et al., 2009; Werning, 2012). Given the tibial diameter of ∼40 mm in RAM 14000, and

that this region comprises no more than 3.5 mm of the preserved section (i.e., there is

11.5–12.5 mm of cortical bone external to it), the neonatal tibial diameter could not have

exceeded 15–17 mm (47–53 mm circumference). This is very close in size to the embryonic

femora of Hypacrosaurus (32.5–40 mm circumference; Horner & Currie, 1994).
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Figure 22 Bone microstructure of juvenile Parasaurolophus tibia in regular transmitted light (RAM

14000, histological sample B, near mid-diaphysis; see Fig. 18D for position of sample). (A) entire

sample in cross-section (transverse plane), with inset box showing the position of B; (B) radial “transect”

across A, with inset box showing positions of enlargements (continued on next page...)
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Figure 22 (...continued)

C and D; (C) and (D) enlargements of B showing primary osteons and osteocytic arrangement. The

primary cortex is virtually unremodeled and shows no lines of arrested growth. Most longitudinal

primary osteons anastomose circumferentially with two to five other canals, especially in the mid-cortex.

The woven component of the bone is less prominent in the outer cortex (C) compared to the midcortex

and inner cortex (D). The periosteum lies to the top of each image. Scale bar equals 5 mm for (A), 2 mm

for (B), and 250 µm for (C) and (D).

Figure 23 Bone microstructure of juvenile Parasaurolophus tibia in regular transmitted light (RAM

14000, histological sample B, cross-section near mid-diaphysis; see Fig. 18D for position of sam-

ple). (A) inner cancellous region; (B) outer cancellous region; (C) inner/mid-cortex; (D) outer cortex

close to the periosteum. In (A), the cores of trabeculae are comprised of unremodeled primary woven

bone tissue and the edges lined by pseudolamellae of parallel-fibered bone and true lamellar bone. In

(B), incipient cancellous bone, forming by expansion of canals. Most spaces are unlined. In (C), woven

bone forms much of the laminae and parallel-fibered bone lines the primary osteons rather than lamellar

bone. In (D), longitudinal simple primary canals and primary osteons begin to anastomose laterally.

Osteocyte density is noticeably higher in (B), (C), and (D) compared to (A), though they are randomly

oriented through the entire section. The periosteum lies to the top of each image. All scale bars equal

500 µm.

Other, incipient cancellous bone is visible just external to the preserved embryonic

tissues (Fig. 23B). Contrary to the cancellous bone described above, this tissue is not as

porous and clearly formed by the resorption of primary cortical tissues. In this region, the

cores of the incipient trabeculae comprise primary woven bone, but the orientations of

primary osteons and osteocytes do not correspond with trabecular orientation. Erosion

rooms ranging in size from .1–2 mm cut across primary bone tissue, and many are unlined.
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Figure 24 Bone microstructure of juvenile Parasaurolophus tibia in regular transmitted light (RAM

14000, histological sample A, through proximal portion of diaphysis; see Fig. 18D for position of

sample). (A) Entire sample in cross-section (transverse plane); (B) radial “transect” across A; (C) and

(D), enlargements of B showing primary osteons and osteocytic arrangement. Proximal in the diaphysis,

the cortex is better organized (C) compared to the mid-diaphysis (Fig. 22) and there is much more

secondary remodeling in the inner cortex (D). The periosteum lies to the top of each image. Scale bar

equals 5 mm for A, 2 mm for B, and 250 µm for C and D.
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Figure 25 Histological variation in the cortex of juvenile Parasaurolophus tibia in regular transmitted

light (A, C, E) and elliptically polarized (B, D, F) light (RAM 14000, sample A). The elliptically polarized

light is under full λ retarder plate, and the sample is a cross-section through the proximal portion of

the diaphysis. Moving periosteally through the cortex, the bone tissue comprising the laminae becomes

progressively more organized. In the inner cortex (A, B), osteocytes are densely packed in the interstices

between vascular canals, and their lacunae are oriented randomly with respect to the long axis of the bone

and to each other. In this region, the laminae are mainly comprised of woven bone, with lamellar bone

surrounding each vascular canal. In the mid-cortex (C, D), woven bone comprises a smaller portion of

the laminae, and parallel-fibered bone lies between the woven and lamellar components. In the outer

cortex (E, F), at most only a thin band of woven bone lies in the cores of the laminae, and much of the

interstices are comprised of parallel-fibered bone. The periosteum lies to the upper right of each image.

Arrows in (B), (D), and (F) indicate the orientation of the slow axis of the λ plate. All scale bars equal

250 µm.

Where lamellar bone lines the erosion rooms, it cuts across the primary tissues forming the

cores of the incipient trabeculae.

The cortex near the mid-diaphysis is comprised mainly of well-vascularized, woven

primary bone tissue. In the inner cortex (Fig. 23C), the bone is exclusively woven and

the canals are a mixture of primary osteons and simple primary canals. The canals of this
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region are mainly longitudinal, but short radial, circumferential, and oblique canals are

also common. The canals in this region are not as organized as the mid- or outer cortex

and generally anastomose with several (two to four) other canals. Osteocyte density in this

region is extremely high, and osteocytes show no preferred orientation relative to the long

axis of the bone nor a preferred arrangement relative to each other. Osteocytes encircle

some primary osteons, but equally often, they are oriented oblique to the canals in the

tissue that surround them. In the regions closest to the canals, the bone is less cellular

compared to the cores of the laminae/interstices between them.

In the mid- and outer cortex (Fig. 23D), the bone is similar in its components but shows

more organization in its vascular canals and in its osteocytes. Vascular canals are again a

mix of primary osteons and simple primary canals, which are generally wider in diameter

compared to those of the inner cortex. As noted by Starck & Chinsamy (2002), this reflects

the ontogeny of the canals themselves; the inner canals are older and have had more time

to deposit bone since the initial bone scaffolding was deposited. Canals in this region

show strong circumferential signal; in the mid-cortex, circumferential canals dominate,

and in the outer cortex, the longitudinal canals are arranged circumferentially in rows.

Osteocyte density is lower in the outer cortex compared to the inner cortex. Additionally,

the disorganization is confined to a slightly narrower region at the center of each lamina. In

the outermost cortex, the canals are often encircled by a thin band of fairly acellular bone

(Fig. 23D). In some cases, it appears that a region of parallel-fibered bone, less dense in

osteocytes, separates the acellular lining bone from the “core” of woven bone at the center

of each lamina. Despite histological indications that bone deposition rate was slightly lower

in the outer cortex compared to the inner cortex, no annuli or lines of arrested growth

(LAGs) are visible in this section.

Section A (Figs. 24–26) is taken from a more proximal portion of the diaphysis. The

section is ∼11–12 mm thick (deep), including the cortical and cancellous bone. The

cancellous region comprises only the inner ∼2.5 mm of the sample. The section sampled

in longitudinal section runs proximally along the shaft for 12 mm from the site of the

cross-sectional sample. In cross-section (Fig. 24), section A resembles section B in its

vascular patterning. It differs in the degree of organization of the primary cortical tissues

(Figs. 24C and 25), in the secondary remodeling of the inner cortex (Fig. 24D), and in its

thicker and more closely spaced trabeculae.

As in Section B, the trabeculae show no secondary osteons in their cores. The edges of

all trabeculae are lined with distinct lamellae, often five or more in number. Some of these

trabeculae clearly formed by resorption and secondary deposition; the lamellae on one

side of a trabecula often cut through the lamellae on the other side. Although a few larger

erosion rooms are present, most are between .1 and .5 mm in diameter.

