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ABSTRACT

Diplodocids are among the best known sauropod dinosaurs. Numerous specimens of

currently 15 accepted species belonging to ten genera have been reported from the

Late Jurassic to Early Cretaceous of North and South America, Europe, and Africa.

The highest diversity is known from the Upper Jurassic Morrison Formation of the

western United States: a recent review recognized 12 valid, named species, and possibly

three additional, yet unnamed ones. One of these is herein described in detail and

referred to the genus Galeamopus. The holotype specimen of Galeamopus pabsti sp.

nov., SMA 0011, is represented by material from all body parts but the tail, and was

found at the Howe-Scott Quarry in the northern Bighorn Basin in Wyoming, USA.

Autapomorphic features of the new species include a horizontal canal on the maxilla

that connects the posterior margin of the preantorbital and the ventral margin of the

antorbital fenestrae, a vertical midline groove marking the sagittal nuchal crest, the

presence of a large foramen connecting the postzygapophyseal centrodiapophyseal fossa

and the spinopostzygapophyseal fossa of mid- and posterior cervical vertebrae, a very

robust humerus, a laterally placed, rugose tubercle on the concave proximal portion of

the anterior surface of the humerus, a relatively stout radius, the absence of a distinct

ambiens process on the pubis, and a distinctly concave posteroventral margin of the

ascending process of the astragalus. In addition to the holotype specimen SMA 0011,

the skull USNM 2673 can also be referred to Galeamopus pabsti. Histology shows that

the type specimen SMA 0011 is sexually mature, although neurocentral closure was not

completed at the time of death. Because SMA 0011 has highly pneumatized cervical

vertebrae, the development of the lamination appears a more important indicator for

individual age than neurocentral fusion patterns. SMA 0011 is one of very few sauropod

specimens that preserves the cervico-dorsal transition in both vertebrae and ribs. The

association of ribs with their respective vertebrae shows that the transition between

cervical and dorsal vertebrae is significantly different in Galeamopus pabsti than in

Diplodocus carnegii or Apatosaurus louisae, being represented by a considerable short-

ening of the centra from the last cervical to the first dorsal vertebra. Diplodocids show

a surprisingly high diversity in the Morrison Formation. This can possibly be explained

by a combination of geographical and temporal segregation, and niche partitioning.
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INTRODUCTION

Diplodocidae is one of the best known groups of sauropod dinosaurs. The anatomy and

relationships of its members are well studied (e.g., Osborn, 1899; Hatcher, 1901; Holland,

1924; Gilmore, 1932; Gilmore, 1936; McIntosh & Berman, 1975; Berman & McIntosh,

1978; Gillette, 1991; Upchurch, Tomida & Barrett, 2004; McIntosh, 2005; Whitlock, 2011a;

Mannion et al., 2012; Tschopp & Mateus, 2013b; Gallina et al., 2014; Tschopp, Mateus &

Benson, 2015). Diplodocidae is subdivided into the two subgroups Apatosaurinae and

Diplodocinae. Apatosaurinae includes the genera Apatosaurus and Brontosaurus, whereas

diplodocines are more diverse (Tschopp, Mateus & Benson, 2015). The earliest confirmed

report of a diplodocine occurs in the Oxfordian (Late Jurassic) of Georgia (Gabunia et al.,

1998;Mannion et al., 2012). In the Kimmeridgian and Tithonian, diplodocids reached their

highest diversity, and are known from deposits across theWestern United States, Tanzania,

Portugal, Spain, Argentina, Chile, and possibly Zimbabwe and England (Mannion et

al., 2012; Rauhut, Carballido & Pol, 2015; Salgado et al., 2015; Tschopp, Mateus & Benson,

2015). The most recent occurrence is from the late Berriasian to early Valanginian of

Argentina (Whitlock, D’Emic & Wilson, 2011; Gallina et al., 2014; Tschopp, Mateus &

Benson, 2015).

The Upper Jurassic Morrison Formation of the western USA yielded the highest

diversity of diplodocid sauropods worldwide. Although it has been studied since the

1870s, which led to the first descriptions of diplodocid sauropods (Amphicoelias Cope,

1877; Apatosaurus Marsh, 1877, Diplodocus Marsh, 1878; Brontosaurus Marsh, 1879), new

species have continued to be discovered in the Morrison Formation until the present

(Kaatedocus siberi; Tschopp & Mateus, 2013b). Recently, an extensive phylogenetic analysis

of the clade Diplodocidae at the specimen-level recognized yet another genus, typified

by a species previously included in Diplodocus: ‘‘D. ’’ hayi was found as the sister taxon

to Diplodocus and more derived diplodocines by Tschopp, Mateus & Benson (2015), who

created the new genus Galeamopus for the species, and referred three more specimens

to the same genus, but not necessarily the same species: AMNH 969 (a skull, atlas and

axis previously identified as Diplodocus), SMA 0011 (a semi-articulated skeleton including

cranial, axial, and appendicular elements), and USNM 2673 (a partial skull previously

referred to Diplodocus as well, and used as the basis for the skull attached to the mounted

skeleton of the Diplodocus carnegii holotype CM 84; McIntosh, 1981). Here, we provide

a detailed description of the specimen SMA 0011, thereby also illuminating the osteology

of the genus Galeamopus. We show that differences between SMA 0011 and the holotype

of Galeamopus hayi (HMNS 175) are numerous, thus supporting the claims of Tschopp,

Mateus & Benson (2015) that SMA 0011 represents a second species within Galeamopus,

which will be named G. pabsti sp. nov.
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Figure 1 Locality of the Howe Ranch. The Ranch is situated in the vicinity of Shell, Wyoming (B, star),

with a detailed map of the three most important sites on the Ranch (C). (B) is modified from Christiansen

& Tschopp, 2010, (C) copyright by the Sauriermuseum Aathal, modified with permission.

Howe Ranch: a rediscovered diplodocid El Dorado

The specimen SMA 0011 was found at the Howe-Scott Quarry on the Howe Ranch.

The several sites on the ranch have produced a high number of partially to almost

completely articulated dinosaur skeletons, sometimes even with soft tissue preservation

(see Brinkmann & Siber, 1992; Ayer, 2000; Schwarz et al., 2007; Siber & Möckli, 2009;

Christiansen & Tschopp, 2010; Tschopp & Mateus, 2013b; Tschopp et al., 2015). Three sites

have proved particularly productive: theHoweQuarry, theHowe-StephensQuarry, and the

Howe-Scott Quarry (Fig. 1). The Howe Quarry was first worked by Barnum Brown for the

American Museum of Natural History (New York, USA) in 1934, and was later relocated

and completely excavated by a team from the Sauriermuseum Aathal (Switzerland), led

by Hans-Jakob ‘Kirby’ Siber (Brown, 1935; Ayer, 2000; Michelis, 2004; Tschopp & Mateus,

2013b). The other two sites, as well as several smaller, less productive spots at various

stratigraphic levels within the Morrison Formation, have since been discovered nearby

and excavated by the SMA (Ayer, 2000; Siber & Möckli, 2009; Christiansen & Tschopp,

2010; Fig. 2). All three major sites yielded well-preserved and at least partially articulated

diplodocid specimens of varying ontogenetic stages. Only one of these specimens has

yet been formally described (even including the AMNH material from 1934), and now

constitutes the holotype of Kaatedocus siberi (Tschopp & Mateus, 2013b). Herein, we

provide the detailed description of a second diplodocid specimen from this locality.
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Figure 2 Stratigraphy of the Morrison Formation at Howe Ranch. The levels of the three most impor-

tant quarries on the Howe Ranch. The red line marks the clay change which has been proposed as marker

bed to correlate sites across the Morrison Formation. Copyright by Jacques Ayer (2005), modified with

permission.
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MATERIAL

Locality

The Howe-Scott Quarry, where SMA 0011 was found, is located between the better known

Howe Quarry (Brown, 1935; Ayer, 2000; Michelis, 2004; Tschopp & Mateus, 2013b) and the

Howe-Stephens Quarry (Ayer, 2000; Schwarz et al., 2007; Christiansen & Tschopp, 2010;

Fig. 1). The site was found in 1995 by a team from the Sauriermuseum Aathal, Switzerland,

and excavated in three periods (1995, 2000, 2002–2003). Stratigraphically, it lies just

slightly above the Howe-Stephens Quarry, 30 m above the J-5, and 30 m below the K-1

unconformities, which define the lower and upper limits of the Morrison Formation,

respectively (Michelis, 2004; Fig. 2). In addition to SMA 0011, five partial diplodocid

specimens (mostly appendicular material), a possible brachiosaur hindlimb, two partly-

to-almost complete Hesperosaurus (Ornithischia, Stegosauria), some Othnielosaurus bones

(Ornithischia, Neornithischia), numerous shed theropod teeth, carbonized wood, and vari-

ous freshwater shells were recovered at the Howe-Scott Quarry (Michelis, 2004; E Tschopp,

pers. obs., 2003). However, none of these specimens has yet been formally described.

Specimen

The specimen SMA 0011 (nicknamed ‘‘MaX’’) consists of an almost complete disarticulated

skull, 13 cervical vertebrae (probably CV 1–10, and the three posterior-most cervical

vertebrae, see below), dorsal vertebrae 1–2 and the last six presacral vertebrae (possibly

DV 5–10), several cervical, dorsal, and sternal ribs, a partial sacrum, both scapulae and

coracoids, both humeri, the left ulna, radius and manus, the right ilium, both pubes, the

left proximal ischium, the left femur, tibia, fibula and nearly complete pes. The specimen

was found in two parts: (1) skull and vertebral column from the atlas to DV 2, and (2) 6

dorsal vertebrae, sacrum, and appendicular elements (Fig. 3). It is interpreted to belong to

a single individual due to matching size, no overlap of elements, and an extremely similar

pattern of neurocentral closure in cervical and dorsal vertebrae (see below). Other elements

found close to the bones belonging to the holotype can be excluded from the individual

due to significant size differences and doubling of elements.

SYSTEMATIC PALEONTOLOGY

Dinosauria Owen, 1842

SauropodaMarsh, 1878

Eusauropoda Upchurch, 1995

Neosauropoda Bonaparte, 1986

DiplodocoideaMarsh, 1884

Flagellicaudata Harris & Dodson, 2004

DiplodocidaeMarsh, 1884

DiplodocinaeMarsh, 1884

Galeamopus Tschopp, Mateus & Benson, 2015
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Figure 3 Quarry map of SMA 0011.Note the separation of the cervical series and the skull from the dor-

sal column and the appendicular skeleton, and the articulated block of dorsal vertebrae that do not belong

to SMA 0011 (see arrowhead between horizontal lines 15 and 16). Abb.: bc, braincase; co, coracoid; CR,

cervical rib; CV, cervical vertebra; DR, dorsal ribs; DV, dorsal vertebra; fe, femur; fi, fibula; fl, forelimb; h,

humerus; hl, hindlimb; il, ilium; is, ischium; ma, manus; pcg, pectoral girdle; pe, pes; pu, pubis; pvg, pelvic

girdle; r, radius; sc, scapula; SR, sternal ribs; SV, sacral vertebrae; ti, tibia; u, ulna. Map drawn by Esther

Premru, copyright by Sauriermuseum Aathal, modified with permission.

Type species. Diplodocus hayi Holland, 1924

Revised diagnosis. Galeamopus is a diplodocid sauropod that can be diagnosed by nine

autapomorphies. The phylogenetic analysis (see below) recovered three autapomorphies

that were not shared with other diplodocine specimens: (1) the interpostzygapophyseal

lamina of mid- and posterior cervical neural arches does not project beyond the posterior

margin of the neural arch (unique among Diplodocinae; already proposed by Tschopp,

Mateus & Benson, 2015); (2) an approximately right angle formed by the ventral margin of
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the preacetabular lobe of the ilium and the pubic peduncle (unique among Diplodocinae);

and (3) the lateral edge of the proximal end of the tibia forms a pinched out projection,

posterior to the cnemial crest (unique among Diplodocidae; proposed as diagnostic for the

species G. hayi by Tschopp, Mateus & Benson, 2015, but see below).

Additional autapomorphies that could not be found directly by the analysis due to the

lack of anatomical overlap with the sister clade in crucial skeletal regions as for instance the

skull, or because of the absence of characters coding for that particular feature, include the

following (most of them were already identified by Tschopp, Mateus & Benson, 2015): (4)

teeth with paired wear facets (unique among Flagellicaudata; Tschopp, Mateus & Benson,

2015); (5) well-developed anteromedial processes on the atlantal neurapophyses, which

are distinct from the posterior wing (unique among Diplodocoidea; Tschopp, Mateus &

Benson, 2015); (6) the atlantal neural arch bears a small subtriangular, laterally projecting

spur at its base (unique among Diplodocidae; Tschopp, Mateus & Benson, 2015); (7) the

posterior wing of atlantal neurapophyses remains of subequal width alongmost of its length

(unique among Diplodocidae; Tschopp, Mateus & Benson, 2015); (8) the axial prespinal

lamina develops a transversely expanded, knob-like tuberosity at its anteroventral extremity

(unambiguous; Tschopp, Mateus & Benson, 2015); and (9) the loss of strong opisthocoely

between dorsal centra 1 and 2 (unique among Diplodocidae).

Galeamopus hayi Holland, 1924

Holotype. HMNS 175 (formerly CM 662).

Revised diagnosis. Some of the autapomorphies of the species Galeamopus hayi proposed

by Tschopp, Mateus & Benson (2015) are actually also present in the second species named

below (and were thus moved to the generic diagnosis), and some new apomorphic features

were recognized during the present study (see ‘Discussion’). Autapomorphies recovered by

the phylogenetic analysis but shared with other diplodocine specimens are not considered

valid here. The revised list of autapomorphies of G. hayi includes the following four

autapomorphies: (1) dorsoventral height of the parietal occipital process is low, subequal

to less than the diameter of the foramen magnum (unique among Diplodocinae; Tschopp,

Mateus & Benson, 2015); (2) an ulna to humerus length of more than 0.76 (unique within

Diplodocoidea;Tschopp, Mateus & Benson, 2015); (3) distal articular surface for the ulna on

the radius is reduced and relatively smooth (unique within Diplodocidae; Tschopp, Mateus

& Benson, 2015); (4) a rhomboid outline of the proximal articular surface of metatarsal V

(unique within Diplodocinae).

Referred specimen. AMNH 969, a nearly complete skull and articulated atlas and axis.

Locality and horizon. Galeamopus hayi is known from two quarries in the Upper Jurassic

Morrison Formation of Wyoming: the Red Fork of the Powder River, Johnson County,

(HMNS 175) on the eastern slopes of the Bighorn mountains, and the Bone Cabin Quarry

in Albany County (AMNH 969).
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Galeamopus pabsti sp. nov.

Tschopp, Mateus & Benson (2015), figs. 1E, 2B, 3D, 7G, 36, 41B, 44B, 46C, 49B,
50B, 69B, 93A; Figs. 4–77.

Holotype. SMA 0011: partial skull, 13 cervical vertebrae, 8 dorsal vertebrae, partial sacrum,

cervical, dorsal, and sternal ribs, both scapulae and coracoids, both humeri, left ulna,

radius, and manus (including one carpal element), right ilium and pubis, left ischium, left

femur, tibia, fibula, astragalus, and pes.