The inner cortex was clearly experiencing active secondary remodeling at the time of

the animal’s death. Distinct erosion rooms of varying age (based on number of lamellae)

are visible throughout the innermost cortex; these may be up to .15 mm wide. Several

generations of secondary osteons are also visible (Fig. 24D). Although some primary tissue

is clearly visible between secondary osteons, they cut across each other in places.
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Figure 26 Bone microstructure of juvenile Parasaurolophus tibia in regular transmitted light (RAM

14000, sample A; proximal portion of diaphysis). (A) Entire sample in longitudinal section; (B) en-

largement of (A) showing primary osteons and osteocytic arrangement in the cortex; (C) osteocytes. The

amount of woven bone in the laminae between (continued on next page...)

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 59/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


Figure 26 (...continued)

primary osteons varies through the cortex. In (B), osteocytes in regions of woven bone are randomly

oriented and densely packed (e.g., to right of image). Closer to canals, osteocytes are fewer in number

and much more organized (center of image). In (C), the more disorganized woven bone is visible on the

left side of the image and the more organized parallel-fibered bone is to the right. The periosteum lies to

the left in all images. Scale bar equals 2 mm for (A), 250 µm for (B), and 100 µm for (C).

The primary cortical tissues increase in organization moving periosteally through the

section (Fig. 25). As in section B, the inner cortex of section A (Figs. 25A and 25B) shows

highly disorganized bone tissue. The interstices between vascular canals (nearly all are

randomly arranged longitudinal primary osteons) form laminae mainly comprised of

woven bone that shows a high density of randomly oriented osteocytes. Parallel-fibered

bone or, more often, lamellar bone encircles the canals themselves. This is also cellular,

but not to the extent of that in the interstices. The boundary between the woven bone

and lamellar bone is distinct. This bone is clearly “fibro-lamellar tissue” as defined by

Francillon-Vieillot et al. (1990).

In the mid-cortex (Figs. 25C and 25D), the bone is more laminar, because the primary

osteons anastomose circumferentially with adjacent canals. Here, the woven “cores” of

the interstitial bone have fewer osteocytes, but the ones that are present are equally

disorganized. The bone encircling the primary osteons is exclusively lamellar and less

cellular than in the inner cortex. Very thin bands of parallel-fibered bone lie between the

woven component and the lamellar component surrounding the canals. Thus, the woven

component grades into the lamellar component and the boundary between interstitial and

circumvascular bone tissue is not as abrupt. In the outer cortex (Figs. 25E and 25F), woven

bone is restricted to the center of the interstitial “cores” and much more parallel-fibered

bone separates the woven component from the lamellar component. In this region, far

fewer osteocytes occur in either the interstices or the lamellar bone of the primary osteons.

The same pattern is also evident in longitudinal section (Fig. 26).

Stein & Prondvai (2013) describe a similar condition in the long bones of the sauropods

Alamosaurus, Apatosaurus, and Camarasaurus. In these taxa, woven bone is restricted to a

thin splint at the center of bony laminae, and highly organized parallel-fibered and lamellar

bone fills the space between the woven splint and the vascular canals. This reflects the

process of bone deposition; a scaffold of woven bone is deposited rapidly around vascular

canals so that the diameter of the bone can be rapidly expanded. Subsequently, more

organized tissues are deposited onto this scaffold (Stein & Prondvai, 2013).

Body size and completeness

Aside from RAM 14000, the most complete and smallest associated juvenile lambeosaurine

skeleton is AMNH 5340, referable to Lambeosaurus sp. (Evans, 2010). This individual had

a total length of 4.31 m (Lull & Wright, 1942), and comparable-sized postcranial elements

are 1.74 to 1.89 times the length of those in RAM 14000 (Table 10; ischium length is

excluded as an outlier). Scaling from AMNH 5340, we estimate total body length in RAM

14000 conservatively at 2.28 to 2.48 m, considerably smaller than the 9.45 m total body

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 60/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


Table 11 Estimated resonant frequencies of the crest in Parasaurolophus skulls. Data for ROM 768 and FMNH P 27393 are from Weishampel

(1981a).

Frequency (Hz)

Taxon Specimen Tube length (m) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

P. walkeri ROM 768 3.46 48 96 144 192 240

P. cyrtocristatus FMNH P 27393 2.21 75 150 225 300 375

P. sp. RAM 14000 0.195 872 1,744 2,616 3,488 4,360

length estimated for the holotype of Parasaurolophus walkeri, ROM 768 (Lull & Wright,

1942).

Associated cranial bones from the Kirtland Formation of New Mexico, SMP VP-1090,

were tentatively identified as a juvenile Parasaurolophus sp. (Sullivan & Bennett, 2000).

The quadrate in this specimen is 185 mm long, 67 percent larger than the quadrate in

RAM 14000 (111 mm long). A braincase assigned to juvenile Parasaurolophus sp. from the

Dinosaur Provincial Park region of Alberta, CMN 8502, has a frontal width of 38 mm, 20

percent larger than the equivalent dimension in RAM 14000 (31.7 mm). By contrast, the

skull length (horizontal from rostrum to paroccipital process) in the P. walkeri holotype

(ROM 768) is 745 mm versus 246 mm in RAM 14000, or 303 percent larger. Thus, RAM

14000 represents the smallest confidently identifiable specimen of Parasaurolophus known

to date.

In terms of skeletal representation, RAM 14000 is the most complete single individual

of Parasaurolophus described to date (Table S1). Approximately 46 percent of skeletal

elements are preserved here, contrasting with 43 percent in the holotype of P. walkeri

(ROM 768) and 35 percent in the holotype of P. cyrtocristatus (FMNH P 27393).

Crest acoustics

Following the methods of Weishampel (1981a), we estimated the resonant frequencies of

the main passageway of the nasal cavity for RAM 14000. Because the lateral diverticulum

is poorly separated from the rest of the nasal passages and is not close-ended in RAM

14000, we did not calculate its corresponding resonant frequency. Necessary parameters to

calculate f (frequency, in Hz) included n (resonance mode, set between 1 and 5), v (velocity

of sound at sea level, 340 m/s), and L (length of tube, set at 0.195 m for RAM 14000 as

measured from CT scan data). These parameters were entered into the following equation:

f = n(v/2L)

Results are summarized in Table 11. The estimated resonant nasal frequencies of

RAM 14000 are approximately 11 to 18 times higher than those for P. cyrtocristatus and

P. walkeri, respectively, as expected given the difference in cavity lengths.

Mandibular mechanics

Most discussions of hadrosaurid jaw mechanics have focused, directly or indirectly, on the

dental occlusal surfaces and movements associated with that complex (e.g., Ostrom, 1961;
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Weishampel, 1983; Erickson et al., 2012), but no detailed consideration has been given to

the potential mechanical consequences of the premaxillary “beak”. Adding a keratinous

rhamphotheca increases the minimum gape at which contact between upper and lower

jaws is made with a food item, with corresponding effects upon bite force.

As in previous studies (e.g., Ostrom, 1964; Bell, Snively & Shychoski, 2009), the

ornithischian lower jaw can most simply be approximated as a third class lever, with the

applied muscle force located between the fulcrum (glenoid) and the resistance (usually

the dentition, but in this case the predentary). Here, the force lever arm is the distance

between the coronoid process and glenoid, whereas the resistance lever arm is the distance

from bite point to glenoid (following Ostrom, 1964). In order to calculate usable force

at a given point on the mandible, five parameters are needed (see Ostrom, 1964, for a

full explanation): e, distance from the center of the coronoid process to the bite point; a,

distance from the center of the glenoid to the center of the coronoid process; d, distance

from the glenoid to the top of the coronoid process; θ , the angle between the line of

the jaw and the applied force on the coronoid process (measured from the center of the

supratemporal fenestra); and δ, the angle of the diagonal between the top of the coronoid

and the glenoid, relative to the line of the jaw (Fig. 27).