Diagnosis. Galeamopus pabsti can be diagnosed by the following 14 autapomorphies: (1)

horizontal canal connecting the posterior margin of the preantorbital and the ventral

margin of the antorbital fenestra laterally on the maxilla (unambiguous); (2) the sagittal

nuchal crest on the supraoccipital is marked by a vertical midline groove (unique among

non-somphospondylian sauropods); (3) anterior cervical vertebrae are much higher than

wide (>1.2; unique among Diplodocinae); (4) the posterior centrodiapophyseal and

the postzygodiapophyseal laminae of mid- and posterior cervical vertebrae do not meet

anteriorly at the base of the transverse process (unique among Diplodocinae); (5) mid-

and posterior cervical vertebrae with a large opening connecting the postzygapophyseal

centrodiapophyseal fossa and the spinopostzygapophyseal fossa (unambiguous); (6) a low

EI of posterior cervical centra (<2.0; unique among Diplodocinae); (7) a low acromion

height to scapular length ratio (<0.46; unique among Flagellicaudata); (8) a robust humerus

(RI > 0.33; unique among Diplodocinae); (9) the lateral displacement of the distinct rugose

tubercle on the concave proximal portion of the anterior surface of the humerus (unique

within Diplodocidae); (10) the maximum diameter of the proximal end of the radius

divided by its greatest length is 0.3 or greater (unique amongDiplodocinae); (11) the longest

metacarpal is at least 0.4 times the length of the radius (unique among Diplodocinae);

(12) the proximal articular surface of metacarpal V is significantly larger than the surfaces

of metacarpals III and IV (unique among Diplodocidae); (13) a subrectangular proximal

articular surface of the tibia (unique among Diplodocinae); and (14) the ascending process

of the astragalus has a concave posteroventral margin, resulting in the presence of two

distinct, rounded posterior processes in ventral view (unique among Diplodocoidea).

Etymology. The species name ‘‘pabsti’’ honors the finder of the holotype specimen, Dr.

Ben Pabst (born in Vienna, Austria, in January 26, 1949), who also created the skull

reconstruction and led the repreparation of the specimen and its mount at SMA. Pabst has

led several paleontological excavations in Switzerland and the USA, and is highly skilled in

fossil preparation and skeleton mounting.

Referred specimens. USNM 2673, a partial skull.

Locality and horizon.Galeamopus pabsti is known from two quarries in the Upper Jurassic

Morrison Formation of Wyoming and Colorado: the Howe-Scott Quarry (SMA 0011)

on the western slopes of the Bighorn mountains, and Felch Quarry 1 near Garden Park,

Fremont County, in Colorado (USNM 2673). Felch Quarry 1 has been dated to 152.29 ±

0.27 (Trujillo & Kowallis, 2015).

Comments. The holotype specimen SMA 0011 is housed at Sauriermuseum Aathal,

Switzerland. This museum is open to the public, and specimens are available for study by
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researchers (see Schwarz et al., 2007; Klein & Sander, 2008; Christiansen & Tschopp, 2010;

Carballido et al., 2012; Klein, Christian & Sander, 2012; Tschopp & Mateus, 2013a; Tschopp

& Mateus, 2013b; Foth et al., 2015; Tschopp, Mateus & Benson, 2015). The excavations are

very well documented, and the preparation of the material follows the latest scientific

standards. The museum recognizes the scientific importance of holotype specimens, and

takes all efforts to preserve them and provide permanent public access. The policy is publicly

stated on their homepage (http://www.sauriermuseum.ch/de/museum/wissenschaft/

wissenschaft.html). These efforts were recently acknowledged by the University of Zurich,

Switzerland, through the attribution of a Dr. honoris causa to the founder and director of

the Sauriermuseum Aathal, Hans-Jakob Siber.

The specimen itself is currently on display as a mounted skeleton. Completely prepared

elements that are difficult to access in the mount were molded, and high-quality casts

are stored in the SMA collections. A detailed account of the excavation, preparation,

documentation, and mount will be published elsewhere.

The electronic version of this article in Portable Document Format (PDF) will represent

a published work according to the International Commission on Zoological Nomenclature

(ICZN), and hence the new names contained in the electronic version are effectively

published under that Code from the electronic edition alone. This published work

and the nomenclatural acts it contains have been registered in ZooBank, the online

registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any standard web browser by

appending the LSID to the prefix http://zoobank.org/. The LSID for this publication

is: urn:lsid:zoobank.org:pub:93B626A1-BF8E-4865-A76E-551EE78C9D92. The online

version of this work is archived and available from the following digital repositories: PeerJ,

PubMed Central and CLOCKSS.

DESCRIPTION OF SMA 0011

Terminology. Anatomical terms used here follow the traditional use of anterior and

posterior instead of cranial and caudal (Wilson, 2006). Directional terms in the skull

descriptions are used in relation to a horizontally oriented tooth-bearing edge of the

maxilla. Terminology for axial and appendicular elements is explained in further detail

below, given the extensive descriptive subsections.

Cranial skeleton
Skull (Figs. 4–16; Table 1)

Preservation. The skull of Galeamopus pabsti SMA 0011 is nearly complete. The only

bones lacking are the left maxilla and quadrate, the right lacrimal, and the bones from

the palate with the exception of the right pterygoid. The skull has a typically diplodocid

shape. It is elongate, with the external nares retracted and dorsally facing, and has slender,

peg-like teeth (Figs. 4–7). Given the completeness of the skull, a reconstruction was created

in cooperation with the Portuguese illustrator Simão Mateus (Fig. 7; Mateus & Tschopp,

2017). When compared with recent reconstructions of the skull of Diplodocus (Wilson &
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Table 1 Skull measurements ofGaleamopus pabsti SMA 0011 (in mm, asterisks indicates estimated dimensions).

Element ap
L

ap
rL

vL tb
L

o
cL

p
p
rL

m
in

ap
W

m
ax

ap
W

aW m
in
W

m
ax
W

p
W

d
W

n
W

m
in
H

m
ax
H

ap
H

Premaxilla R 325 47 13 46

L 320 47 12 45

Maxilla R 354 225 120 246 210

Preantorbital fossa R 73

Preantorbital fenestra R 45

Prefrontal R 63 53 37

L 67 43 34

Frontal R 73 41 69 90

L 74 44 68 84

Postorbital R 139 20 41 63 10

L 116 24 42 68 11

Jugal R 121 58 81

L 133 68 93

Quadratojugal R 182 154 59

L 149 106 51

Lacrimal L 62 12 13 15 10* 56

Quadrate R 148

Squamosal R >40 23 63

L >59 22 60

Parietal R 69 3 19

L 62 6 15

Supraoccipital – 28 59

Exoccipital–
opisthotic complex

– 150

Paroccipital process R 23

L 23

Occipital condyle – 29 39 42

Foramen magnum – 27 17

Posttemporal fenestra R 23

L 24

Basioccipital – 30

Basal tubera – 42 8

Basipterygoid process R 64 16 11 17

L def 19 10 16

Orbitosphenoid R 36

L 38

Laterosphenoid R

Prootic R

L

(continued on next page)
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Table 1 (continued)

Element ap
L

ap
rL

vL tb
L

o
cL

p
p
rL

m
in

ap
W

m
ax

ap
W

aW m
in
W

m
ax
W

p
W

d
W

n
W

m
in
H

m
ax
H

ap
H

Dentary R 22 62

L 37 67

Surangular R 44

L 41

Angular R 180

L 170

Element d
H

vr
H

d
lp
H

d
m
p
H

ap
L
p
ao
f

ap
L
p
ao
fe

ao
p
L

o
sr
L

p
p
-f
p

Premaxilla R

L

Maxilla R 73 45

Preantorbital fossa R

Preantorbital fenestra R

Prefrontal R 37

L 37

Frontal R

L

Postorbital R 36

L 36

Jugal R

L

Quadratojugal R

L

Lacrimal L

Quadrate R 29

Squamosal R

L

Parietal R 39

L 41

Supraoccipital –

Exoccipital-opisthotic complex –

Paroccipital process R inc

L 34

Occipital condyle –

Foramen magnum –

Posttemporal fenestra R

L

Basioccipital –

Basal tubera –

Basipterygoid process R

L

(continued on next page)
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Table 1 (continued)

Element d
H

vr
H

d
lp
H

d
m
p
H

ap
L
p
ao
f

ap
L
p
ao
fe

ao
p
L

o
sr
L

p
p
-f
p

Orbitosphenoid R

L

Laterosphenoid R 30

Prootic R 42

L 42

Dentary R

L

Surangular R

L

Angular R

L

Notes.

Measurement protocols: maxilla: pprL, distance posterior process to anterior margin; vL, measured along curvature; maxH, distance posteroventral corner to posterodorsal

corner.

postorbital: apH, measured at lateral edge.

jugal: pprL, measured from anteriormost point of orbit to posteriormost extension of jugal.

quadratojugal: maxH, length dorsal process.

lacrimal: apL, measured at dorsal end.

quadrate: apL, distance from posterior-most point of shaft to anterior-most point of ventral ramus.

squamosal: anterior, processes incomplete.

parietal: dlpH, measured at base of process; pprL, measure along dorsal edge of posterolateral process; min & max, apW measured dorsally.

supraoccipital: maxH, distance foramen magnum-parietal suture.

maxW, measured across paroccipital processes.

occipital condyle: minW, measured at neck.

maxW, across paired tubera.

basipterygoid process: aW, measured at distal tip; maxW, measured at base, dorsoventrally.

orbitosphenoid: pW, measured posterodorsally.

dentary: maxH, at symphysis.

Abb: aopL, length antotic process; apH, dorsoventral height anterior process; apL, anteroposterior length; apL paofe, anteroposterior length preantorbital fenestra; apL

paof, anteroposterior length preantorbital fossa; aprL, length anterior process; aW, anterior width; def, deformed; dH, distal dorsoventral height; dlpH, dorsoventral

height dorsolateral process; dmpH, dorsoventral height dorsomedial process; dW, dorsal width; inc, incomplete; max apW, maximum anteroposterior width; maxH, max-

imum dorsoventral height; maxW, maximum transverse width; min apW, minimum anteroposterior width; minH, minimum dorsoventral height; minW, minimum trans-

verse width; nW, width notch; ocL, lateral length contributing to orbit; osrL, length otosphenoidal ridge; pp-fp, distance posterior process to frontoparietal suture; pprL,

length posterior process; pW, posterior width; tbL, length tooth-bearing portion; vL, length ventral edge; vrH, dorsoventral length ventral ramus.

Sereno, 1998; Whitlock, 2011b), Galeamopus has a more triangular skull outline in lateral

view, and more sinuous ventral maxillary edges in dorsal or ventral view (Fig. 7).

Premaxilla. The premaxillae are completely preserved. They are anteroposteriorly long

and transversely narrow elements (Table 1) that contact each other medially and the

maxillae laterally (Figs. 4–7). The posterior end of the premaxillae delimits the nasal

opening anteriorly. In dorsal view, the elements are narrow in their central part and

widen anteriorly and posteriorly. The anterior edge is straight to slightly convex, whereas

the posterior margin is deeply concave, such that the two premaxillae together form a

triangular process that enters the nasal opening anteromedially. The medial margin is

straight, and the lateral one concave due to the central narrowing of the element. Some

nutrient foramina are present on the anterior-most portion of the dorsal surface, as

is a groove originating at the premaxillary-maxillary contact, and extending obliquely

anteromedially (Figs. 5 and 7). The groove is faint and relatively short, not reaching either

the anterior or the medial margin. Such a groove was usually interpreted as typical for
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Figure 4 Skull bones ofGaleamopus pabsti SMA 0011 before mounting. Gray elements were lacking

and reconstructed for the mounted skull. Abb.: an, angular; aof, antorbital fenestra; d, dentary; f, frontal;

j, jugal; la, lacrimal; m, maxilla; na, nasal; oc, occipital condyle; p, parietal; pf, prefrontal; pm, premaxilla;

popr, paroccipital process; pra, proatlas; q, quadrate; qj, quadratojugal; sa, surangular; so, supraoccipital;

sq, squamosal; t, teeth. Scale bar = 10 cm. Photo by Urs Möckli and copyright by Sauriermuseum Aathal,

modified with permission.

dicraeosaurids (Remes, 2009; Whitlock, 2011a), but is also present in other diplodocids

(Tschopp, Mateus & Benson, 2015). However, a fading out of this feature is uncommon

in dicraeosaurids, where the groove is distinct (Janensch, 1935; Remes, 2009). Ventrally,

the anterior portion of the premaxillae thickens slightly dorsoventrally in order to bear

the replacement teeth, but not to the extent seen in the referred specimen USNM 2673

(Tschopp, Mateus & Benson, 2015). Five teeth are included in the mounted skull, but only

four alveoli occur in the left element, whereas the right premaxilla appears to show five.
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Figure 5 Skull ofGaleamopus pabsti SMA 0011 as usually figured. The skull is shown as usually fig-

ured in dorsal (A), posterior (B), right lateral (C), and anterior views (D), following our terminology sec-

tion. Dark, uniformely colored elements were lacking and reconstructed for the mounted skull. Note the

shallow groove on the premaxilla, extending from the lateral margin anteromedially (1). Abb.: an, angular;

aof, antorbital fenestra; bo, basioccipital; bpr, basipterygoid process; d, dentary; ex, exoccipital; f, frontal;

j, jugal; ltf, laterotemporal fenestra; m, maxilla; n, external nares; na, nasal; o, orbit; os, orbitosphenoid;

p, parietal; paof, preantorbital fossa; pf, prefrontal; pm, premaxilla; po, postorbital; popr, paroccipital

process; pro, prootic; q, quadrate; qj, quadratojugal; sa, surangular; so, supraoccipital; sq, squamosal; stf,

supratemporal fenestra. Scale bar =10 cm.

The alveoli of the articulated premaxillae do not contact each other medially, such that

there would be space for two more teeth in between, or a gap. The number of replacement

teeth could not be discerned without a CT-scan. At the border with the maxilla, where

the premaxilla narrows from the broader anterior part to the narrow central part, the

two bones form an elongated fossa, which bears the subnarial and the anterior maxillary

foramen. Both foramina lie on the medial edge of the maxilla, very close together.

Maxilla.Only the right maxilla is preserved, and it is complete. The broad anterior portion

bears a posterior process, which contacts the jugal and quadratojugal, and a posterodorsal

process, which contacts the lacrimal, nasal, and the prefrontal (Figs. 4, 5, 7). The maxilla

forms the dorsal, anterior, and anteroventral margins of the antorbital fenestra, and

completely encloses the preantorbital fossa. Unlike Kaatedocus and Dicraeosaurus, the

preantorbital fossa is pierced by a large fenestra. The fenestra is dorsally capped by a

distinct ridge similar to Diplodocus, but unlike Apatosaurus. This distinct dorsal edge was

previously thought to represent an autapomorphy of Diplodocus, but was shown to occur

in other taxa as well (Tschopp & Mateus, 2013b). The preantorbital fenestra does not fill

the entire preantorbital fossa (Table 1): the anterior-most area remains closed by a thin

bony wall. The fossa is anterodorsally accompanied by a short, narrow groove more or less

following the curvature of the anterior end of the dorsal rim of the fossa. The posterior

end of the fossa is interconnected with the central portion of the antorbital fenestra by a
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Figure 6 Skull ofGaleamopus pabsti SMA 0011 in supposed habitual pose. The skull is figured in pos-

terodorsal (A), anterodorsal (B), left lateral (C), and posteroventral views (D), following our terminology

section. Dark, uniformely colored elements were lacking and reconstructed for the mounted skull. Note

the shallow groove on the premaxilla, extending from the lateral margin anteromedially (1), and the typi-

cal, flagellicaudatan ‘chin’ on the dentary (2). Abb.: an, angular; aof, antorbital fenestra; bo, basioccipital;

bpr, basipterygoid process; bt, basal tubera; d, dentary; ex, exoccipital; f, frontal; fm, foramen magnum; j,

jugal; ltf, laterotemporal fenestra; m, maxilla; n, external nares; na, nasal; o, orbit; os, orbitosphenoid; osr,

otosphenoidal ridge; p, parietal; pf, prefrontal; pm, premaxilla; po, postorbital; popr, paroccipital process;

pro, prootic; ptf, posttemporal fenestra; q, quadrate; qj, quadratojugal; sa, surangular; so, supraoccipital;

sq, squamosal; stf, supratemporal fenestra. Scale bar = 10 cm.

distinct groove that extends posterodorsally to the dorsal corner of the posterior process

(Fig. 8). This groove otherwise only occurs in the specimen USNM 2673 (Tschopp, Mateus

& Benson, 2015). Remaining parts of the external surface of the maxilla do not bear other

distinctive morphological features, with the exception of the anterior-most portion, where

a few nutrient foramina can be seen, similar to those on the premaxilla. The number of

maxillary teeth is difficult to discern in the mounted skull, but is approximately 12.

Nasal.The right nasal is complete. It lies anterior to the frontal, andmedial to the prefrontal

(Figs. 4–7). A slender, anterior process connects to the maxilla. The nasal is a subtriangular

element with a slightly concave anteromedial edge forming a part of the external naris,

and posterior and lateral edges that include an angle of about 120◦. The anteromedial edge

is dorsoventrally thin, but the nasal suddenly gains thickness from there backwards and

outwards. The medial corner does not reach the skull midline, such that the two nasals

do not touch each other medially. The external naris thus extends posteriorly between
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the nasal bones into a notch between the frontals. A similar condition might be present

in Kaatedocus, which has an anterior notch between the frontals as well, but no nasal is

preserved in the holotypic skull, which would confirm the posterior extension of the naris

(Tschopp & Mateus, 2013b).

Prefrontal. Both prefrontals are complete. They contact the frontals posteriorly, the nasals

medially, the lacrimals posterolaterally, and themaxillae anterolaterally (Figs. 4–7; Table 1).

The prefrontals are short, and have an anteroposteriorly convex dorsal surface. Their lateral

margin is straight, the medial one is anteriorly and posteriorly concave for the articulation

with the nasal and the frontal, respectively. A sharply pointed, medially projecting process

separates the two concavities. The posterior edge is anterolaterally-posteromedially

oriented, forming a hook-like posteromedial process as is typical for Diplodocidae (Wilson,

2002; Whitlock, 2011a). The process almost reaches the frontal midlength, as is the case in

the diplodocine skulls CM 3452 and 11161 (Tschopp, Mateus & Benson, 2015). Anteriorly,

the prefrontal tapers to a narrow tip, which is slightly dorsoventrally expanded. The left

element bears a small nutrient foramen on the dorsal surface of the anterior part. The

ventromedial edge is very distinct.

Frontal.Both frontals are completely preserved. They contact the prefrontal anterolaterally,

the nasal anteriorly, each other medially, the parietal posteromedially, and the postorbital

posterolaterally (Figs. 4–7). Ventrally, the frontal makes contact with the braincase,

articulating with the orbitosphenoid. The frontals have a smooth dorsal surface, which is

slightly convex posterolaterally-anteromedially. Their medial border is generally straight,

but curves laterally at its posterior and anterior ends, leaving an opening between each

other. However, the posterior curvature shows broken edges, so that it is uncertain how

much of this opening is due to taphonomic breakage. Therefore, we did not indicate the

presence of a pineal foramen in the reconstruction drawing (Fig. 7; Mateus & Tschopp,

2017), also because this is usually interpreted to be absent in diplodocids (Whitlock, 2011a;

Whitlock, 2011b).

The anterior curvature forms an anterior notch between the frontals (length 18 mm),

similar to the condition inKaatedocus. The anterior notch is wider than in Spinophorosaurus

(Knoll et al., 2012), and different from Kaatedocus in being V-shaped rather than U-shaped

(Tschopp & Mateus, 2013b). This differs from the anterior midline projection formed by

the frontals of Galeamopus hayiHMNS 175. The anterior margin of the frontal of G. pabsti

SMA 0011 is strongly convex transversely in order to accommodate the posterior, hook-like

process of the prefrontal anterolaterally. From the posterior-most point of the posterior

process of the prefrontal, the frontal has a straight edge extending obliquely anterolaterally,

until it reaches the lateral, orbital edge, with which it forms a very acute angle. The lateral

border is distinctly concave in dorsal view, smooth in its anterior part, but becoming highly

rugose posteriorly, close to where it articulates with the postorbital. Here, the lateral and

posterior edges form an acute angle. The lateral portion of the posterior margin is slightly

displaced anteriorly, compared to the medial portion, resulting in a somewhat sinuous

posterior edge. Ventrally, the frontals are marked by a distinct ridge, extending obliquely

from the anterolateral corner, below the posterior process of the prefrontal, to an elevated,

broad area for the attachment of the braincase.
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Figure 7 Skull reconstruction ofGaleamopus pabsti. The reconstruction is in dorsal (A) and lateral

view (B), and was created by Simão Mateus (ML), and based on the holotypic skull of SMA 0011. Lack-

ing bones were reconstructed after Diplodocus (Whitlock, 2011b). Only the bones preserved in the skull

of SMA 0011 are labeled. Abb.: an, angular; bpr, basipterygoid process; d, dentary; f, frontal; j, jugal; la,

lacrimal; m, maxilla; n, nasal; p, parietal; pf, prefrontal; pm, premaxilla; po, postorbital; popr, paroccipital

process; q, quadrate; qj, quadratojugal; sa, surangular; sq, squamosal.

Postorbital. Both elements are complete. The postorbital is a triradiate bone with an

anterior process articulating with the jugal, a posterior process overlapping the squamosal

laterally, and a dorsomedial process covering the posterior edge of the frontal in posterior

view and connecting to the anterolateral process of the parietal medially, thereby excluding

the frontal from the margin of the supratemporal fenestra (Figs. 4–7). Anteromedially,

the dorsomedial process abuts the antotic process of the braincase (Fig. 9). The anterior
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process has a subtriangular cross section, transversely elongate, with a narrow lateral and

a very thin medial margin (Table 1). The dorsal surface of the anterior process is slightly

concave transversely. Towards the anterior end, the process tapers to a point. The posterior

process is short and triangular. At its base, one (on the right postorbital) or two (on

the left element) nutrient foramina occur. The process is compressed transversely. The

dorsomedial process is curved dorsoventrally, with the concave surface facing anteriorly.

It is relatively high dorsoventrally, but narrow anteroposteriorly. It is anteroposteriorly

broader laterally than medially. The anterior face of the dorsomedial process is marked by

a horizontal ridge at its base. The ridge supports the posterior edge of the frontal.

Jugal. Both jugals are preserved and complete. The jugal is a flat, relatively large bone with

a posterior process contacting the postorbital and a dorsal process articulating with the

lacrimal (Figs. 4–7). The main portion connects to the quadratojugal ventrally and the

maxilla anteriorly. The jugal forms the anteroventral rim of the orbit, the posteroventral

border of the antorbital fenestra, and the anterodorsal edge of the laterotemporal fenestra.

The bases of the dorsal and posterior processes are relatively broad, before they taper

dorsally and posteriorly, respectively (Table 1). The dorsal process is bifid (Fig. 4). The

anterior edge of the jugal is slightly concave, as is the anteroventral margin. These two

edges form a rounded anteroventral corner.

Quadratojugal. The quadratojugals are both complete. They are transversely thin bones

with a posterodorsal process overlying the quadrate laterally, and a long anterior ramus

(Table 1) contacting the jugal dorsally and the maxilla anteriorly (Figs. 4–7). The

quadratojugals form the anteroventral margins of the laterotemporal fenestrae, and

the ventral borders of the skull. The anterior ramus of the quadratojugal is narrow at

its base but expands dorsoventrally towards its anterior end. The ventral edge is almost

straight; it is thus the concave dorsal margin of the anterior ramus that accounts mostly

for this dorsoventral expansion. The shape of the anterior margin is not discernible in the

mounted skull, but based on the photo taken before the mount, it bears a small dorsal

projection that connects to the jugal and excludes the maxilla from the margin of the

laterotemporal fenestra, and slightly tapers anteriorly towards the articulation with the

maxilla. The posterodorsal process is less than half the length of the anterior process. It

is inclined posterodorsally, as in all diplodocids (Upchurch, 1998; Wilson, 2002; Whitlock,

2011a). It is anteroposteriorly convex externally, relatively broad at its base, and tapers to

a point dorsally, reaching about midlength of the quadrate shaft.

Lacrimal. Only the dorsal half of the left lacrimal is preserved. It is a narrow element

expanding towards its dorsal end (Table 1), where it underlies the posterodorsal process

of the maxilla anteriorly, and contacts the prefrontal dorsally, and possibly the nasal

medially (Figs. 4, 6, 7). Ventrally, the lacrimal would contact the jugal, if this part of

the bone were preserved. The lacrimal separates the orbit from the antorbital fenestra.

It is anteroposteriorly narrow in its ventral half, with a triangular cross section, flat

externally but bearing a distinct dorsoventral ridge internally. The anterior edge has a

short, but dorsoventrally high, anterior process at its dorsal end. The posterior margin is

generally straight, with only a weak bulge on its dorsal portion. The dorsal-most end curves

backwards, below the prefrontal. The internal ridge becomes slightly more pronounced
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Figure 8 Maxillary canal in the skull ofGaleamopus pabsti SMA 0011. Skull and maxillary canal (ar-

row in the inset) are figured in right lateral view. The canal is herein interpreted as an autapomorphy of

G. pabsti. Abb.: aof, antorbital fenestra; j, jugal; m, maxilla; paof, preantorbital fossa. Scale bar in skull

overview = 10 cm.

dorsally, posteriorly enclosing the lacrimal foramen, which is small and shallow in SMA

0011.

Quadrate. Only the right quadrate is preserved, but it is complete. It has a complex

anatomy, with a quadrate shaft articulating with the squamosal and the paroccipital process

posterodorsally and posteroventrally, respectively; a pterygoid flange interconnecting the

outer skull with the pterygoidmedially; and a ventral ramus overlapped by the quadratojugal

externally and bearing the articulating surface for the lower jaw ventrally (Figs. 4, 5, 7). The

quadrate shaft is elongate posteriorly (Table 1), and has concave dorsal and ventrolateral

surfaces. The lateral edge is a thin crest, where it is not capped by the squamosal or

the quadratojugal. The posterior surface of the quadrate shaft and the ventral ramus is

shallowly concave, forming the quadrate fossa. The pterygoid flange originates on the

medial half of the quadrate shaft. It is very thin mediolaterally, but anteroposteriorly long,

and curves medially at its dorsal tip. The dorsal edge of the flange is straight and more or

less horizontally oriented. The medial side of the pterygoid flange is concave, but does not

form such a distinct fossa like that present in Kaatedocus SMA 0004 (Tschopp & Mateus,

2013b). The ventral ramus of the quadrate of Galeamopus pabsti SMA 0011 is subtriangular

in cross-section, with concave anterior and posterolateral surfaces. It has a thinner lateral

than medial margin. The articular surface is subtriangular, with a concave anterior border,

and a pointed posterior corner. The entire ventral ramus of the quadrate of SMA 0011
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Figure 9 Braincase ofGaleamopus pabsti SMA 0011 in anterolateral view. Note the contacts between

the frontal, postorbital, and the antotic process (white lines). The parasphenoid rostrum is broken. Abb.:

anp, antotic process; f, frontal; la, lacrimal; os, orbitosphenoid; po, postorbital; popr, paroccipital process;

psr, parasphenoid rostrum.

is posterodorsally inclined, as in all diplodocids (Upchurch, 1998; Wilson, 2002; Whitlock,

2011a).

Squamosal. Both squamosals are preserved, but lack a part of their anterior process (the

right one more so than the left). The squamosals form the posterolateral corner of the

skull. They have a complicated morphology, accommodating a variety of elements from

the braincase and outer skull (Figs. 4–7). The anterior process overlies the posterior end

of the quadrate. Dorsally, the squamosal is laterally covered by the posterior process of

the postorbital and forms the external margin of the supratemporal fenestra. Posteriorly

the squamosal contacts the paroccipital process and dorsoposteriorly the posterolateral

process of the parietal. The squamosal is strongly curved posterolaterally. The anterior

process appears to be the longest of all squamosal processes (Table 1), even though it is

not preserved in its entire length. The ventral edge of the squamosal bears a short ventral
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projection at its posterior end, similar to, but much less distinct than the ventral prong

present in advanced dicraeosaurids (Salgado & Calvo, 1992; Whitlock, 2011a). A concave

area on the dorsolateral surface accommodates the posterior process of the postorbital.

Other morphological features are difficult to observe in the articulated, reconstructed skull

of SMA 0011.

Parietal. Both parietals are complete but slightly distorted. They are tightly sutured with the

frontals anteriorly and have a short anterolateral process to contact the dorsomedial process

of the postorbital, with which they form the anterior margin of the supratemporal fenestra

(Figs. 4–7). The posterior face of the parietal contacts the exoccipital and the supraoccipital

medioventrally. The posterolateral process of the parietal forms the posterior margin of

the supratemporal fenestra and reaches the squamosal laterally. The dorsal portion of

the parietal in SMA 0011 is very narrow anteroposteriorly (Table 1). The two elements

do not touch each other medially, but this appears to be due to postmortem breakage of

the extremely thin bone behind the parietal fenestra, which the parietals form together

with the frontals. The dorsal portion is flat and not well separated from the posterior

surface by a transverse nuchal crest (sensu Knoll et al., 2015) like that in Kaatedocus

(Tschopp, Mateus & Benson, 2015). The parietal of Galeamopus pabsti SMA 0011 widens

anteroposteriorly at its lateral end, where it develops a short anterolateral and a long and

dorsoventrally deep posteroventral process. The parietal thus contributes most to the

margin of the supratemporal fenestra. The posterior surface has an oblique ventromedial

border, which has a very sinuous suture together with the supraoccipital. The dorsal

margin of the posterolateral process is straight and does not cover the anterior border

of the supratemporal fenestra in posterior view. The ventral edges are excluded from the

posttemporal fenestra by the squamosal and a laterally projecting spur of the exoccipital.

Supraoccipital. The supraoccipital is complete and fused with the parietals and the

exoccipital-opisthotic complex. The supraoccipital is a somewhat hexagonal bone, which

contacts the parietals dorsolaterally, the exoccipital-opisthotic complex ventrolaterally, and

borders the foramen magnum ventrally (Figs. 5, 6, 10). The suture with the exoccipital-

opisthotic is barely visible. The dorsolateral edges of the supraoccipital are slightly concave.