All of the parameters are then entered into the equation:

S(e + a) = Fsin(θ + δ)d

where S is the percentage of usable force at a given point relative to the input force F. All

variables are the same in all conditions, except for θ . When accounting for increased gape

due to the rhamphotheca, θ is accordingly reduced (Fig. 27B). Thus, at a gape of 10◦,

θ–10◦ would be used as the appropriate value. Here, we make the simplification that F is

constant across the relatively small differences in gape considered here.

Based on measurements from the original specimen, the rhamphotheca in RAM 14000

decreased the angle of gape at which upper and lower beaks contacted by approximately 7◦.

Thus, θ = 44◦ without a rhamphotheca and θ = 37◦ when the rhamphotheca is included.

For other parameters, e = 150 mm (measured to rostral-most extent of predentary),

a = 48 mm, d = 80 mm, and δ = 42◦. Because absolute values are not a concern, F was set

at 100%.

Using the above numbers and equation, the percentage of usable force at the predentary

is 40.3% without the rhamphotheca and 39.6% with the rhamphotheca. Thus, the

rhamphotheca introduced a 0.7% decrease in bite force relative to the condition without.

DISCUSSION

RAM 14000 is Parasaurolophus

Although the visually striking and taxonomically diagnostic crests of lambeosaurine

hadrosaurids do not reach their ultimate morphology until adulthood, many genus- and

species-level autapomorphies appear earlier in ontogeny (Evans, Forster & Reisz, 2005;

Evans, Reisz & Dupuis, 2007; Evans, 2010; Brink et al., 2011). Based on a combination of

anatomical features in RAM 14000, as well as stratigraphic and geographic evidence, we
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Figure 27 Schematic of the hadrosaur jaw system, showing the effects of a rhamphotheca on bite

mechanics. In (A), the jaws are shown without the rhamphotheca, in the approximate position where

the upper and lower bony beak surfaces would first make contact. In (B), the jaws are shown with the

upper rhamphotheca (orange), in the approximate position where the upper and lower beak surfaces

would first make contact. Note that this is at a wider gape than in (A). Abbreviations: a, distance from

the center of the glenoid to the center of the coronoid process; d, distance from the glenoid to the top of

the coronoid process; e, distance from the center of the coronoid process to the bite point; θ , the angle

between the line of the jaw and the applied force on the coronoid process (measured from the center of

the supratemporal fenestra); δ, the angle of the diagonal between the top of the coronoid and the glenoid,

relative to the line of the jaw. x is the change in gape angle produced by the rhamphotheca. The equation

to calculate bite force is given in the text.

identify the specimen as a juvenile Parasaurolophus. However, we do not assign it to a

particular species.

Although both hadrosaurids and basal neornithischians (“hypsilophodontids”) occur

in the Kaiparowits Formation (Gates et al., 2013), RAM 14000 is clearly identifiable as a

hadrosaurid. It possesses numerous synapomorphies not found in “hypsilophodontids,”

including three or more replacement teeth in each tooth family as well as absence of a

surangular foramen or free palpebral (Horner, Weishampel & Forster, 2004).

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 63/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


Furthermore, a series of synapomorphies clearly place RAM 14000 within Lambeosauri-

nae. These include a domed frontal in subadults, development of an enlarged crest formed

from the premaxillae and nasals as well as a nasal vestibule completely enclosed by the

premaxillae, a triangular rostrolateral corner of the premaxilla, and many others (Horner,

Weishampel & Forster, 2004; Prieto-Márquez, 2010).

Based on CT scan data, we reconstruct RAM 14000 as lacking an S-loop in the proximal

portion of the nasal passages (Fig. 9), an ontogeny-independent synapomorphy that

occurs in most post-embryonic lambeosaurins (Evans & Reisz, 2007; Evans, Ridgely

& Witmer, 2009). Additionally, there is no solid, fin-like caudal extension of the crest,

found in all juvenile and adult lambeosaurins for which CT scan data are available (Evans,

Ridgely & Witmer, 2009). Relative to Velafrons coahuilensis, RAM 14000 lacks the unique

“kinked” squamosal morphology of that taxon (Gates et al., 2007). In all juvenile and adult

lambeosaurins for which the feature is known, the caudolateral process of the premaxilla

is moderately to extremely angled at its contact with the maxilla, rather than straight as

in RAM 14000 (Fig. 7A; a feature otherwise found in Parasaurolophus). Finally, RAM

14000 shows accelerated development of some features relative to known lambeosaurins

(outlined below; Fig. 28). There are thus no firm characters to identify RAM 14000 as a

lambeosaurin.

Previous authors have identified a suite of characteristics that unite parasaurolophins

(Charonosaurus and Parasaurolophus), which can also be potentially evaluated in RAM

14000 (characters that are not preserved in the specimen are not considered here). These

include: (1) a massive frontal platform extending caudally at least to the level of the

supratemporal fenestrae; (2) thickening of the dorsal surface of the postorbital in adults

to form a promontorium; and (3) an expanded distal head of the fibula (Godefroit, Alifanov

& Bolotsky, 2004; Evans & Reisz, 2007; Evans, Reisz & Dupuis, 2007; Prieto-Márquez, 2010).

Characters 1 and 2 are intimately linked with the development of the massive crest (at

least in Parasaurolophus, where crest morphology is known, and presumably also in

Charonosaurus). RAM 14000 lacks these features, but their absence is not surprising in

light of the crest’s incipient development in this specimen. The distal end of the fibula

is slightly expanded in RAM 14000, but not to the degree seen in P. cyrtocristatus or

C. jiayinensis (Ostrom, 1963; Godefroit, Bolotsky & Alifanov, 2001). However, this feature

also occurs to a lesser degree in Corythosaurus intermedius and Hypacrosaurus stebingeri

(Prieto-Márquez, 2010), and thus cannot be considered taxonomically significant in RAM

14000. Other important characters, such as the number of cervical vertebrae, relative

length of metacarpal V, and the participation of the parietal in the occiput, cannot be

determined in RAM 14000.

Based on a referred juvenile braincase (CMN 8502), Evans and colleagues (2007)

identified several features of the skull roof that they hypothesized to be relatively consistent

through ontogeny in Parasaurolophus, at least for the sample known at that time. These

included: (1) frontal with a thick and steeply angled nasal articular surface; (2) frontals

comparatively short; (3) frontals with a poorly developed median cleft at rostral-most

extent; (4) rostral processes of frontal meet at broad and obtuse angle in dorsal view; and
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Figure 28 Cranial growth series for Parasaurolophus, Corythosaurus, and Casuarius, showing changes in bony ornamentation relative to

maximum reported skull length for each taxon. The black and red scale indicates percentage of maximum reported skull length in increments of

10 percent. The yellow sunburst indicates the approximate skull size at which ornamentation initially appears. Note that Parasaurolophus develops

its crest at a very small skull size relative to Corythosaurus, and both hadrosaurids initiate the development of cranial ornamentation at a smaller

relative skull size than in Casuarius. Skulls for Parasaurolophus sp. are based on RAM 14000, a hypothetical subadult (Fig. 11B), and the holotype

for Parasaurolophus cyrtocristatus (FMNH P 27393, with missing elements patterned after ROM 768). The growth series for Corythosaurus is a

composite, with the two smallest skulls (at left) patterned after Hypacrosaurus stebingeri. Because the two taxa are so closely related, and because

they show broadly similar patterns of cranial growth where individuals of overlapping size are known (Evans, 2010; Brink et al., 2011), we consider

this a reasonable assumption. The smallest skull (at left) is based on RTMP 89.79.52, 87.79.206, 87.79.241, 87.77.92, and 87.79.333, and represents

an embryonic individual (redrawn from Horner & Currie, 1994). The next smallest skull is patterned after MOR 548 (also redrawn from Horner &

Currie, 1994). The remaining skulls, from left, are patterned after ROM 759, CMN 34825, ROM 5856, and ROM 871, redrawn from Evans (2010).

Skulls of Casuarius are redrawn from Dodson (1975) and based on (from left) YPM 6208, YPM 1736 (snout region reconstructed), and AMNH 3870.

Maximum skull lengths for Parasaurolophus, Corythosaurus, and Casuarius are 745 mm (ROM 768), 750 mm (ROM 792) and 200 mm, respectively

(Dodson, 1975; Evans, 2010). Scale bars equal 10 cm.

(5) olfactary depression offset ventrally from roof of cerebral fossa. Characters 1, 2, 4, and 5

are demonstrably absent in RAM 14000, and character 3 cannot be evaluated. Arguably, all

of the characters (particularly character 1) are related to the development of the enlarged

bony crest supported by the frontals. We thus attribute their absence in RAM 14000, an

extremely young individual in which the crest is only incipient, to ontogenetic effects.

Prieto-Márquez (2010) also identified several unambiguous synapomorphies from his

dataset that unite Parasaurolophus species. Unfortunately, these are either not preserved in

RAM 14000 (number of teeth per alveolus at mid-dentary; morphology of deltoid ridge of

scapula; proportions of ulna) or are widely distributed across lambeosaurines (proportions

of humerus). Parasaurolophus is also reconstructed as having an extreme lateroventral

extension of the supraacetabular process of the ilium (Fig. 19C), lacking in RAM 14000

(Figs. 18B and 19D). However, this character is ontogenetically dependent (Guenther,

2009), and even variable among Parasaurolophus species (much more prominent in

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 65/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


P. cyrtocristatus specimen FMNH P 27393 than in P. walkeri specimen ROM 768). Thus, its

absence in RAM 14000 is not unexpected, nor is it of taxonomic consequence.

Although RAM 14000 does not preserve major, previously recognized autapomorphies

for Parasaurolophus, several cranial features strongly support referral to this taxon. Most

significantly, the caudal edge of the caudolateral process of the premaxilla is interpreted

as nearly straight along its entire length (Fig. 7A), a feature also found in all species of

Parasaurolophus. In every other lambeosaurine of all ontogenetic stages for which the

character can be determined, the edge is moderately to strongly kinked. The feature may be

associated at least in part with the development of the S-loop in the nasal passages, another

feature lacking in RAM 14000 and presumed absent in Parasaurolophus, based on CT-scan

data (Sullivan & Williamson, 1999). Additionally, the nasal passages fill nearly the entire

crest in RAM 14000 (Figs. 9A and 11C), as in Parasaurolophus but unlike the condition in

lambeosaurins (adults and juveniles alike).

Morphology of the jugal is also informative in RAM 14000, with a relatively long

and slender quadrate process that, in concert with the postorbital process, bounds a

narrow infratemporal fenestra (width:length ratio = 0.3; Fig. 7). This morphology

is also consistently seen in adult Parasaurolophus (P. tubicen, NMMNH P-25100,

PMU.R1250; P. walkeri, ROM 768; P. species, UMNH VP 16666, UCMP 143270; Fig. 28).

A narrow infratemporal fenestra also occurs variably in subadults and adults of other

lambeosaurines (e.g., Hypacrosaurus altispinus, CMN 8501; Kazaklambia convincens,

PIN 2230; Velafrons coahuilensis, CPC-59), but never in combination with a narrow

quadrate process of the jugal. Furthermore, the quadrate process is distinctly constricted

(Fig. 7), so that the ventral border is slightly concave along its entire length. This feature

occurs in other Parasaurolophus specimens (P. tubicen, PMU.R1250; P. walkeri, ROM

768; UMNH VP 16666). Some other lambeosaurines have a similar concave border

(e.g., Lambeosaurus lambei, CMN 2869), but never in combination with other features.

We also note that the quadrate process on the jugal of Kazaklambia convincens expands

caudally, contrasting with the comparatively uniform width seen in RAM 14000 and other

juvenile lambeosaurines. The impression of the jugal on the right side shows a narrow,

triangular extension of the maxillary process between the maxilla and lacrimal (Fig. 13B),

also found only in Parasaurolophus (e.g., ROM 768; Fig. 14D). Thus, although individual

features of the jugal in RAM 14000 are found in various lambeosaurines, the combination

of features is exclusive to Parasaurolophus.

Within the Kaiparowits Formation of Utah, three hadrosaurid taxa are known:

the hadrosaurines Gryposaurus monumentensis and Gryposaurus sp., as well as the

lambeosaurine Parasaurolophus sp. (Gates et al., 2013; Weishampel & Jensen, 1979; Gates

& Sampson, 2007). The known Kaiparowits Formation adult material is most similar

to Parasaurolophus cyrtocristatus, but some differences in skull morphology suggest

that the specimens may represent a distinct but closely related species or a different

ontogenetic stage relative to the P. cyrtocristatus holotype specimen (Gates et al., 2013).

This issue is currently under study (TA Gates and DC Evans, pers. comm. to A Farke,

2012). Of eight adult lambeosaurine skulls from the Kaiparowits Formation (BYU
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2467; UMNH VP 16394, 16666, 16689, two unnumbered; RAM unnumbered; UCMP

143270), all are referable to Parasaurolophus (Gates et al., 2013). Continued collecting may

certainly uncover evidence of other taxa, but to date Parasaurolophus is the only known

lambeosaurine from the Kaiparowits Formation. This circumstantial evidence is also

consistent with the referral of RAM 14000 to the genus.

The described species of Parasaurolophus are distinguished by autapomorphies of the

crest (Sullivan & Williamson, 1999) that had not yet developed in RAM 14000. Thus, we

cannot assign RAM 14000 to a particular species based upon morphology.

In summary, the bulk of the evidence—morphological and geological—is most parsi-

monious with the referral of RAM 14000 to Parasaurolophus. Specific autapomorphies

for the genus that are lacking in the specimen—such as the unique crest and frontal

morphology—are hypothesized to have developed later in ontogeny. Furthermore, the

skull of RAM 14000 shows unique morphology relative to known juvenile lambeosaurins.

Age of RAM 14000

The tibial bone microstructure of RAM 14000 preserves no lines of arrested growth (LAGs)

or annuli, suggesting that this animal did not stop, pause, or dramatically slow its growth at

any time between hatching and death. As noted in Nesbitt et al. (2013), the absence of LAGs

does not necessarily imply that an animal died within its first year of growth, although

that is one possibility. LAGs are not visible when they are deposited but later obscured by

secondary remodeling, in animals that grow to full size in less than a year but live for several

years afterward, or in animals that grow to full size over several years without pausing or

stopping (Horner, de Ricqlès & Padian, 1999; Nesbitt et al., 2013).

Secondary remodeling of primary tissues that once preserved LAGs can be eliminated

for RAM 14000. Near the mid-diaphysis (section B; Fig. 22), bone tissue strongly

resembles that of embryonic and perinatal ornithopods (e.g., Horner & Currie, 1994;

Horner, de Ricqlès & Padian, 2000; Horner, Padian & de Ricqlès, 2001; Horner et al., 2009;

Werning, 2012). This region extends to a radius consistent with the size of other perinatal

lambeosaurines (Horner & Currie, 1994; Horner, de Ricqlès & Padian, 2000). This possible

embryonic/perinatal tissue is not remodeled by secondary osteons, nor is any of the tissue

external to it. Because of this, we are confident that the section represents an unobscured

record of growth from a time near birth to death and that no LAGs are missing.