The ventrolateral edges are visible only laterally; further medially, the suture becomes

obliterated up to the foramen magnum, but probably extended below the two distinct

tubercles located dorsolateral to the foramen magnum. These tubercles served for the

attachment of the proatlases. The tubercles are ellipsoid, oriented with their long axes

extending dorsomedially-ventrolaterally. The elevation is much more distinct ventrally

than dorsally. The dorsal portion of the supraoccipital bears a complex arrangement of

ridges and concavities (Fig. 10). This complex structure is symmetrical and well-defined,

arguing against a taphonomic or pathological origin. No distinct sagittal ridge occurs. In

fact, the elevated area ismarked by a verticalmidline groove, which is otherwise only present

in the skull USNM 2673 among diplodocids. A similar, but wider, sagittal groove occurs

convergently in the titanosaurs Rapetosaurus krausei,Muyelensaurus pecheni, and Bonatitan

reigi (Curry Rogers & Forster, 2004; Calvo, González Riga & Porfiri, 2007; Salgado Gallina,

& Paulina-Carabajal, 2015). Given that the supraoccipital of Galeamopus hayi HMNS 175

does appear to bear a distinct sagittal nuchal crest, the groove is here interpreted to be
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Figure 10 Supraoccipital ofGaleamopus pabsti SMA 0011 in posterodorsal view. Note the unusual

shape with the vertical groove on the sagittal area (inset). Abb.: f, frontal; fm, foramen magnum; oc, occip-

ital condyle; p, parietal; pf, prefrontal; po, postorbital; popr, paroccipital process; q, quadrate; qj, quadra-

tojugal; so, supraoccipital; sq, squamosal. Scale bar in skull overview = 10 cm.

an autapomorphy of the species Galeamopus pabsti. The supraoccipital has its greatest

width slightly below midheight. No distinct foramina occur close to the border with the

parietal, unlike in Kaatedocus (Tschopp & Mateus, 2013b). The dorsal-most portion of the

supraoccipital of SMA 0011 tapers, not forming a distinct dorsal elevation as inApatosaurus

CM 11162 (Berman & McIntosh, 1978), or the indeterminate flagellicaudatan MB.R.2388

(Remes, 2009).
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Exoccipital-opisthotic complex. The outer portion of the braincase is completely

preserved. No sutures can be seen between the exoccipital and the opisthotic (the fused

complex is sometimes called otoccipital; Knoll et al., 2012; Knoll et al., 2015; Royo-Torres &

Upchurch, 2012). They bear two elongate paroccipital processes that extend lateroventrally

to articulate with the squamosal and the posterior end of the quadrate (Figs. 5 and 6).

Medially, the exoccipital-opisthotic borders almost the entire foramen magnum except for

a small dorsal contribution of the supraoccipital. The exoccipital forms the dorsolateral

corners of the occipital condyle. As in Suuwassea andDiplodocus CM 11161, the exoccipital

almost excludes the basioccipital from the participation in the dorsal surface of the occipital

condyle (Harris, 2006a). The lateral surface of the condylar neck is pierced by two foramina,

which are the exits for cranial nerve XII (Fig. 11; Knoll et al., 2012), unlike the condition

in Amargasaurus, which only has a single exit (Paulina Carabajal, Carballido & Currie,

2014). The two exits for cranial nerve XII are anteriorly bordered by the crista tuberalis,

which separates them from the opening for cranial nerves IX–XI (the metotic foramen;

Knoll et al., 2012; Royo-Torres & Upchurch, 2012), and extends from the ventral edge of the

paroccipital process onto the basioccipital, of which it forms the posterolateral edge until it

reaches the basal tubera (Fig. 11). The metotic foramen is anteriorly bordered by the crista

interfenestralis, which separates two well developed fossae between the crista tuberalis and

the otosphenoidal crest (Makovicky et al., 2003).

The paroccipital processes of Galeamopus pabsti SMA 0011 have slightly convex external

surfaces, but do not bear a ridge as in Kaatedocus (Tschopp & Mateus, 2013b). The ventral

edge of the paroccipital process is straight, only the dorsal corner of the distal end is

expanded dorsally, resulting in a distinctly concave dorsal edge. The lateral margin of the

paroccipital process is subtriangular, with a longer, vertically oriented dorsal portion, and

a shorter, laterally inclined ventral part. In lateral view, it is straight, unlike the curved

ends of the element in Suuwassea and Galeamopus hayi (Harris, 2006a; Tschopp, Mateus &

Benson, 2015).

Basioccipital and basisphenoid. The basioccipital forms the main portion of the occipital

condyle. It is relatively short and connects the articular surface of the occipital condyle

with the basal tubera (Fig. 11), which are of about the same width (Table 1). The articular

surface of the occipital condyle is offset from the condylar neck. Narrow ridges connect

the midline of the ventral aspect of the condylar neck with the posteromedial corners of

the basal tubera and the lateral face of the neck with the crista tuberalis. The ridges result

in concave lateral surfaces of the basioccipital and concave posterior surfaces of the basal

tubera. The concavity on the posterior surface of the tubera is anteroventrally confined by

a distinct, transversely convex ridge, which separates the posterior and ventral surfaces of

the tubera (Fig. 11). The basal tubera are box-like, and medially separated by a distinct,

but relatively narrow notch. The ventral edges of the tubera form a nearly straight line in

posterior view, whereas the anterior edges are angled in a wide V-shaped manner in ventral

view. Anteriorly, the basipterygoid processes attach to the tubera. In the reconstructed skull,

the processes are mounted slightly dorsal to their actual location, above the anteroventral

end of the otosphenoidal crest (Fig. 12). When articulated properly, they would be elongate

(5.3 times longer than wide; Table 1), straight, and would form a narrower angle than
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Figure 11 Braincase ofGaleamopus pabsti SMA 0011 in posteroventral view. Note that the basiptery-

goid processes are mounted dorsal to their actual position, and that the parasphenoid rostrum is broken

off. The transverse width of the basal tubera is 42 mm. Abb.: bo, basioccipital; bpr, basipterygoid pro-

cess; bs, basisphenoid; bt, basal tuber; cif, crista interfenestralis; cn, cranial nerve; ct, crista tuberalis; f,

frontal; n, external naris; na, nasal; o, orbit; oc, occipital condyle; osr, otosphenoidal ridge; p, parietal;

popr, paroccipital process; psr, parasphenoid rostrum; q, quadrate.

as mounted. This is important because shorter and more widely diverging basipterygoid

processes are typical for Apatosaurus, whereas narrower angles are typical in Diplodocus

(Berman & McIntosh, 1978). The processes are not as well connected at their base as is

the case in Kaatedocus (Tschopp & Mateus, 2013b). The distal ends of the basipterygoid

processes are expanded.

Orbitosphenoid. The orbitosphenoids delimit the endocranial cavity anteriorly and attach

to the frontals dorsally, each other medially, and the laterosphenoids posterolaterally.

Each orbitosphenoid is relatively wide dorsally and has an anteroventral process, which

is expanded at its end and separates the two openings for cranial nerves II medially (the

optic foramen) and III laterally (the oculomotor foramen; Fig. 12; Janensch, 1935; Harris,

2006a; Balanoff, Bever & Ikejiri, 2010; Knoll et al., 2015). Unlike the condition in Suuwassea

or Europasaurus (Harris, 2006a; Sander, Mateus & Laven, 2006), the optic foramen of

Galeamopus is bridged over by bone medially. Anterodorsally, the two orbitosphenoids

form the olfactory fenestra together with the frontals (the exit for cranial nerve I; Fig. 12;

Janensch, 1935; Balanoff, Bever & Ikejiri, 2010), and posterolaterally, at the junction with

the laterosphenoid, the foramen for cranial nerve IV (the trochlear foramen; Balanoff,

Bever & Ikejiri, 2010) defines the outline of the orbitosphenoid.
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Figure 12 Braincase ofGaleamopus pabsti SMA 0011 in left anterolateral view. Note that the

basipterygoid processes are mounted dorsal to their actual position, and that the parasphenoid rostrum

is broken off. The transverse width of the distal end of the left basipterygoid process is 19 mm. Abb.: bpr,

basipterygoid process; bt, basal tuber; cn, cranial nerve; oc, occipital condyle; ocv, orbitocerebral vein

foramen; osr, otosphenoidal ridge; psr, parasphenoid rostrum.

Laterosphenoid. The laterosphenoid mainly consists of a crest that bears the antotic

(or capitate; Knoll et al., 2012; Knoll et al., 2015) process posterodorsally and extends

anteroventrally to join the otosphenoidal crest. It connects to the frontal and parietal

posterodorsally, the orbitosphenoid anterodorsally, and the prootic posteroventrally. As

for the orbitosphenoid, the laterosphenoid outline is defined by various openings: cranial

nerves III and IV anteriorly at the junction with the orbitosphenoid, the trigeminal foramen

posterodorsally (cranial nerve V; Balanoff, Bever & Ikejiri, 2010), as well as the oculomotor

foramen and the abducens foramen anteroventrally (Fig. 12; Balanoff, Bever & Ikejiri,

2010). Dorsal to the opening for cranial nerve IV, there is a separate, small opening for

the orbitocerebral vein, similar to the condition in Diplodocus and other sauropods, but

different from Amargasaurus (Paulina Carabajal, 2012; Paulina Carabajal, Carballido &

Currie, 2014). The antotic crest separates the trigeminal foramen from the other openings.
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Figure 13 Right pterygoid ofGaleamopus pabsti SMA 0011. The pterygoid is shown in lateral (A) and

medial (B) views. The element is only partly prepared, the lighter color is matrix adhered to the darker

bone. Abb.: ar, anterior ramus; er, ectopterygoid ramus; qr, quadrate ramus. Scale bar = 5 cm.

The antotic process is dorsoventrally higher than anteroposteriorly long, and tapers laterally

to a rounded tip, which contacts the postorbital.

Prootic. The prootic lies between the laterosphenoid anterodorsally, the parietal and

paroccipital processes posterodorsally, and the basisphenoid anteroventrally. The prootic

bears the well-developed otosphenoidal crest, which extends relatively far laterally, but is

very thin dorsoventrally. It does not end in an additional transverse expansion anteriorly,

as would be typical for dicraeosaurids (Janensch, 1935; Paulina Carabajal, Carballido &

Currie, 2014). The otosphenoidal crest extends between the foramen for cranial nerve V

more anteriorly and the ones for cranial nerves IX–XIImore posteriorly (Paulina Carabajal,

Carballido & Currie, 2014). Posterodorsally, the otosphenoidal crest extends to the base of

the paroccipital processes, and bifurcates to enclose the foramen for cranial nerve VII. The

two branches reunite before reaching the paroccipital process, similar to the condition in

Amargasaurus (Paulina Carabajal, Carballido & Currie, 2014).

Pterygoid. The left pterygoid is only partly prepared (Fig. 13). The pterygoid connects

the quadrate posterolaterally with the basipterygoid processes posteromedially, the

ectopterygoid and palatine anterolaterally, and the vomer anteromedially. The two

elements would join along the midline of the skull. The pterygoid of SMA 0011 resembles

the same bone in the indeterminate diplodocine CM 3452 in its dorsoventrally deeper

shape compared to Camarasaurus and Giraffatitan (McIntosh & Berman, 1975). A shallow

articulation facet for the basipterygoid processes lacks the hook-like process present in

dicraeosaurids and Camarasaurus (Wilson, 2002; Whitlock, 2011a).

Ceratobranchial. Only the right ceratobranchial is preserved, but appears to be almost

complete (Fig. 14). The ceratobranchial is a bone of the hyoid apparatus, with no bony

connections to the rest of the skull (Wilson et al., 2016). It is a narrow bone, with a

distinct upward curve at midlength. The anterior ramus becomes transversely flattened

towards its anterior end, which bears a shallow longitudinal groove on the medial side.

The ceratobranchial slightly widens dorsoventrally where it curves upwards and towards

the squamosal, as was shown in Tapuiasaurus (Zaher et al., 2011; Wilson et al., 2016). The

posterodorsal end is rounded and offset from the shaft by a distinct rim.
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Figure 14 Right ceratobranchial ofGaleamopus pabsti SMA 0011. The ceratobranchial is shown in me-

dial (A) and lateral (B) views. Abb.: ar, anterior ramus; sqr, squamosal ramus. Scale bar = 10 cm.

Mandible

The mandibles preserve both dentaries and surangulars, and the left angular. Two

additional, thin bonesmight represent the prearticulars.No articular, splenial, and coronoid

is preserved.

Dentary. Both dentaries are preserved. The dentary is the anterior-most bone of the lower

jaw and the only one bearing teeth. Posteriorly, it is followed by the surangular dorsally and

the angular ventrally (Figs. 4–7). Internally, it would be overlain by the splenial ventrally,

but this is not visible due to the mount. The dentary is a thin bone, with a dorsoventrally

high dentigerous portion (Table 1), having the typical, ventrally projecting ‘chin’ of

flagellicaudatans (Fig. 6; Upchurch, 1998; Whitlock, 2011a). The anteromedial portion is

marked by several small, irregularly placed pits. A relatively larger, distinct foramen pierces

the lateral surface at midheight below the posterior-most tooth. The medial wall of the

dentigerous portion of the dentary projects further dorsally than the medial wall. Posterior

to the tooth bearing portion, the dentary tapers in dorsoventral height, the right one much

more so than the left. The symphysis is oblong and strongly anteriorly inclined. There are

at least eleven, possibly twelve, dentary teeth.

Surangular. Both surangulars are present. This bone is very flat transversely, curves

ventrally at its posterior end and bears a foramen at its highest point, which is also the

highest point of the entire lower jaw (Figs. 4–7). The jaw does not bear a coronoid eminence.

Angular. Both angulars are incomplete anteriorly. They are concave externally, due to the

laterally curving ventral edge. They taper relatively continuously anteriorly, but abruptly at

their posterior ends (Figs. 4–7), where they expand transversely in order to accommodate

the articular, which is not preserved.

?Prearticular. Both prearticulars appear to be present, but are partly hidden in the mount

or only partially prepared, and separately stored in the SMA collections (Fig. 15). They

are thin, elongate bones that taper posteriorly. A very shallow groove marks the probable

lingual surface, extending anteroposteriorly, following the somewhat sinuous curve of the

dorsal edge of the bone. In its anterior half, the bone becomes slightly thicker mediolaterally

and curves outwards.
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Figure 15 Right ?prearticular ofGaleamopus pabsti SMA 0011 in lingual view. Note the shallow longi-

tudinal canal (arrows). Scale bar = 5 cm.

Teeth

The teeth have the typical diplodocoid, peg-like shape, and have a Slenderness Index (SI)

of approximately 4 (Fig. 16; Tschopp, Mateus & Benson, 2015: tab. S16). They are slightly

wrinkled but do not have denticles. Worn teeth usually have a single wear facet at a low

angle to the long axis of the tooth, but some teeth also show two facets that are conjoined

apically. In these teeth, the lingual facet is more steeply inclined than the labial one. The

crown tips are slightly wider than deep, which is especially visible in replacement and/or

unworn teeth, which have a very weakly spatulate upper-most crown. The enamel is

distributed evenly on all sides, and no grooves mark the lingual face. In the jaws, the teeth

are inclined anteriorly relative to the long axis of the jaw, and set side-by-side without

overlapping each other.

Axial skeleton

Terminology. Vertebral laminae are described following the nomenclature of Wilson

(1999), with the changes proposed by Wilson (2012), Tschopp & Mateus (2013b) and

Carballido & Sander (2014), whereas fossa terminology follows the one of Wilson et al.

(2011). The use of ‘‘pleurocoel’’ herein follows the definition of Carballido & Sander (2014:

p. 337): ‘‘a lateral excavation with well-defined anterior, ventral and dorsal margins‘‘.

Cervical vertebrae (Figs. 17–32; Table 2)

Preservation. Thirteen cervical vertebrae are present, as is the right proatlas. The cervical

vertebrae were found partly articulated. The proatlas and atlas were recovered among the

disarticulated skull elements. Axis to CV 5 were lying semi-articulated in close association,

followed by the slightly disarticulated CV 6–8. After a short gap of 0.3 m, CV 9 and

10 were found articulated, and finally a block of five articulated elements including

the cervico-dorsal transition was recovered at a distance of about 1 m from the next

nearest vertebrae (Fig. 3). The gap between CV 8 and 9 is interpreted to be too short to

accommodate yet another element, which in this area of the neck already reach lengths of

at least 150% the distance of the gap. Also, measurements of the posterior cotyle of CV 8

and the anterior condyle of CV 9 more or less fit to each other, taking the deformation of

CV 8 into account (Table 2). Thus, the only reasonable position, where cervical vertebrae

could be missing, is between CV 10 and the block including the cervico-dorsal transition.