We also find it unlikely that RAM 14000 lacks LAGs because Parasaurolophus finished

growth in less than a year. All four of the other hadrosaurids that have been examined

histologically [Telmatosaurus (Benton et al., 2010), Maiasaura (Horner, de Ricqlès &

Padian, 2000; Horner, Padian & de Ricqlès, 2001), Hypacrosaurus (Horner & Currie, 1994;

Horner, de Ricqlès & Padian, 1999; Cooper et al., 2008), and Edmontosaurus (Reid, 1985)]

exhibit several LAGs in the cortices of adult limb bones. Because LAGs are deposited

annually in vertebrates (Castanet, 1985; Castanet, 1986–1987; Castanet & Naulleau, 1985;

Francillon-Vieillot et al., 1990), this suggests that hadrosaurids required more than one

year to reach full size. The presence of several cortical LAGs in related taxa also suggests

that large hadrosaurids did not grow over several years without stopping, though in the
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absence of samples from subadult or adult specimens, this possibility cannot be excluded

for Parasaurolophus.

The histology of RAM 14000 excludes some broader age categories. The section studied

here preserves some possible embryonic or perinatal tissues, but it has clearly deposited

a significant amount of tissue external to these. Most of this tissue is mature enough

to show primary osteons, indicating that some time has passed since deposition of the

initial woven “scaffolding” (Stein & Prondvai, 2013). Additionally, more organized bone

microstructure and a larger parallel-fibered component of the bony laminae suggests

slower bone depositional rates in the outer cortex relative to the inner cortex of RAM

14000 (Stein & Prondvai, 2013). Embryos, perinates, and very young juvenile hadrosaurids

exhibit only woven bone (Horner & Currie, 1994; Horner, de Ricqlès & Padian, 2000), so

RAM 14000 does not likely belong to these age categories.

Despite relative slowing of growth between the inner and outer regions of the cortex,

RAM 14000 was still growing actively at the time of death. It does not exhibit the LAGs

or secondary remodeling of the mid-diaphyseal cortex of subadult or adult hadrosaurids

(Horner, de Ricqlès & Padian, 1999; Horner, de Ricqlès & Padian, 2000; Horner, Padian & de

Ricqlès, 2001), and certainly not the external fundamental system observed in senescent,

large-bodied archosaurs (e.g., Woodward, Horner & Farlow, 2011). Therefore, we feel it is

also unlikely that RAM 14000 is a subadult or senescent individual. Given that RAM 14000

is not likely a perinate or a subadult, we hypothesize it to be a large juvenile.

The only published histological section sampled from the long bones of a juvenile

lambeosaurine is from the femur of MOR 548, a Hypacrosaurus stebingeri nestling. This

material was described briefly by Horner & Currie (1994) and is currently being redescribed

by Horner and his students as part of a larger study of Hypacrosaurus growth and ontogeny

(JR Horner, pers. comm. to S Werning, 2013). The femur of MOR 548 is approximately

23 cm long (∼2.5 cm diameter; JR Horner, pers. comm. to S Werning, 2013); smaller

than RAM 14000 (325 mm). As reported in Horner & Currie (1994), much of the cortex

comprises woven bone organized around primary vascular canals. The published image

shows a looser compacta relative to RAM 14000, but images of the full cross-section show a

great deal of similarity in terms of the organization and patterning of primary osteons and

compactness of the bone in the outer cortex (JR Horner, pers. comm. to S Werning, 2013).

No LAGs were reported for MOR 548 (Horner & Currie, 1994).

The bone microstructure of an ontogenetic series of the saurolophine Maiasaura has

also been described (Horner, de Ricqlès & Padian, 2000). RAM 14000 is intermediate in

size between the Maiasaura juveniles YPM-PU-22472 and MOR-005JV in size (18 cm and

50 cm femur length, respectively; Horner, de Ricqlès & Padian, 2000) and compares well

histologically to Maiasaura juveniles in most respects. Horner and colleagues note primary

osteons with distinct/organized lamellae surrounding the vessels. These primary canals are

most commonly longitudinal canals arranged in parallel circumferential rows, but also in

laminar and even plexiform patterns. LAGs are rare in juveniles, despite being “animals of

considerable size” (Horner, de Ricqlès & Padian, 2000; p. 119), although a LAG occurs in

some elements of MOR-005JV (ibid.). RAM 14000 differs from Maiasaura juveniles in that
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it does not exhibit secondary osteons at the mid-diaphysis, though they occur in the more

proximal section.

Given that RAM 14000 was clearly still growing at the time of its death, and that

the skeletal morphology and bone microstructure are similar to juveniles of other

hadrosaurids, we hypothesize that RAM 14000 was a large juvenile. Cooper et al. (2008)

estimated growth curves for Hypacrosaurus based on LAG circumferences throughout the

ontogeny of MOR 549, an adult. Using their models, we reconstruct an age of ∼1 year for

juveniles the size of MOR 548, though again, no LAGs were reported by Horner & Currie

(1994). A single LAG was reported in some elements of MOR-005JV (Horner, de Ricqlès &

Padian, 2000), a juvenile Maiasaura that showed similar histology to RAM 14000. Because

no LAGs occur in the similarly sized RAM 14000, we tentatively suggest that the animal was

under a year of age at the time of death. However, we note that the number of hadrosaurids

with good ontogenetic sampling is still very low (only Maiasaura and Hypacrosaurus),

and so our estimate will need revision if future studies show that hadrosaurids sustained

uninterrupted high growth rates for longer than the first year of growth.

If our estimates of age and size for RAM 14000 are correct, Parasaurolophus must have

experienced extremely rapid growth rates. Our results suggest that RAM 14000 reached

25–32% of adult size (based on total body length length and skull length, respectively) in

less than a year. Growth curves based on estimates of circumference and mass (as derived

from circumference), have been modeled for Hypacrosaurus (Cooper et al., 2008) and

Maiasaura (Erickson, Rogers & Yerby, 2001) Because we lack histological samples from any

adult Parasaurolophus specimens, we cannot construct growth curves directly comparable

to those estimated for Hypacrosaurus and Maiasaura. However, our estimates of growth

(25–32% of adult size in less than a year) are reasonable based on the ontogeny of femoral

length reconstructed for both Maiasaura and Hypacrosaurus.

MOR-005JV, a juvenile Maiasaura, was estimated to be one year old at time of death

by Erickson, Rogers & Yerby (2001). That individual had a femoral length half that of

MOR-005A (50 cm vs. 100 cm; Horner, de Ricqlès & Padian, 2000), an adult specimen

estimated to be six years old at time of death (Erickson, Rogers & Yerby, 2001). MOR 548,

a juvenile Hypacrosaurus approximately 1 year old (see above) had a femur of 23 cm,

whereas the adult MOR 549 had a femur 102 cm long (Horner, de Ricqlès & Padian, 1999).

In light of similarly rapid first-year growth in these other hadrosaurids, our assessment for

Parasaurolophus is reasonable.

Ontogeny in Parasaurolophus

Accepting the identification of RAM 14000 as a juvenile Parasaurolophus, several notable

ontogenetic changes can be inferred for the skull and postcrania in this taxon. Some

of these are consistent with previous reports on other lambeosaurines, but others are

exclusive to Parasaurolophus. Because the following discussion includes at least three

different species (P. walkeri, P. cyrtocristatus, and P. tubicen), we caution that some

ontogenetic changes may be more phylogenetically restricted than indicated here.
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Nonetheless, broad similarities across Parasaurolophus species imply that many changes

are universal to the taxon.

The crest of RAM 14000 differs from that of all known adult Parasaurolophus in several

important ways. First, the crest in RAM 14000 is restricted to a low eminence rather than

an elongated, curved tube that overhangs the braincase (Figs. 11A and 11C) . Second, the

crest in RAM 14000 is bordered caudally and at its apex by the nasal. Although the exact

sutural relations of adult Parasaurolophus are controversial (e.g., differing reconstructions

in Weishampel & Jensen, 1979; Fig. 2, versus Sullivan & Williamson, 1999; Fig. 5), it seems

likely that the nasal formed only a small portion of the ventral margin of the crest in adult

individuals (Sullivan & Williamson, 1999). Thus, the already minimal contribution of the

nasal was further minimized through ontogeny. Third, the premaxilla-nasal fontanelle is

open, whereas it is completely closed in all other, ontogenetically older specimens.

These differences between the crests of juvenile and adult Parasaurolophus are intimately

tied to ontogenetic changes in the braincase. The frontal of Parasaurolophus thickened and

achieved a nearly vertical contact with the nasal only in later ontogenetic stages. At the

latest, this occurred by the time the individual reached half of adult skull size (Evans, Reisz

& Dupuis, 2007). Finally, a broad nasal-frontal suture also only occurred at half maximum

skull size. In all of these details, where known, RAM 14000 is more similar to juveniles of

most lambeosaurin species than to subadult or adult Parasaurolophus.

Based on reconstructions of the nasal passages in Parasaurolophus (Fig. 11), RAM 14000

indicates that several important transformations occurred as the crest elongated. The

lateral diverticulum exhibits perhaps the most notable changes. In the smallest juvenile

condition (Fig. 11C), the diverticulum completely obscures the main airway in lateral view.

In adults (P. walkeri, P. tubicen, and P. cyrtocristatus; Fig. 11A), the main airway greatly

exceeded the extent of the lateral diverticulum, as well as bounding the diverticulum

dorsally and ventrally. Additionally, the lateral diverticulum is reconstructed as a single

blind chamber in adult P. cyrtocristatus, whereas it is clearly looped in young juveniles

(however, a looped lateral diverticulum has been reconstructed for P. tubicen; Sullivan &

Williamson, 1999). Additional information (particularly for adult Parasaurolophus from

the Kaiparowits Formation) may revise this reconstructed sequence. In any case, juvenile

Parasaurolophus differ markedly in most aspects of their nasal passages from all known

adult Parasaurolophus as well as from lambeosaurins of all ontogenetic stages. The only

major feature that appears to be constant is the lack of an S-loop; Parasaurolophus lacks

this feature throughout ontogeny, whereas lambeosaurins retain the feature throughout

ontogeny (Evans, Ridgely & Witmer, 2009).

The extent of the contributions of the nasal and premaxillae to the crest in Parasaurolo-

phus has been a long-standing problem (summarized in Sullivan & Williamson, 1999).

Based on the new information from RAM 14000 and comparison with lambeosaurins,

we offer some new observations. In lambeosaurins, the relationships of different sections

of the nasal passages (e.g., lateral diverticulum) and the surrounding bones (premaxillae

and nasals) are relatively invariant through ontogeny. For instance, the nasal bounds

the caudal edge of the lateral diverticulum in juvenile (ROM 759) and subadult (CMN
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34825) Corythosaurus (Evans, Ridgely & Witmer, 2009). A similar relationship exists

between the nasal and the lateral diverticulum in RAM 14000. Unlike lambeosaurins,

adult Parasaurolophus have a much more extensive lateral diverticulum (occupying up

to half the length of the crest; e.g., Fig. 11A). However, the most recent interpretation of

the crest sutures require that the lateral diverticulum, particularly at its caudal end, be

enclosed nearly exclusively by the premaxillae (Sullivan & Williamson, 1999). In contrast,

Weishampel (1981b) proposed that the nasals in P. walkeri (ROM 768) reached to the

mid-length of the crest (see Fig. 2H in that paper). This is roughly coincidental with

the extent of the lateral diverticula in P. walkeri. We thus summarize two alternative

hypotheses: (1) the relationships between the bony elements and the nasal passages were

highly plastic through ontogeny in Parasaurolophus, due in part to its massive crest, and

the crest predominantly is composed of the premaxillae; or (2) the nasal forms a major

portion of the crest. We speculate that the latter hypothesis is most likely, based on

the lateral diverticulum. Unfortunately, sutures are ambiguous in many skulls of adult

Parasaurolophus due to crushing or fusion, and thus a rigorous test of the hypothesis will

require description of better material and other ontogenetic stages.

The morphology of RAM 14000 also implies that several features of the skull were

relatively invariant in Parasaurolophus throughout ontogeny. The narrow infratemporal

fenestra, constrained by a tightly angled jugal, occurs at all ontogenetic stages. The shape

of the oral margin of the premaxilla is also relatively unchanged through ontogeny. Finally,

the absence of an S-loop also appears to be invariant throughout ontogeny.

Ontogenetic changes in the postcrania of hadrosaurids are well-documented (Horner

& Currie, 1994; Dilkes, 2001; Suzuki, Weishampel & Minoura, 2004; Guenther, 2009;

Kilbourne & Makovicky, 2010). The patterns in RAM 14000 and Parasaurolophus, both

for limb proportions and overall morphology, generally are consistent with observations

from other taxa, particularly the lambeosaurine Hypacrosaurus stebingeri. Notably, the

distal expansion of the ischium is minimal in RAM 14000 (unlike adult individuals of

P. cyrtocristatus). Similar ontogenetic patterns in the ischium occur in H. stebingeri (Horner

& Currie, 1994), suggesting that this change is generalized across lambeosaurines with the

feature. The most dramatic changes are seen in the ilium, particularly in the reduced size of

the supraacetabular process relative to that in adult Parasaurolophus (Figs. 19C and 19D).

Again, this pattern is probably generalized across hadrosaurids (Guenther, 2009). The

humerus:femur ratio is approximately the same in RAM 14000 and adult Parasaurolophus

ROM 768 and FMNH P 27393 (0.53, 0.50, and 0.51, respectively), but the femur:fibula

ratio differs more strongly (1.14 and 1.24 in RAM 14000 and FMNH P 27393, respectively;

no complete tibias are known for adult Parasaurolophus). Thus, the portion of the leg

below the knee joint is slightly longer in the younger animal. This may differ from the

condition in Alligator mississippiensis, which shows isometry over the ontogeny of the

fibula relative to the femur (Livingston et al., 2009). Both Alligator and Parasaurolophus

seem to maintain a consistent humerus:femur ratio over ontogeny. Interestingly, this

differs from strong negative allometry seem in the latter ratio for Massospondylus, although

the sample in this case is much larger (Reisz et al., 2005). A broader sample of associated

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 71/83

https://peerj.com
http://dx.doi.org/10.7717/peerj.182


limb elements is needed to assess ontogenetic changes in limb proportions in hadrosaurids

relative to other archosaurs.

Cranial functional morphology

The rhamphotheca on the upper jaw resulted in a minor reduction in bite force at the tip

of the beak, relative to the condition without a rhamphotheca. Although this arguably

enforced a slight limitation on the type of food items that could be cropped and ingested,

a rhamphotheca would also have had some potential benefits. In particular, the expanded

keratinous structure would have increased the area available for cropping, and thus the

potential volume of food taken in per bite. Additionally, the rhamphotheca may have

allowed the hadrosaur to more efficiently crop plants at ground level, by moving the bite

point closer to the ground without having to bend the neck. The effect of a rhamphotheca

upon mastication is a topic worthy of additional exploration.