None of the cervical ribs were fused to their centra, and certain anterior to middle ribs
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Figure 16 Teeth ofGaleamopus pabsti SMA 0011 in lingual view. They were found disarticulated from

the skull. Abb.: tc, tooth crown; tr, tooth root. Scale bar = 2 cm.

were found at some distance from the vertebrae. However, combining the positional

information from the quarry maps and the size and side of the ribs, an attribution of

most of them to their respective centra was possible. Five ribs belonging to the articulated

cervico-dorsal transition were found in place, yielding crucial information about the

changes in morphology from the neck to the back. Two pairs of them are transitional in

shape, but can still be interpreted as cervical ribs due to the presence of an anterior process

and their short posterior shaft (see below). They belong to the second and third articulated

vertebra of the transitional block. One pair and a single rib are definitive dorsal ribs, and

were found semi-articulated with the last two vertebrae in the block.
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Table 2 Measurements of cervical vertebrae ofGaleamopus pabsti SMA 0011 (in mm).

CV apL gH cL cmW diW prW poW ppL ppH ctW ctH

Atlas 25 47 49 28

Axis 146 201 131 97
(comp)

86 31 30
(def)

55
(def)

CV 3 240 251 198 25 110 94 140 41 45 72

CV 4 330 347 268 27 111 72
(comp)

194 42 69 72

CV 5 409 400 320 33 155
(def)

109
(def)

105
(def)

235 47 63 87

CV 6 480 325 389 44 175
(def)

131 259 47 97 92

CV 7 483 300 406 55 380
(est)

185 183
(def)

260 51 117 104

CV 8 505 inc 435 74 440
(est)

213 235 256 20
(comp)

160
(def)

90
(comp)

CV 9 523 368 405 80 310
(est)

174 250
(est)

259 60 156 141

CV 10 500 420 387 70
(def)

360
(est)

193
(def)

185
(est)

250 62 162 165

CV ?12 415 380 400 116 350
(est)

230 34 185

CV ?13 450 475 95 185 57 195

CV ?14 485 355 108 185 40 190

CV cdW cdH nsH cL-cd naH Comments

Atlas 49 16 25 Cotyle is anterior, condyle posterior

Axis 49 57 134 115 66 ppL measured on right side, cL-cd measured at midheight

CV 3 42 42 179 169 110 ppL measured on right side, cL-cd measured at midheight

CV 4 36 (comp) 58 252 229 118 ppL and ppH are the mean of left and right sides

CV 5 61 64 256 284 147

CV 6 55 63 203 344 149 (est)

CV 7 86 67 160 341 140

CV 8 104 (def) 57 (comp) inc 383 80 (comp)

CV 9 150 (est) 114 200 362 153

CV 10 150 (def) 230 354 140

CV ?12 180 165 240 370 208

CV ?13 325 310 222

CV ?14 160 365 305 170 (est)

Notes.

apL, anteroposterior length; cdH, height condyle; cdW, width condyle; cL, centrum length; cL-cd, centrum length without condyle; cmW, centrum minimum width;

comp, compressed; ctH, height cotyle; ctW, width cotyle; def, deformed; diW, width across diapophyses; est, estimated; gH, greatest height; inc, incomplete; naH,

height neural arch (below poz); nsH, height neural spine; poW, width across postzygapophyses; ppH, pneumatopore height; ppL, pneumatopore length; prW, width across

prezygapophyses.
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Figure 17 Right proatlas ofGaleamopus pabsti SMA 0011. The proatlas is shown in lateral (A) and me-

dial (B) views. Note the elongate and narrow distal tip. Scale bar = 2 cm.

Proatlas. The right proatlas is preserved and complete (Fig. 17). It connects the braincase

with the atlantal neurapophyses. The proatlas of SMA 0011 is strongly curved and tapers

distally. The proximal articular surface is ovoid, with the largest width located in the dorsal

half. The medial surface is concave, the lateral one convex. The proatlas of SMA 0011 is

different from the element in Kaatedocus (see Tschopp & Mateus, 2013b: figs. 3–6) due to

its much narrower distal tip.

Atlas. The atlantal centrum is not fused to the neurapophyses (Fig. 18). It has a well-

developed anteroventral lip as is typical for diplodocids, and convergently present, although

less evident in several other sauropods (Mannion, 2011;Whitlock, 2011a). A large foramen

lies between the posterolateral projections at the posteroventral edge of the centrum.

The lateral surface of the centrum is concave and bears a foramen as well, resembling an

incipient pleurocoel. The neurapophyses have a relatively wide base, and turn upwards and

backwards to articulate with the prezygapophyses of the axis. A wide medial process occurs

anteriorly, as in the specimen AMNH 969 (Holland, 1906). This process articulates with

the proatlas, and is much better developed than in Diplodocus USNM 2672 or Kaatedocus

(Marsh, 1896; Hatcher, 1901; Tschopp & Mateus, 2013b). A small but distinct subtriangular

process occurs on the opposite side of the medial process of the atlantal neurapophyses of

SMA 0011, projecting laterally. The posterior wing of the neurapophysis does not taper as

in Kaatedocus siberi (Tschopp & Mateus, 2013b), but remains subrectangular with a widely

rounded distal end. This morphology was proposed as an unambiguous autapomorphy

for the genus Galeamopus by Tschopp, Mateus & Benson (2015), but is also present in the

dicraeosaurid Amargasaurus cazaui MACN-N 15 (Paulina Carabajal, Carballido & Currie,

2014). However, the wide distal ends of the neurapophyses remain autapomorphic for

Galeamopus within Diplodocidae.

Axis. The axis of SMA 0011 (Fig. 19) has a closed but still slightly visible neurocentral

synostosis, and unfused cervical ribs. The centrum is opisthocoelous. The pleurocoel

extends over almost the entire centrum, and contains horizontal ridges at its anterior and

posterior end. No vertical subdivision of the pleurocoel occurs. Anteriorly, the pleurocoel

extends onto the dorsal surface of the parapophysis. The ventral surface of the centrum

bears a distinct longitudinal keel medially, which widens anteriorly and posteriorly, where it

also becomes rugose. The centrum is diagenetically transversely compressed ventrally, but

it is clear that the ventral surface was constricted at midlength, and it appears that the wider
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Figure 18 Atlas ofGaleamopus pabsti SMA 0011. Atlantal neurapophyses (A) and centrum (B) in me-

dial (A1, A2), right lateral (A3, B2), left lateral (A4, B4), dorsal (B1), anterior (B3), posterior (B5), and

ventral view (B6). Abb.: avl, anteroventral lip; dip, distal process; lsp, lateral spur; mp, medial process; ncs,

neurocentral synchondrosis; pl, pleurocoel; plp, posterolateral process; pnf, pneumatic foramen. Scale bar

= 10 cm.

posterior part of the ventral keel was laterally accompanied by shallow depressions. The

parapophysis is rounded and faces anterolaterally and slightly ventrally. The diapophysis

projects somewhat posteriorly, but does not bear a distinct posterior process. The neural

arch is high and weakly posteriorly inclined. The prezygapophyses are not preserved. The

only well-defined laminae are the PODL and the PRSL. The PRSL is slightly expanded

transversely at its anteroventral end, similar to, but not as distinct as in AMNH 969

(Tschopp, Mateus & Benson, 2015). In lateral view, the PRSL is slightly concave ventrally,

and straight in the upper part. The spine top is rugose, weakly expanded transversely, and

situated entirely anterior to the postzygapophyseal facets. This anterior placement of the

summit is unusual for sauropods, but present inDiplodocus carnegiiCM84 (Hatcher, 1901).

Unlike CM 84, however, the neural spine summit of SMA 0011 has a posterior projection,

similar to the condition inGiraffatitan (Janensch, 1950). Themargin of the SPOL is strongly

concave in lateral view, becoming vertical in the upper part. Small epipophyses are present

laterally above the postzygapophyses. They do not project posteriorly. A large rugose

area is present on the lateral side of the spine, slightly above mid-height (Fig. 19). It is

subtriangular, broader towards the SPOL, with a pointed, elongate tip towards the center
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Figure 19 Axis ofGaleamopus pabsti SMA 0011. Axis shown in dorsal (A), posterior (B), right lateral

(C), anterior (D), left lateral (E), and ventral (F) view. The round inset shows the right lateral side of the

spine summit in posterolateral, and slightly dorsal view (not to scale). The prezygapophyses are not pre-

served. Note the short horizontal ridges in the pleurocoel (1), the depressions lateral to the ventral keel

(2), the transverse expansion of the anteroventral extremity of the prsl (3), the anterior position of the

neural spine summit, and its posterior projection (4), the rugose area on the lateral side of the neural spine

(5). Abb.: di, diapophysis; epi, epipophysis; ncs, neurocentral synostosis; pap, parapophysis; pl, pleurocoel;

podl, postzygodiapophyseal lamina; poz, postzygapophysis; prsl, prespinal lamina; sdf, spinodiapophyseal

fossa; spof, spinopostzygapophyseal fossa; spol, spinopostzygapophyseal lamina. Scale bar = 10 cm.

of the SDF. This rugosity could be homologous to the distal lateral expansion in the axis of

Camarasaurus and Suuwassea (Madsen, McIntosh & Berman, 1995; Harris, 2006b), but the

neural spine top is much more elevated in SMA 0011. Such a rugosity appears to be absent

in the axis of Diplodocus carnegii CM 84 (Hatcher, 1901). The postzygapophyses of the axis

of SMA 0011 slightly overhang the centrum posteriorly, and bear subtriangular facets with

a straight anterior border.

Postaxial cervical vertebrae (Figs. 20–32). The cervical centra are all opisthocoelous and

relatively elongate. As is typical for nearly all sauropods, the most elongate elements are

the mid-cervical vertebrae (Table 2). All cervical centra have well-developed pleurocoels

extending over almost the entire length of the centrum, also invading the dorsal surfaces

of the parapophyses. The internal structure of the pleurocoel varies along the column:

the anterior and posterior horizontal ridges described in the axis disappear by CV 4 and

are present in only the right pleurocoel in CV 3 and 4 (Figs. 20 and 21). A vertical

subdivision into anterior and posterior pneumatic fossae becomes visible in CV 3,
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and is pronounced from CV 5 backwards (Fig. 22). The subdividing ridge is oriented

anterodorsally-posteroventrally, as in most sauropods. The posterior pneumatic fossae

of CV 5–7 bear a large, slightly ellipsoid foramen at their anterior end, which pierces

the median wall (Figs. 22–24). Whereas the median wall is thin posterior to this hole,

it is transversely expanded anterior to the hole. The wider anterior margin of the hole

bears a vertical groove that leads into a pneumatic foramen on the posterior face of its

expanded portion (Fig. 23). Such a hole in the median wall is extremely rare in sauropods.

Diplodocus carnegii CM 84 was reported to have confluent pleurocoels in posterior cervical

vertebrae (Hatcher, 1901), ‘‘Morosaurus’’ agilis USNM 5384 shows this peculiarity in CV 3

(Gilmore, 1907), and a Camarasaurus axis has the same feature (AMNH 5761/X1,Osborn &

Mook, 1921: pl. LXVII). Deep pneumatic openings are also present in mid-cervical centra

of Galeamopus hayi HMNS 175, but these were left filled with sediment, and it remains

unclear if these pierce the median wall or not (E Tschopp, pers. obs., 2010). The posterior

pneumatic fossae of CV 5 and 6 of SMA 0011 become pointed posteriorly, due to the

development of a shallow posteroventral fossa, which diagnoses most diplodocines (except

Kaatedocus; Tschopp & Mateus, 2013b). From CV 6 backwards, the anterior pneumatic

fossa becomes subdivided by a horizontal ridge at about mid-height. The ventral portion

of the anterior fossa becomes vertically divided in CV 9 (Fig. 26). The latter is also the first

element in the series to show a separation of the posterior-most portion of the posterior

pneumatic fossa. Additionally, CV 10 has a horizontally subdivided posteroventral fossa

(Fig. 27). In the first element of the articulated transitional series, the pleurocoel becomes

less complex again (Fig. 28).

In the first preserved posterior cervical vertebra, the anterior condyle is damaged, so

that it reveals the internal structure. The condyle is composed of large internal cavities,

surrounded by 2–4 mm thick, relatively dense bony struts. The arrangement appears

symmetric, with a subtriangular cavity dorsomedially, and two subcircular cavities following

on both sides (Fig. 28).

The parapophyses become slightly anteroposteriorly elongate in CV 3 and 4. These

structures project ventrolaterally in all elements, but not to the degree present in

Apatosaurinae (Gilmore, 1936; Upchurch, Tomida & Barrett, 2004; Tschopp, Mateus &

Benson, 2015). The anterior surface of the parapophyseal ramus, which connects the facets

and the anterior condyle, is very distinct, dorsoventrally expanded, and rugose. The fossa

on the dorsal surface of the parapophysis is subdivided by a short, oblique ridge in CV 6

and more posterior elements. In CV 9 and 10, the parapophyseal facet is subtriangular,

anteroposteriorly elongated, and wider posteriorly than anteriorly.

The ventral surface is hourglass-shaped and narrow in anterior and mid-cervical

vertebrae, but becomes relatively wide in more posterior elements. The ventral surfaces

of CV 3 and 4 bear a distinct longitudinal keel on their anterior halves, with prominent

pneumatic foramina lateral to the keel in CV 3, and less prominent ones in CV 4. In CV 3,

a shallow ventral ridge also occupies the posterior end. The ventral surfaces of CV 5 and

more posterior vertebrae are concave without any traces of ridges or pneumatic foramina.

Posteriorly, the ventral surfaces are bordered by distinct posteroventral flanges. These

flanges become rugose ventrally in the posterior cervical vertebrae.
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Figure 20 Cervical vertebra 3 ofGaleamopus pabsti SMA 0011. CV 3 shown in dorsal (A), posterior

(B), right lateral (C), anterior (D), left lateral (E), and ventral (F) view. Note the horizontal ridge within

the right pleurocoel (1) and the incipient vertical subdivision (2), the foramina lateral to the ventral keel

(3), the deep anterior depression within the spinodiapophyseal fossa (4). Abb.:pap, parapophysis; podl,

postzygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spino-

prezygapophyseal lamina; vk, ventral keel. Scale bar = 10 cm.

None of the centra are fused with the corresponding cervical ribs. The neurocentral

synostosis is closed but visible in the anterior and posterior cervical vertebrae, whereas in

posterior mid-cervical vertebrae it is completely open. Where it is closed, the zigzagging

neurocentral synostosis is more visible anteriorly than posteriorly (Fig. 29). In the most

anterior and posterior elements, the synostosis becomes extremely faint to completely

obliterated posteriorly. It lies on top of the centrum, such that the entire pedicels of the

neural arches are detached in the unfused elements. The synostosis line is highest in the

anterior half and descends anteriorly and posteriorly.

The neural arch is high in anterior cervical vertebrae, but becomes lower posteriorly.

In all elements, it appears very fragile and slender, with very thin but distinct lamination.

In posterior cervical vertebrae, the neural arch is somewhat displaced anteriorly, reaching

close to the anterior condyle, but being well distant from the posterior edge of the centrum.

The displacement reaches its maximum in the posterior-most cervical vertebrae.

The prezygapophyses project anteriorly and slightly dorsally in most elements. Close

to the cervico-dorsal transition, they become more elevated. They bear suboval facets

in CV 3, with the long axis extending anteroposteriorly. From CV 4 onwards, the facets
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Figure 21 Cervical vertebra 4 ofGaleamopus pabsti SMA 0011. CV 4 shown in dorsal (A), posterior

(B), right lateral (C), anterior (D), left lateral (E), and ventral (F) view. Note the horizontal ridge within

the right pleurocoel (1), the posterior inclination of the spine summit (2). Abb.:pap, parapophysis; podl,

postzygodiapophyseal lamina; prsl, prespinal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal

lamina; vk, ventral keel. Scale bar = 10 cm.

become subtriangular, with the tip located medially. The facets are transversely convex as

in all diplodocines (McIntosh, 1990b;Wilson, 2002;Whitlock, 2011a). Only in CV 5 are they

concave, but this appears to be due to taphonomic distortion. In CV 7 and 8, the articular

facets are elevated on pedestals, but no transverse sulcus is present posteriorly, unlike in

Kaatedocus (Tschopp & Mateus, 2013b). The prezygapophyses cap the PRCDF dorsally,

which in CV 5 and 6 is subdivided by a vertical accessory lamina connecting ACDL and

PRDL right at the diapophysis. Anteriorly, the prezygapophyses are ventrally supported by

the CPRL, which is single in anterior cervical vertebrae. From CV 7 backwards, the CPRL

is divided, with one distinct and few short, weak accessory lamina in the PRCDF. The

accessory laminae subdividing the PRCDF become stronger in more posterior elements.

The anterior-most portion of the lateral surface is marked by distinct pre-epipophyses in

CV 4 and more posterior elements, however, they only extend considerably anterior to the

prezygapophyseal facet in CV 9 and 10. Posteriorly on the prezygapophyseal process, the

anterior portion of the SDF develops a deep, but not well defined fossa in CV 3.

In anterior cervical vertebrae, the SPRL is distinct on the prezygapophyseal process,

disappears around midlength of the dorsal portion, and becomes visible again on the spine

top. In mid-cervical vertebrae, the SPRL is weak to almost absent on the prezygapophyseal

process, as is typical for Diplodocinae (Tschopp & Mateus, 2013b). Thus, the SPRF and

SDF of anterior and mid-cervical vertebrae are not distinctly separated from each other at
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Figure 22 Cervical vertebra 5 ofGaleamopus pabsti SMA 0011. CV 5 shown in dorsal (A), posterior (B), right lateral (C), anterior (D), left lateral

(E), and ventral (F) view. The round inset shows the left diapophysis in ventrolateral view (not to scale). Note the vertical subdivision of the pleuro-

coel (1), the foramen piercing the median wall (2), the dorsal subfossa within the spinodiapophyseal fossa (3), and the two parallel pcdl (4). Abb.: di,

diapophysis; pap, parapophysis; pl, pleurocoel; ppf, posterior pneumatic fossa; prcdf, prezygapophyseal centrodiapophyseal fossa; prz, prezygapoph-

ysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.

the base of the neural spine. In posterior cervical vertebrae, the SPRL is distinct. Due to a

backwards curve of the spine top in anterior cervical vertebrae, the SPRL has a somewhat

sinuous appearance in lateral view in these elements. Below the backwards curve, the SPRL

extends almost vertically in CV 3 to 6, becomes slightly posteriorly inclined in CV 7 and

8, and anteriorly inclined in CV 9 and more posterior vertebrae. A PRSL is present at the

base of the neural arch in unbifurcated spines, which reach back to CV 7.

The diapophysis is entirely located in the anterior half of the vertebra. The transverse

processes of SMA 0011 do not form such distinct posterior processes as those present in

Kaatedocus (Tschopp & Mateus, 2013b). The diapophysis is supported by distinct ACDL,

PRDL, PODL, and PCDL. The ACDL and PRDL are separated along their entire length, a

feature typical for apatosaurines, and usually absent in diplodocines (Tschopp, Mateus &

Benson, 2015). The PCDL is almost horizontal, and the PODL steeply inclined in CV 3, but

in CV 4 andmore posterior elements, they approach each other, forming amore acute angle

anteriorly. In anterior elements, the PODL and PCDL unite before curving laterally, but
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Figure 23 Cervical vertebra 6 ofGaleamopus pabsti SMA 0011. CV 6 shown in posterior (A), right lateral (B), anterior (C), and left lateral (D)

view. The round inset shows the right pleurocoel in posterolateral view (not to scale). Note the foramen piercing the median wall of the centrum (1),

the horizontal subdivision of the anterior pneumatic fossa (2), the vertical accessory lamina subdividing the prezygapophyseal centrodiapophyseal

fossa (3), the subfossae in the spinodiapophyseal fossa (4, 5), and the groove and foramen marking the anterior wall of the foramen piercing the me-

dian wall (6). Abb.: pap, parapophysis; pvfo, posteroventral fossa; spol, spinopostzygapophyseal lamina. Scale bar = 10 cm.

more posteriorly they remain separate as the ACDL and PRDL, and the POCDF is therefore

extended onto the posterior surface of the diapophysis. In CV 5, two nearly parallel PCDL

occur: the ventral one connects to the ventral edge of the diapophysis, whereas the dorsal

one joins the PODL anteriorly (Fig. 22). In more posterior elements, the PCDL bifurcates

anteriorly (Figs. 23 and 24). In the posterior CV, this bifurcation is very strong, with the

more dorsal branch being nearly vertical (Figs. 25–27). The CDF lies directly ventral to the

diapophyseal process. In the posterior cervical vertebrae of SMA 0011, a short but stout

accessory lamina occupies the posterior portion of the fossa. In CV 10, there is a vertical

accessory lamina posterior to the dorsal branch of the PCDL, subdividing the POCDF (Fig.

27). Dorsomedial to the accessory lamina, the POCDF is pierced by a large foramen, such

that the POCDF is interconnected with the SPOF (Figs. 27 and 30). A similar state appears

to be present in the anterior cervical vertebrae of Dicraeosaurus hansemanni MB.R.4886

(E Tschopp, pers. obs., 2011), a partial mid-cervical vertebra of Suuwassea emilieae ANS

21122 (Harris, 2006b: fig. 8B), and Brontosaurus yahnahpin Tate-001, but in these taxa, the

borders of the opening seem to be broken. Fossae at the same location occur in many taxa,

includingDiplodocus or Supersaurus (Hatcher, 1901; E Tschopp, pers. obs., 2013), but none

of them opens up into a large foramen as in SMA 0011 (Fig. 30).

The SDF is of generally simple morphology. In CV 5 and 6, a shallow but dorsally

well delimited fossa is located close to the spine summit. In CV 6 and 7, the SDF bears

a distinct, dorsoventrally elongate fossa posterolateral to the SPRL, at about mid-height

of the metapophysis. From CV 7 backwards, a vertical accessory lamina follows the SPRL

posteriorly, as in Diplodocus carnegii CM 84 (Hatcher, 1901). No subfossae are present in

the SDF of posterior cervical vertebrae, but in mid- and posterior cervical vertebrae, the

SDF becomes clearly delimited dorsally, just below the anteroposterior narrowing of the

spine top. CV 10 furthermore bears a stout, slightly anteriorly inclined lamina where the

SDF is deepest, but the lamina does not connect to any surrounding lamina.
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Figure 24 Cervical vertebra 7 ofGaleamopus pabsti SMA 0011. Neural arch (A) and centrum (B) shown in dorsal (A1, B5), ventral (A2,

B6), posterior (A3, B1), right lateral (A4, B2), anterior (A5, B3), and left lateral view (A6, B4). The neural spine summit is not preserved.

Note the large foramina piercing the (1) neural arch and (2) median wall of the pleurocoel. Abb.: cpol, centropostzygapophyseal lamina; cprl,

centroprezygapophyseal lamina; cprl-f, centroprezygapophyseal lamina-fossa; epi, epipophysis; nc, neural canal; ncs, neurocentral synchondrosis;

pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; prdl, prezygodiapophyseal lamina; pre,

pre-epipophysis; prsl, prespinal lamina; pvf, posteroventral flange; pvfo, posteroventral fossa; tpol, interpostzygapophyseal lamina; tprl,

interprezygapophyseal lamina. Scale bar = 10 cm.

The neural spine undergoes distinct changes in development and orientation from

anterior to posterior. In anterior cervical vertebrae, it is vertical, and dorsoventrally tall,

reaching well above the postzygapophyses. The axis, as well as CV 3 and 4 have a distinctly

posteriorly curving spine summit, as can also be seen in the corresponding elements of

Brontosaurus yahnahpin. There is an abrupt change in height from CV 5 to 6, resulting

in a smaller total height of CV 6 compared to CV 5. Such a development has only been

described in Dicraeosaurus (Janensch, 1929), but neural spines are often incomplete, where

anterior cervical vertebrae have been found (e.g., Diplodocus carnegii CM 84, Apatosaurus

louisae CM 3018; Hatcher, 1901; Gilmore, 1936), which makes a thorough assessment of

this character difficult. However, SMA 0011 is clearly different from the state in Kaatedocus

siberiAMNH 7530 and SMA 0004, in Barosaurus sp. AMNH 7535, and in the indeterminate

diplodocine CM 3452, where the anterior cervical neural spines are low, and total vertebral

height continuously increases throughout the vertebral column (Tschopp & Mateus, 2013b;

Tschopp, Mateus & Benson, 2015). From CV 6 backwards, the cervical neural spines of
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Figure 25 Cervical vertebra 8 ofGaleamopus pabsti SMA 0011. Neural arch (A) and centrum (B) in dorsal (A1, B5), ventral (A2, B6), posterior

(A3, B1), right lateral (A4, B2), anterior (A5, B3), and left lateral view (A6, B4). The neural spine summit is not preserved. Note the (1) bifid neural

spine, (2) large neural arch foramen, and (3) anteriorly bifurcate pcdl. Abb.: cpol, centropostzygapophyseal lamina; cprl-f, centroprezygapophyseal

lamina-fossa; epi, epipophysis; mt, median tubercle; ncs, neurocentral synchondrosis; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina;

poz, postzygapophysis; prdl, prezygodiapophyseal lamina; pre, pre-epipophysis; prz, prezygapophysis; pvf, posteroventral flange; spol, spinopostzy-

gapophyseal lamina; tpol, interpostzygapophyseal lamina; tprl, interprezygapophyseal lamina. Scale bar = 10 cm.

SMA 0011 decrease in relative height, compared to pedicel height (Table 2), and become

anteriorly inclined. Towards the cervico-dorsal transition, neural spine height increases

again, such that the posterior cervical vertebrae have highly elevated spine summits. In

the first two vertebrae of the transitional block, the spine summits are most strongly

anteriorly inclined, and the dorsal-most parts of the neural spines are anteroposteriorly

short but elongated dorsoventrally. Bifurcation of the spine is present only from CV 8

backwards, which is more posterior compared to Diplodocus or Apatosaurus (Wedel &

Taylor, 2013), but not as posterior as in Barosaurus (McIntosh, 2005). Unbifurcated neural

spines slightly expand transversely towards their distal end, similar to the state in Suuwassea

emilieae (Harris, 2006b). Posteriorly, the SPOLs are thin but project far posterodorsally, and

connect to each other across the spine summit. Therefore, they enclose a distinct, wide and

deep SPOF. Elements with bifid neural spines have a median tubercle. The lateral surface

of the neural spine summits becomes rugose in posterior vertebrae. CV 9 has a distinct

dorsoventral ridge on the medial side of the metapophysis, which connects the summit

with the median tubercle, as in Kaatedocus siberi SMA 0004 (Tschopp & Mateus, 2013b).

Following the changing orientation and elevation of the spine, the SPOL also has a quite

variable morphology from anterior to posterior cervical vertebrae: the lamina is strongly
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Figure 26 Cervical vertebra 9 ofGaleamopus pabsti SMA 0011 in right lateral view. The vertebra is

covered by the prezygapophysis of CV 10, because of they were not disassembled during the remounting.

Note the vertical subdivisions of the anterior (1) and posterior pneumatic fossae (2), and the anteriorly bi-

furcated pcdl (3). Abb.: CV, cervical vertebra; pap, parapophysis; pre, pre-epipophysis. Scale bar = 10 cm.

Figure 27 Cervical vertebra 10 ofGaleamopus pabsti SMA 0011 in right lateral view. Note the subdi-

vision of the pvfo (1), the posteriorly facing accessory lamina in the postzygapophyseal centrodiapophy-

seal fossa (2), the short, subvertical, accessory lamina in the spinodiapophyseal fossa (3), and the anteri-

orly bifurcated pcdl, with the dorsal branch being oriented nearly vertically (4). Abb.: pap, parapophysis;

pre, pre-epipophysis; pvfo, posteroventral fossa. Scale bar = 10 cm.
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Figure 28 Posterior cervical vertebra ofGaleamopus pabsti SMA 0011 in right lateral and anterior

view. Articulated penultimate CV shaded. Note the internal structure apparent due to damage to the an-

terior articular condyle (1). Abb.: acdl, anterior centrodiapophyseal lamina; al, accessory lamina; cpol,

centropostzygapophyseal lamina; cprl, centroprezygapophyseal lamina; di, diapophysis; ncs, neurocentral

synostosis; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; pl, pleurocoel; podl, postzygo-

diapophyseal lamina; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvf,

posteroventral flange; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar

= 10 cm.

concave in CV 3, and less so in CV 4, due to the more expressed backwards leaning of

the spine top in CV 3. The SPOL is gently curved in CV 5, but strongly concave in CV

6, where it forms a 90◦ angle. Due to the increasing anterior inclination of the spine, the

SPOL becomes more gently concave in CV 7 and more posterior elements. Its posterior

portion, where it unites with the epipophysis, is almost horizontal. The epipophysis is well

developed in all cervical vertebrae, often overhanging the postzygapophyses. It constitutes

the posterior end of the SPOL, and is often pointed. The postzygapophyseal facets are

suboval to subcircular in the anterior cervical vertebrae, but become subtriangular more

posteriorly, with the tip pointing medially. They are concave and thus face both downwards

and outwards. They are ventrally supported by a vertical, single CPOL.

Penultimate and posterior-most cervical vertebra

Preservation. The two posterior-most vertebrae are the second and third elements in the

block preserving the cervico-dorsal transition. They are still embedded in matrix, and

only the right sides are prepared (Figs. 31 and 32). The diapophysis is not preserved in

either vertebra, and the posterior-most element also lacks the right metapophysis and
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Figure 29 Neurocentral synostosis in CV 5 ofGaleamopus pabsti SMA 0011. Detail of the vertebra in

right lateral view. Note the higher degree of fusion in the posterior portion compared to the anterior part

(arrows). Abb.: apf, anterior pneumatic fossa; cpol, centropostzygapophyseal lamina; di, diapophysis; pcdl,

posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; poz, postzygapophysis; ppf,

posterior pneumatic fossa; pvfo, posteroventral fossa.

postzygapophysis. The anterodorsal part of the right lateral surface of the centrum of the

posterior-most vertebra is reconstructed, including the neurocentral synostosis.