As expected by its smaller size and shorter airway, the crest of RAM 14000 produced a

higher resonant frequency than did the crests of adults (assuming that the structure was

indeed used in sound production). If such vocalizations played a role in the social behavior

of Parasaurolophus, perhaps in distinguishing different age categories, (Weishampel, 1981a;

Evans, Ridgely & Witmer, 2009), the vastly different frequencies of adult and juvenile

animals would have been easily distinguishable (Table 11).

Heterochrony in hadrosaurids and other ornithischians

Heterochrony—variation in developmental timing of the appearance of anatomical

features relative to the ancestral condition (e.g., Gould, 1977; Alberch et al., 1979;

Klingenberg, 1998; Smith, 2001)—presumably played an important part in the evolution

of lambeosaurine crests. A robust assessment of crest heterochrony requires knowledge

of the extent of crest development at given sizes and absolute ages for several taxa, in

addition to their stratigraphic ranges and phylogenetic relationships. Estimates of absolute

age for fossil taxa are only obtainable from skeletochronological assessments of bone

histology. Unfortunately, despite much higher taxonomic diversity within Ankylopollexia

and especially within Hadrosauridae, the vast majority of ornithopods sampled for

histological study fall outside Ankylopollexia (Werning, 2012). Prior to this study, only four

hadrosaurids had been sampled: Telmatosaurus (Benton et al., 2010), Maiasaura (Horner,

de Ricqlès & Padian, 2000; Horner, Padian & de Ricqlès, 2001), Hypacrosaurus (Horner &

Currie, 1994; Horner, de Ricqlès & Padian, 1999; Cooper et al., 2008), and Edmontosaurus

(“Anatosaurus”; Reid, 1985). Of these, the only lambeosaurine is Hypacrosaurus, a

lambeosaurin. Additionally, only the histology of Maiasaura has been studied throughout

ontogeny (Horner, de Ricqlès & Padian, 2000; Horner, Padian & de Ricqlès, 2001), and

growth curves have been estimated only for Maiasaura (Erickson, Rogers & Yerby, 2001)

and Hypacrosaurus (Cooper et al., 2008). Thus, the skeletochronological data necessary

to link skull size, body size, and crest development with age are virtually nonexistent for

lambeosaurines. This is especially unfortunate given that the phylogeny (e.g., Evans &

Reisz, 2007; Gates et al., 2007; Prieto-Márquez, 2010) and stratigraphic context (e.g., Ryan &

Evans, 2005; Mallon et al., 2012) of hadrosaurids is increasingly well resolved.
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Embryonic and post-hatchling material (Horner & Currie, 1994) necessarily imply

extremely young age (∼a few months at most) for such specimens. To date, only the

holotype specimen of Hypacrosaurus stebingeri, MOR 549, has been aged (Horner, de

Ricqlès & Padian, 1999; Cooper et al., 2008), with an estimate of approximately 13 years old.

This specimen is the only described adult specimen for H. stebingeri, and unsurprisingly

has the largest crest of any specimen. Nonetheless, the structure is still relatively modest

in size relative to the largest crests seen in specimens of Corythosaurus casuarius or

Hypacrosaurus altispinus. This may reflect taxonomic differences, individual variation,

sexual dimorphism, or another factor, but these hypotheses cannot be tested without a

larger sample.

Extrapolating from the growth curve presented for H. stebingeri, and assuming that

sexual maturity occurred at or near the growth curve inflection (Erickson et al., 2007; Lee

& Werning, 2008), sexual maturity occurred in this species at two to three years of age

(Cooper et al., 2008). The reconstructed mean femoral length at this point was 450 mm.

This is slightly smaller than the femoral lengths associated with juvenile skeletons referred

to H. stebingeri (590 mm and 522 mm for AMNH 5340 and 5461, respectively; Lull &

Wright, 1942; Evans, 2010). In both cases, the crest is only barely developed, suggesting that

crest development in H. stebingeri did not occur until after the onset of sexual maturity

but well before the animal reached full adult size. Additional histological work is needed

to test this hypothesis. Assuming that RAM 14000 was still in its exponential growth phase

(pre-inflection), a reasonable assumption given its bone microstructure, it had not yet

reached sexual maturity despite already initiating crest development.

Using skull length as a rough proxy for ontogenetic age, it is clear that Parasaurolo-

phus initiated externally visible crest development at a much earlier point than did

lambeosaurins (∼30% maximum skull size versus ∼50% maximum skull size exclusive

of the crest; Fig. 28). Juvenile lambeosaurins nearly twice the size of RAM 14000 have

far more subdued crests relative to the rest of the skull; a similar pattern is seen for

the potentially basal lambeosaurine Kazaklambia convincens. This could result from

different life history parameters (e.g., differences in overall growth rate or the onset of

sexual maturity), but we suggest it is more likely related to the larger and more “extreme”

nature of the crest in Parasaurolophus versus lambeosaurins. In other words, the crest

had to begin growth at an earlier stage in order to achieve its full extent. Within a

standard terminological framework for heterochrony, the earlier and more extreme final

development of the crest in Parasaurolophus relative to lambeosaurins is a classic example

of peramorphosis (sensu Alberch et al., 1979). Assuming that Kazaklambia convincens is a

basal lambeosaurine (Bell & Brink, in press), lambeosaurins such as Corythosaurus retained

the ancestral condition of crest development occurring relatively late in ontogeny (∼50%

maximum skull size). Parasaurolophus, relative to the ancestral condition, thus shows the

peramorphic phenomena of predisplacement (related to early onset of growth of the crest)

as well as probable hypermorphosis (continued, extreme growth of the crest).

Despite the differences in crest development between lambeosaurins and Parasaurolo-

phus, lambeosaurine hadrosaurids fit an overall pattern of relatively early development
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of bony cranial ornamentation in ornithischian dinosaurs. This contrasts with birds that

initiate crest growth only as the animal reaches nearly full adult size, such as the cassowary

(Fig. 28; Dodson, 1975). Two potential factors may contribute to these differences.

First, among neornithines, sexual maturity occurs well after somatic maturity (roughly

equivalent to full adult body size). This condition contrasts with that of non-avian

dinosaurs which apparently achieved sexual maturity well before somatic maturity

(Erickson et al., 2007; Lee & Werning, 2008). Thus, if cranial crests in ornithischians had

some species-specific display function—whether for species recognition, sexual selection,

or any related use—it is intuitive that the structures appeared before the animal reached

full adult body size, and conversely for neornithines.

A second important factor considers the integration of cranial ornamentation into the

overall skull in ornithischians versus avians. In birds such as cassowaries and hornbills,

the massive casques are simple “add-ons” to the overall skull, formed strictly of a bony

core without major involvement of respiratory or muscular systems (Rothschild, 1900;

A Farke, personal observation). By contrast, the crests of hadrosaurids are intimately

integrated with the respiratory system, by virtue of the airway passing through the crest

(Fig. 11). Thus, the crest had to form early in development, simply so that the animals

could continue to breathe. Similar constraints may have affected the frills of ceratopsians,

at least part of which supported jaw musculature (Rieppel, 1981). However, this does not

necessarily explain the early development of horns in ceratopsids (Horner & Goodwin,

2006), or nodes and spikes in pachycephalosaurs (Horner & Goodwin, 2009; Schott et

al., 2011), structures that seem to be decoupled from more “utilitarian” aspects of the

skull. Here, timing of sexual maturity may have played a role. We thus hypothesize that

development of different structures was subject to different constraints depending upon

their function and location.

CONCLUSIONS
RAM 14000 represents the smallest and most complete Parasaurolophus specimen

described to date and illustrates a unique juvenile morphology of this taxon relative to

other lambeosaurine dinosaurs. Based on histology of the tibia, RAM 14000 exhibits

no lines of arrested growth and thus was likely less than a year old at the time of death.