Compared to more anterior cervical vertebra, the two posterior-most vertebrae

have a considerably taller diapophysis, and less distinct epipophyses. Their centra

are opisthocoelous and have an intermediate elongation compared to more anterior

cervical vertebrae and the first dorsal vertebra (Table 2). The lateral surface is marked by

elongate pleurocoels that occupy the central and anterior portion of the centrum. In the

posterior-most element, the pleurocoel is more restricted towards the anterior than in the

penultimate one, being almost entirely situated above the parapophysis. The parapophysis

lies ventrolateral to the pleurocoels, which extend onto its dorsal face. Posteroventral flanges

are present, but become less distinct in the posterior-most centrum. The ventral surface is

transversely concave and broad, with a shallow longitudinal ridge located anteriorly.

The neural arch height above the synostoses is more or less equal to centrum length,

not counting the condyle (Table 2). As in anterior and posterior cervical vertebrae, the

neurocentral synostosis is closed, but still visible in its anterior half. The neural spine is

divided. The prezygapophyseal facet is broad, and projects slightly anterior to the condyle

in both vertebrae, although the ramus is more vertically oriented in the posterior-most

cervical vertebra than in the penultimate one. A weak pre-epipophysis is present, but does

not extend beyond the prezygapophyseal facet. The SPRL is strongly concave, due to the

strong anterior inclination of the spine top. The PRDL does not contact the ACDL directly,

but they are interconnected by a vertical lamina below the diapophysis. The latter is thus

slightly elevated above the centrum, and dorsoventrally high. The broken diapophysis of the
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Figure 30 Neural arch foramina in CV 8 ofGaleamopus pabsti SMA 0011, in posterodorsal view. The

foramina are highlighted with the semi-transparent overlay. Abb.: bns, bifid neural spine; epi, epipophysis;

mt, median tubercle; naf, neural arch foramen; pap, parapophysis; poz, postzygapophysis; ppf, posterior

pneumatic fossa; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvfo, posteroventral fossa; spol,

spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.

posterior-most element reveals large open spaces internally that are surrounded by narrow

laminae of relatively dense bone tissue. Both the ACDL and the PCDL are only slightly

inclined, and connect to the ventral most part of what would have been a dorsoventrally tall

diapophyseal ramus before it was broken off. The POCDF is subdivided by a strong, laterally

facing, almost vertical accessory lamina, forming a posteroventral branch of the anterior

end of the PODL. This differs from more anterior elements, where the accessory lamina
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Figure 31 Penultimate cervical vertebra ofGaleamopus pabsti SMA 0011 in right lateral view. Articu-

lated cervical vertebrae shaded. Abb.: acdl, anterior centrodiapophyseal lamina; al, accessory lamina; cpol,

centropostzygapophyseal lamina; cprl, centroprezygapophyseal lamina; pap, parapophysis; pcdl, posterior

centrodiapophyseal lamina; pl, pleurocoel; podl, postzygodiapophyseal lamina; poz, postzygapophysis;

prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvf, posteroventral flange; spol, spinopostzy-

gapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.

in the POCDF faces posteriorly. Unlike the mid-cervical vertebrae, the posterior elements

do not have any fenestra connecting the POCDF with the SPOF. The spine summits are

anteroposteriorly narrow, and inclined anteriorly, but the inclination decreases in more

posterior elements. The lateral surface of the spine is marked by the SDF, which is well

delimited dorsally, similar to the state in the first posterior cervical vertebra. From the top of

the SDF, the spine of the posterior-most elements forms a narrow anterodorsal projection.

The medial surface of the spine is slightly anteroposteriorly convex and smooth.

Dorsal vertebrae (Figs. 33–37; Table 3)

Preservation. The dorsal series of SMA 0011 was found in two parts, with one and a half

dorsal vertebrae preserved with the neck vertebrae, and the posterior-most six elements

preserved with the appendicular material. A third block including three anterior to mid-

dorsal vertebrae with associated dorsal ribs was collected from a position between the two

main parts as described above (Fig. 3), and was initially included as part of the specimen.
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Figure 32 Posterior-most cervical vertebra ofGaleamopus pabsti SMA 0011 in right lateral view. Ar-

ticulated penultimate CV and DV 1 shaded. The right metapophysis is lacking, only the medial face of the

left one is visible. Note the broken diapophysis that reveals the inner structure. Abb.: cpol, centropostzy-

gapophyseal lamina; cprl, centroprezygapophyseal lamina; di, diapophysis; pap, parapophysis; pl, pleuro-

coel; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzy-

gapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.

However, these most probably do not belong to the holotype specimen due to different size,

preservation, and an apparently older ontogenetic stage (based on neurocentral closure

patterns).

Dorsal vertebrae 1 and 2. Both elements are broken and deformed such that it is difficult

to understand their morphology in detail (Figs. 33 and 34). The first dorsal vertebra lacks

the right diapophysis and neural spine, such that themedial surface of the left metapophysis

is visible in the mount (Fig. 33). The dorsal portion of the centrum and ventral half of

the neural arch are crushed, and various pieces of each became intermingled. The second

dorsal element preserves a very deformed, anterior half of the centrum, which is not fused
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Table 3 Measurements of dorsal vertebrae ofGaleamopus pabsti SMA 0011 (in mm).

Dorsals gH cL ppL ppH ctW ctH cdW cdH nsH cL-cd naH dvH di apD di

DV 1 630 65 120 220
(est)

200 458
(def)

140 250
(est)

DV 2 53
(def)

185
(def)

180
(def)

DV 5? 730 157 50 83 160
(def)

195 150
(est)

107 60

DV 6? 800 106 150 210 545
(est)

160 330

DV 7? 810 110 160 225 605
(est)

170 345

DV 8? 900 138 148 225 665 163 330

DV 9? 900 112 130 212 665 160 290

DV 10? 140 130 216 175 260
(est)

Notes.

apD, anteroposterior depth; cdH, height condyle; cdW, width condyle; cL, centrum length; cL-cd, centrum length without condyle; comp, compressed; ctH, height cotyle; ctW, width cotyle; def,

deformed; di, diapophysis; dvH, dorsoventral height; est, estimated; gH, greatest height; naH, height neural arch (below poz); nsH, height neural spine; ppH, pneumatopore height; ppL, pneu-

matopore length.
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Figure 33 Dorsal vertebra 1 ofGaleamopus pabsti SMA 0011 in right lateral view. Articulated

posterior-most CV and partial DV 2 shaded. The right metapophysis of DV 1 is lacking, only the

medial face of the left one is visible. The broken right prezygapophysis is present on top of the broken

diapophysis. Abb.: DV, dorsal vertebra; ncs, neurocentral synostosis; pap, parapophysis; pl, pleurocoel;

prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina; vk,

ventral keel. Scale bar = 10 cm.

with the neural arch (Fig. 34). A part of the neural arch is severely crushed and intermingled

with the fractured pieces of the first dorsal vertebra (Fig. 33).

The dorsal vertebrae are considerably shorter than the posterior-most cervical elements,

but remain of about the same length along the dorsal column (not considering the condyle;

Table 3). The first dorsal vertebra has a strongly opisthocoelous centrum, whereas DV 2 is

only slightly opisthocoelous. Both vertebrae bear distinct pleurocoels on the anterodorsal
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Figure 34 Dorsal vertebral centrum 2 ofGaleamopus pabsti SMA 0011. Centrum shown in dorsal (A),

anterior (B), left lateral (C), and internal (D) view. The posterior half of the centrum is lacking due to pre-

burial taphonomic processes (possibly scavenging), revealing the inner structure of the centrum in poste-

rior view (D). The grey gradient indicates the position of the pleurocoel. Abb.: nc, neural canal; ncs, neu-

rocentral synchondrosis; pl, pleurocoel. Scale bar = 10 cm.

corner of their lateral sides. These pleurocoels are shorter than the ones of the posterior-

most cervical elements, and excavate the neural arch pedicels internally. The position of

the parapophysis is difficult to see in both elements, but appears to be still on the centrum

in DV 1 (anterodorsal to the pleurocoel), whereas the centrum of DV 2 does not show

any traces of a parapophysis. The ventral side of DV 1 is well delimited by posterior ridges

between the lateral and ventral surfaces. A broad, but distinct midline ridge marks the

anterior half of the ventral side of the first dorsal centrum. The articulation surface of the

second centrum for the neurocentral synchondrosis is broad and curved. The neural canal

is narrowest at midlength of the centrum. The internal structure of the centrum consists

of large chambers, separated from each other by thin, well-defined laminae, which are not

symmetrical (Fig. 34D).

The neural arches of the dorsal vertebrae are higher, but more anteroposteriorly

compressed, than in the posterior-most cervical elements. The prezygapophysis is relatively

short. The SPRL is oriented almost vertically, and no strong anterior inclination of the

neural spine is present anymore. The medial side of the first dorsal neural spine is gently

convex, and slightly longer anteroposteriorly than in the posterior-most cervical vertebrae.

Postzygapophyses are not preserved.

Mid- to posterior dorsal vertebrae (probably DV 5–10). Dorsal vertebra 5 lacks its right

neural arch, diapophysis, and spine (Fig. 35). Dorsal vertebra 6 lacks the anterior part of
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Figure 35 Dorsal vertebra 5 ofGaleamopus pabsti SMA 0011. DV 5 shown in posterolateral (A) and

right lateral view (B). The element lacks the right half of the neural spine, and is partly mounted in ma-

trix. Grey lines indicate the probable extensions of the right half. Note that the tip of the left diapophysis

is reconstructed. The true diapophysis of DV 5 is figured in Fig. 37. Abb.: di, diapophysis; nc, neural canal;

pap, parapophysis; pl, pleurocoel; poz, postzygapophysis; prz, prezygapophysis; spdl, spinodiapophyseal

lamina; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.

the centrum, the right diapophysis, parapophysis, and prezygapophysis, and the spine top.

In dorsal vertebra 7, the right diapophysis, parapophysis, and the spine top are missing.

Dorsal vertebrae 8 and 9 lack the right diapophysis and parapophysis. The last dorsal

vertebra lacks the neural spine process, whereas the arch below the postzygapophysis, the

diapophysis, and the prezygapophyses are preserved (Fig. 36).

The mid- and posterior dorsal centra are short, and generally amphiplatyan to

amphicoelous. Only DV 5 shows a weak anterior condyle. The pleurocoel is largest in DV

6–8, occupies the dorsal half of the centrum and extends slightly onto the pedicels, below
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Figure 36 Dorsal vertebrae 6 to 10 ofGaleamopus pabsti SMA 0011. Vertebrae shown in right lateral

(A), posterolateral (B), and anterolateral view (C). The elements are partly preserved in matrix. Note the

open neurocentral synchondrosis in DV 7 to DV 10. Abb.: cpol, centropostzygapophyseal lamina; DV,

dorsal vertebra; lspol, lateral spinopostzygapophyseal lamina; pap, parapophysis; pcdl, posterior centrodi-

apophyseal lamina; pcpl, posterior centroparapophyseal lamina; (continued on next page. . . )
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Figure 36 (. . .continued)

pl, pleurocoel; podl, postzygodiapophyseal lamina; posl, postspinal lamina; poz, postzygapophysis; prdl,

prezygodiapophyseal lamina; prpl, prezygoparapophyseal lamina; prsl, prespinal lamina; spdl, spinodi-

apophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar in A = 10 cm, DV 6 in A and C, and DV

10 in A and B are scaled to the same vertebral height.

the neurocentral synchondrosis. The ventral surface is convex, and not well separated from

the lateral side. The centrum is slightly shorter ventrally than at mid-height. In DV 6 and 7,

a zigzagged line marks the neurocentral synostosis at the dorsal edge of the centrum. Dorsal

vertebrae 8–10 have the centra and neural arches detached, but no obvious articulation

surface is visible on either element, indicating that that closure has initiated but not entirely

completed, such that centra and neural arches could be detached easily. The neural arch is

high, with highly elevated postzygapophyses, resulting in longer pedicels than neural spines

in at least DV 5–8. Pre- and postzygapophyses are on more or less a horizontal line. The

pedicels below do not show a strong lamination, but the ACPL, PCDL, and CPOL can be

well distinguished. Dorsal vertebrae 6–9 furthermore show a weakly developed PCPL. An

accessory lamina can be found in DV 7, connecting the PCDL with the PODL, and in DV 8

between the PRPL and the PRDL. Only a single hyposphene is visible (in DV 5), relatively

long dorsoventrally, and transversely expanded ventrally, resulting in a high and narrow

trapezoid. The width of the ventral end (39 mm) is slightly more than twice the minimum

width of the hyposphene (16 mm). The posterior surface of the hyposphene is transversely

concave. It is ventrally supported by a single, vertical lamina. The parapophysis lies at

mid-height on the pedicels in DV 6, at two thirds in DV 7 and at three fourths in DV 8.

More posteriorly, the parapophysis seems to have been attached to the prezygapophysis.

A single transverse process is preserved completely (the left of DV 5; Fig. 37). It projects

more or less straight laterally (although it was reconstructed as being strongly inclined, see

Fig. 35), curving very gently ventrally towards its distal tip. The process is widest dorsally,

and dorsoventrally concave both on its anterior and posterior sides. The diapophyseal facet

points ventrolaterally and is strongly expanded posteriorly.

The spine is relatively low inDV 5–8, and only in DV 9 and probably 10 does it exceed the

pedicel height. The spines are situated above the posterior-most portion of the centrum,

and are vertically oriented. This differs from the strongly anteriorly inclined posterior

dorsal neural spines of Diplodocus (Hatcher, 1901; Gilmore, 1932). The SPRL is vertical in

DV 6, strongly dorsoventrally convex in DV 7 and 8, and slightly convex in DV 9. The

SPDL is short and only expressed at its ventral end. Dorsally it merges with the SPOL,

which extends onto the lateral surface of the spine. The POSL, or possibly medial SPOL, is

straight and vertical. Due to the preservation and mounting (partly embedded in matrix),

it cannot be distinguished at this point how far back the bifurcation proceeds. The last

definitively bifid neural spines are present in DV 5.

Ribs

Cervical ribs (Figs. 38–49; Table 4). The cervical ribs are thin, fragile elements. None of

them are fused with their respective centra. They are composed of a rib shaft, an anterior

process, and the capitulum and tuberculum. The ribs are concave internally, with a lamina
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Figure 37 Left transverse process of DV 5 ofGaleamopus pabsti SMA 0011. The process is shown in

dorsal (A), posterior (B), anterior (C), and ventral (D) view. Abb.: dif, diapophyseal facet. Scale bar = 10

cm.

connecting the tuberculum with the capitulum internally, producing two separate fossae

anteriorly and posteriorly.

The axial cervical rib has almost no tuberculum and is thus a straight, elongate, and

dorsoventrally compressed sheet of bone, which becomes slightly higher around midshaft

but tapers again posteriorly (Fig. 38). The capitulum is not offset from the posterior

shaft, and faces anteromedially. The capitular facet is much longer than wide, such

that it articulates with both the axial parapophysis, and to a small extent also with the

posteroventral projections of the atlas.

Anterior to mid-cervical ribs are longer than their corresponding centra, unlike the

situation in Apatosaurus louisae CM 3018 (Gilmore, 1936), but they overlap only a small

portion of the following vertebra. The anterior process is distinct but very short in CR 3, and

pointed in CR 3–5 (Figs. 39–41). This process becomes very broad and rounded anteriorly

in mid- and posterior cervical ribs (Figs. 42–49). At the base of the anterior process, mid-

and posterior cervical ribs bear a dorsal lamina, which connects the capitulum with the

tubercular edge of the anterior process (Fig. 45). Thereby, it forms the anteromedial rim

of a deep triangular fossa, which is otherwise bordered by a transverse lamina between

capitulum and tuberculum and the lateral margin of the anterior process. This fossa is

further subdivided by a second oblique ridge, parallel to the first, in posterior cervical ribs

(Fig. 47B). The tuberculum is posteriorly inclined in anterior cervical ribs, and triradiate in
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Table 4 Measurements of cervical ribs ofGaleamopus pabsti SMA 0011 (in mm).