Notably, Parasaurolophus initiated crest development at a much smaller body size (and

presumably younger age) than did lambeosaurin lambeosaurines. At least in part, this

is probably because of the extreme morphology of the crest in Parasaurolophus, which

required a longer period of development.

The timing of the onset of ornamentation development varies dramatically across

amniotes, a topic that deserves considerably more attention. This timing is probably

influenced by life history traits such as the timing of reproductive maturity, functional de-

mands upon the skull, and phylogenetic history. As a group, lambeosaurine hadrosaurids

initiated crest growth well before reaching adult size (between 25 and 50 percent maximum

skull length), a condition shared with most other ornithischian dinosaurs with cranial

ornamentation. This may result from the intimate association of the ornamentation with
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essential functional complexes such as the nasal passages (in the case of hadrosaurids)

or musculature (in the case of ceratopsians). If cranial ornamentation played at least

some role in sexual selection and/or species recognition, early reproductive maturity may

also be related to the precocious development of such ornamentation. Understanding

these attributes in dinosaurs requires the documentation of more juvenile specimens

with associated skeletochronological data, as well as documentation of patterns in extant

species.
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des Sciences Naturelles, Zoologie, Paris 7:23–40 [In French with English summary].

Castanet J. 1986–1987. La squelettochronologie chez les Reptiles III. Application. Annales des

Sciences Naturelles, Zoologie, Paris 8:157–172 [In French with English summary].

Castanet J, Naulleau G. 1985. La squelettochronologie chez les Reptiles II. Résultats

expérimentaux sur la signification des marques de croissance squelettiques chez les Serpents.
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Gates TA, Sampson SD, De Jesús CRD, Zanno LE, Eberth D, Hernandez-Rivera R,

Martı́nez MCA, Kirkland JI. 2007. Velafrons coahuilensis, a new lambeosaurine hadrosaurid

(Dinosauria: Ornithopoda) from the late Campanian Cerro del Pueblo Formation,

Coahuila, Mexico. Journal of Vertebrate Paleontology 27:917–930 DOI 10.1671/0272-

4634(2007)27[917:VCANLH]2.0.CO;2.

Gering DT, Nabavi A, Kikinis R, Grimson WEL, Hata N, Everett P, Jolesz F, Wells WM. 1999.

An integrated visualization system for surgical planning and guidance using image fusion

and interventional imaging. In: Taylor C, Colchester A, eds. Medical image computing and

computer-assisted intervention – MICCAI’99, Lecture Notes in Computer Science. Heidelberg:

Springer Berlin, 809–819.

Godefroit P, Alifanov V, Bolotsky Y. 2004. A re-appraisal of Aralosaurus tuberiferus (Dinosauria,

Hadrosauridae) from the Late Cretaceous of Kazakhstan. Bulletin de l’Institut Royal Des Sciences

Naturelles de Belgique. Sciences de La Terre 74:139–154.

Godefroit P, Bolotsky Y, Alifanov V. 2001. The Maastrichtian (Late Cretaceous) lambeosaurine

dinosaur Charonosaurus jiayinensis from north-eastern China. Bulletin de l’Institut Royal Des

Sciences Naturelles de Belgique. Sciences de La Terre 74:139–154.

Gould SJ. 1977. Ontogeny and phylogeny. Cambridge: Harvard University Press, 522 pp.

Guenther MF. 2009. Influence of sequence heterochrony on hadrosaurid dinosaur postcranial

development. The Anatomical Record 292:1427–1441 DOI 10.1002/ar.20988.

Heaton MJ. 1972. The palatal structure of some Canadian Hadrosauridae (Reptilia: Ornithischia).

Canadian Journal of Earth Sciences 9:185–205 DOI 10.1139/e72-015.

Herrel A, Gibb AC. 2006. Ontogeny of performance in vertebrates. Physiological and Biochemical

Zoology 79:1–6 DOI 10.1086/498196.

Herrel A, O’Reilly JC. 2006. Ontogenetic scaling of bite force in lizards and turtles. Physiological

and Biochemical Zoology 79:31–42 DOI 10.1086/498193.

Hone DWE, Naish D, Cuthill IC. 2012. Does mutual sexual selection explain the evolution of head

crests in pterosaurs and dinosaurs? Lethaia 45:139–156 DOI 10.1111/j.1502-3931.2011.00300.x.

Horner JR, Currie PJ. 1994. Embryonic and neonatal morphology and ontogeny of a new species

of Hypacrosaurus (Ornithischia, Lambeosauridae) from Montana and Alberta. In: Dinosaur eggs

and babies. Cambridge: Cambridge University Press, 312–336.

Horner JR, de Ricqlès A, Padian K. 1999. Variation in dinosaur skeletochronology indicators:

implications for age assessment and physiology. Paleobiology 25:295–304.

Horner JR, de Ricqlès A, Padian K. 2000. Long bone histology of the hadrosaurid

dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an

ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20:115–129

DOI 10.1671/0272-4634(2000)020[0115:LBHOTH]2.0.CO;2.

Horner JR, de Ricqlès A, Padian K, Scheetz RD. 2009. Comparative long bone histology and

growth of the “hypsilophodontid” dinosaurs Orodromeus makelai, Dryosaurus altus, and

Tenontosaurus tillettii (Ornithischia: Euornithopoda). Journal of Vertebrate Paleontology

29:734–747 DOI 10.1671/039.029.0312.

Horner JR, Goodwin MB. 2006. Major cranial changes during Triceratops ontogeny. Proceedings of

the Royal Society B: Biological Sciences 273:2757–2761 DOI 10.1098/rspb.2006.3643.

Farke et al. (2013), PeerJ, DOI 10.7717/peerj.182 79/83

https://peerj.com
http://dx.doi.org/10.1111/j.1096-3642.2007.00349.x
http://dx.doi.org/10.1671/0272-4634(2007)27[917:VCANLH]2.0.CO;2
http://dx.doi.org/10.1671/0272-4634(2007)27[917:VCANLH]2.0.CO;2
http://dx.doi.org/10.1002/ar.20988
http://dx.doi.org/10.1139/e72-015
http://dx.doi.org/10.1086/498196
http://dx.doi.org/10.1086/498193
http://dx.doi.org/10.1111/j.1502-3931.2011.00300.x
http://dx.doi.org/10.1671/0272-4634(2000)020[0115:LBHOTH]2.0.CO;2
http://dx.doi.org/10.1671/039.029.0312
http://dx.doi.org/10.1098/rspb.2006.3643
http://dx.doi.org/10.7717/peerj.182


Horner JR, Goodwin MB. 2009. Extreme cranial ontogeny in the Upper Cretaceous dinosaur

Pachycephalosaurus. PLoS ONE 4:e7626 DOI 10.1371/journal.pone.0007626.

Horner JR, Padian K, de Ricqlès A. 2001. Comparative osteohistology of some embryonic and

perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology

27:39–58 DOI 10.1666/0094-8373(2001)027<0039:COOSEA>2.0.CO;2.

Horner JR, Weishampel DB, Forster CA. 2004. Hadrosauridae. In: Weishampel DB, Dodson P,

Osmólska H, eds. The Dinosauria. 2nd ed. Berkeley: University of California Press, 438–463.

Kilbourne BM, Makovicky PJ. 2010. Limb bone allometry during postnatal ontogeny in

non-avian dinosaurs. Journal of Anatomy 217:135–152 DOI 10.1111/j.1469-7580.2010.01253.x.

Klingenberg CP. 1998. Heterochrony and allometry: the analysis of evolutionary change in

ontogeny. Biological Reviews 73:79–123 DOI 10.1017/S000632319800512X.
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