CV Side apL apL ap minH minW maxL
cap

apL
caf

tW
caf

maxL
tub

apL
tuf

tW
tuf

Comments

CR 2 R 197 8 13 21 24 9

CR 3 L 250 11 5 15 27 24 17 Anterior tip missing, apL, apL ap
incomplete

R 5 16

CR 4 L 250 57 6 15 42 38 26 Central portion missing, apL in-
complete

R 283 49 6 18 38 40 25 96 12 15

CR 5 L 84 64 47 25 Incomplete

R 368 88 22 60 52 27 119 7 19 Deformed: apL, maxL tub, apL tuf
too short

CR 6 L 80 80 62 30 Anterior tip and posterior process
lacking: apL ap too short

R 78 70 27 Anterior tip and posterior process
lacking

CR 7 L 106 89 67 39 Anterior tip and posterior process
lacking: apL ap too short

R 116 100 67 36 Posterior process and tuberculum
lacking

CR 8 R 435 88 26 109 68 38 102 Anterior tip and tubercular facet
missing: apL, apL ap, maxL tub
too short

CR 9 R 145 128 80 38 Posterior process and tuberculum
lacking

CR 10 R 382 50 5 43 133 81 39 124 Anterior and posterior tip and tu-
bercular facet missing: apL, apL
ap, maxL tub too short

CR 11 R 117 137 79 35 172 19 25 Anterior and posterior process
missing: apL ap too short

L 143 140 80 33 137 Posterior Process and tubercular
facet missing: maxL tub incom-
plete

(continued on next page)
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Table 4 (continued)

CV Side apL apL
ap

minH minW maxL
cap

apL
caf

tW
caf

maxL
tub

apL
tuf

tW
tuf

Comments

CR ?12 Mounted, could not be measured

CR ?13 L 465 117 10 35 178 75 43 Anterior and posterior tip and tu-
bercular facet missing: apL, apL
ap, maxL tub too short; minH,
minWmeasured at posterior-
most preserved point

R 400 144 34 159 88 37 152 52 26 Anterior and posterior tip miss-
ing: apL, apL ap too short; minW
measured at posterior-most pre-
served point

CR ?14 L 368 105 180 76 210 33 37 Caf incomplete, posterior process
compressed transversely

R 158 64 60 220 49 23 Anterior tip and posterior process
lacking

Notes.

CR 2 is the first rib in the column, and attaches to both atlas and axis (see text). CR 13 and 14 are the two posterior-most ribs as described in the text.

ap, anterior process (apL measured from transverse lamina between cap and tub to anterior tip); apL, anteroposterior length (measured in a straight line); caf, capiular facet; cap, capitulum; maxL

maximum length (measured from capitular or tubercular facets to ventrolateral edge of CR); minH, minimum dorsoventral height (around midlength of posterior shaft); minW, minimum transverse

width (around midlength of posterior shaft); tub, tuberculum; tuf, tubercular facet; tW, transverse width.
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Figure 38 Left axial rib ofGaleamopus pabsti SMA 0011. The rib is shown in lateral (A), ventral (B),

medial (C), and dorsal (D) view. Abb.: caf, capitular facet. Scale bar = 10 cm.

Figure 39 Cervical ribs 3 ofGaleamopus pabsti SMA 0011. The left (A–D) and right (E–H) ribs are

shown in dorsal (A, E), medial (B, F), ventral (C, G), and lateral (D, H) views. Abb.: ap, anterior process;

cap, capitulum; tub, tuberculum. Scale bar = 10 cm.

cross-section atmidlength. The three axes are oriented anteriorly, posteriorly, andmedially.

The tubercular facet is generally wider than long. The capitulum bears a pneumatic foramen

dorsally, posterior to the origin of the lamina connecting the capitulumwith the tuberculum

(Fig. 42). The capitular facet is ovoid in CR 3, with the wider end anteriorly. It becomes

subrectangular to reniform in more posterior ribs, with the longer axis being oriented

anteroposteriorly, and the sometimes concave margin being the dorsolateral one. The

ventral surface of the cervical rib is marked by striations (Fig. 46), probably for muscle or

tendon insertions.

The two posterior-most cervical ribs (Figs. 48 and 49) bear progressively shorter

anterior processes, compared to more anterior cervical ribs. The dorsal oblique lamina
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Figure 40 Cervical ribs 4 ofGaleamopus pabsti SMA 0011. The left (A–C) and right (D–F) ribs are

shown in lateral (A, D), dorsal (B, E), and medial (C, F) views. It is unclear how long the missing portion

of the left rib shaft was, the space is thus only indicative. Note the transverse lamina connecting capitulum

and tuberculum (1). Abb.: ap, anterior process; cap, capitulum; tub, tuberculum. Scale bar = 10 cm.

Figure 41 Right cervical rib 5 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsal (A), medial

(B), and ventromedial (C) views. The spur on the distal end of the rib shaft is a support for mounting.

Abb.: ap, anterior process; cap, capitulum; tub, tuberculum. Scale bar = 10 cm.
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Figure 42 Right cervical rib 6 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsal (A), medial

(B), and ventral (C) views. Note the pneumatic foramen on the capitulum (1). Abb.: cap, capitulum. Scale

bar = 10 cm.

disappears, and also the transverse lamina connecting capitulum and tuberculum becomes

less pronounced. The angle between capitulum and tuberculum widens considerably,

approaching 90◦ in the posterior pair. The posterior process shortens and tapers strongly.

A distinct longitudinal ridge marks the ventral surface, as in anterior dorsal ribs. One right

posterior cervical rib (field numberM 6/16-3) has a pronounced, anteriorly projecting spur

close to the origin of the transverse lamina on the capitulum, which might be an ossified

tendon insertion, and is absent on the left element of the pair (Fig. 48). The pneumatic

fossa on the capitulum is reduced in the first pair of posterior-most cervical ribs, and

totally absent in the second pair. The capitular facet becomes ovoid again, resembling the

shape of the facet in CR 3. In the posterior-most pair of cervical ribs, the capitular facet

is nearly circular, and supported by a strong, subtriangular capitular neck. The tubercular

facet is longer than wide, and thus resembles rather dorsal ribs than cervical elements. In

the posterior-most cervical ribs, the posterior process does curve slightly downwards, and

not strictly posteriorly as in more anterior elements.

Dorsal ribs (Figs. 50–56; Table 5). Several ribs have been recovered associated with the

dorsal series, but whereas the sequence from anterior to posterior appears relatively

clear, based on the quarry position, the exact position of the single elements can only be

confidently determined for some elements.

DR 1 has a capitulum and a tuberculum which stand in a right angle to each other (Figs.

50 and 55). The anterior surface of the rib head bears a distinct, narrow, proximodistal

ridge, which originates from the tubercular facet and extends in a nearly straight line distally

onto the rib shaft (Fig. 50), where it fades out. At the base of the capitulum, a broader,

slightly less distinct ridge separates from the narrow one and curves for a short distance
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Figure 43 Right cervical rib 7 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsal (A), medial

(B), and ventral (C) views. The tuberculum is not preserved. Abb.: cap, capitulum. Scale bar = 10 cm.

onto the anterior surface of the capitulum, joining its proximal edge at about midlength

(Fig. 50). Both the tubercular and capitular facets are anteroposteriorly compressed, rugose

articular surfaces. The posterior surface of the capitulum is flat. The posterior surface of

the tuberculum is marked by two longitudinal ridges: a longer, narrower medial one, and

a shorter and broader lateral one (Fig. 50). Together, they form a distinct proximal fossa

just below the tubercular facet, which fades out more distally towards the rib shaft. The rib

shaft has a V-shaped cross-section at its base and flattens distally. The anterior side changes

from being distinctly convex (due to the presence of the proximal longitudinal ridge) to

even slightly concave once the ridge disappears. The distal end of the shaft tapers nearly to

a point, and is marked by a sharp longitudinal ridge on the posterior surface, which extends

from below midshaft to the tip and thus creates a distinctly triangular cross-section, with

an inverted orientation compared to the cross-section at the base of the shaft.

Dorsal rib 2 has amuch shorter tuberculum, which is mainly due to the fact that the bony

shelf connecting capitulum and tuberculum is more extensive in this element compared to

the first dorsal rib (Fig. 51). The longitudinal ridge on the anterior surface of DR 2 is less

pronounced and wider than in DR 1, and no perpendicular ridge occurs at the base of the

capitulum. Also the short, longitudinal ridges on the posterior surface of the tuberculum

of DR 1 do not occur on DR 2, so that the rib head is uniformly concave posteriorly. When

articulated with the dorsal vertebra, the shaft of DR 2 curves backwards and tapers until
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Figure 44 Right cervical rib 8 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsal (A), medial

(B), and ventral (C) views. The tuberculum is only partly preserved. Abb.: tub, tuberculum. Scale bar = 10

cm.

about midlength. From here, the anterior and posterior edges remain subparallel, just to

minimally expand distally towards the distal-most tip.

A probable DR 3 preserves only the shaft, which is wider and more triangular than

circular in cross-section. The distal end is expanded (Fig. 52).

More posterior ribs continue the trends observed from DR 1 to DR 3. The shape of

the rib head changes such that the capitulum projects obliquely dorsomedially instead of

perpendicular to the long axis of the shaft. The capitular facet becomes gradually stronger

throughout the series, whereas the tuberculum becomes shortened. The rib head thus has

a subtriangular shape in axial view in more posterior elements. In at least the last three

dorsal ribs (but maybe additional posterior dorsal elements are lacking), the capitulum

curves dorsally at its end, such that the capitular facet comes to face dorsomedially instead

of more strictly medially as in more anterior ribs. The relatively thin sheet of bone between

capitulum and tuberculum remains flat internally throughout the entire series (contrary to

the state in most other diplodocines, in which this area is marked by an oblique accessory

ridge; Tschopp, Mateus & Benson, 2015). None of the ribs bear pneumatic foramina. The

shafts are marked by a longitudinal groove on the lateral edge in mid- to posterior dorsal

ribs, and have an ovoid to slightly subtriangular cross-section, with a transversely oriented

long axis, and a slightly more angular posterior surface. The last three or more dorsal ribs

decrease significantly in shaft width, compared to more anterior elements, and obtain a

subcircular cross-section similar to DR 1.
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Figure 45 Right cervical rib 9 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsolateral (A),

dorsomedial (B), ventromedial (C), and ventrolateral (D) views. The rib shaft is not preserved. Note the

oblique lamina at the base of the anterior process (1). Abb.: tub, tuberculum. Scale bar = 10 cm.
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Figure 46 Right cervical rib 10 ofGaleamopus pabsti SMA 0011. The rib is shown in dorsal (A), medial

(B), and ventral (C) views. The anterior process is only partly preserved. Note the striations on the ventral

surface of the rib (1). Abb.: cap, capitulum; tub, tuberculum. Scale bar = 10 cm.

The left dorsal rib 2 bears bite marks on its distal end (Fig. 56). The bite marks are

eleven parallel, slightly curved grooves on the external side of the rib, which extend from

the posterior edge anteroventrally. The distance between the marks on the posterior edge

varies from 16 to 26 mm, with a mean distance of 20.75 mm.

Sternal ribs (Figs. 57 and 58). Several morphotype C elements (sensu Tschopp & Mateus,

2013a) were recovered associated with SMA 0011. They are rod-like, narrow bones (Fig.

57). Some have a rather circular, and others a laminar cross-section, and all have smooth

margins. A single, flattened morphotype E element (field number M5/4-2) is expanded on

one side, where it has rugose margins (Fig. 58). No additional information can be gleaned

to date that would help to confirm or discard the interpretation of Claessens (2004) and

Tschopp & Mateus (2013a) that these elements are sternal ribs.
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Figure 47 Cervical ribs 11 ofGaleamopus pabsti SMA 0011. The left (A–C) and right (D–E) ribs are

shown in medial (A, D), dorsomedial (B, E), and dorsolateral (C, E) views. The rib shafts are not com-

pletely preserved (the right one is reconstructed). Note the laminae subdividing the anterior process (1).

Scale bar = 10 cm.

Figure 48 Cervical ribs ?13 ofGaleamopus pabsti SMA 0011. The left (A–C) and right (D–F) ribs are

shown in lateral (A, D), dorsal (B, E), and medial (C, F) views. The rib shafts are not completely preserved.

Note the anterior projection on the capitulum of the right CR 13 (1). Abb.: cap, capitulum. Scale bar =

10 cm.
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Figure 49 Cervical ribs ?14 ofGaleamopus pabsti SMA 0011. The left (A–C) and right (D–F) ribs are

shown in lateral (A), dorsal (B), medial (C, E), dorsomedial (D), and ventral (F) views. The capitulum of

the left rib is dorsoventrally compressed. The right rib has a broken anterior process and an incomplete

and strongly distorted posterior shaft. Note the short, tapering posterior shaft (1), and the circular capitu-

lar facet (2). Abb.: ap, anterior process; cap, capitulum; tub, tuberculum. Scale bar = 10 cm.

Appendicular skeleton

Terminology. The scapulacoracoid is described as if it were oriented horizontally, with

the scapular blade pointing posteriorly. Manus and pes are described as if the digits

were held completely vertically, and arranged in a single line perpendicular to the axial

column (following Bonnan, 2001). Therefore, the directional term ‘‘posterior’’ is used

interchangeably with ‘‘palmar’’ in the manus and ‘‘plantar’’ in the pes.

Forelimb (Figs. 59–67; Table 6)

Scapulae. Both scapulae lack the dorsal part of the acromion and of the distal end of the

blade (Fig. 59). The acromion and the blade form an acute angle, but the acromial ridge is

only very slightly developed. The lateral surface anterior to the acromial ridge is concave.
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Table 5 Measurements of dorsal ribs ofGaleamopus pabsti SMA 0011 (in mm).

Element side pdL maxL
cap

apL
caf

dvH
caf

maxL
tub

apL
tuf

tW
tuf

Distance
between
facets

Angle
between
cap and tub

DR 1 R 228 16 50 173 19 53 202 90

L 205 23 51 189 37 53 117 50

DR 2 R 1,105 250 23 81 170 90

L 1,130 205 35 76 170 29 80 136

DR 3 R? 1,025

DR 4

DR 5 R 215 125 70

DR 6 R 1,052

L 250 21 150 70

DR 7 R 1,150

L 340 21 109 160 42 73 230 60

DR 8 R 1,250

L 325 32 150 60

DR 9 R

L

DR 10 L 170 80

Element side maxD
midshaft

minD
midshaft

maxD
dist

minD
dist

Comments

DR 1 R 38 16

L 40 20 17 11 apL caf estimated; distance and angle between facets deformed

DR 2 R 48 28 50 11 pdL along curvature, preserved length; maxL tub is preserved
length; maxD midshaft, dist estimated

L 49 32 39 9 pdL along curvature, preserved length; cap deformed; distal end
estimated

DR 3 R? 52 23 75 pdL along curvature, preserved length

DR 4

DR 5 R maxL cap & tub, preserved length

DR 6 R 65 31 pdL along curvature, preserved length; maxL tub is preserved
length

L 80 26 max L tub: preserved length; midshaft measurements taken more
distally

DR 7 R 74 26 Only shaft preserved, pdL preserved length

L 66 38

DR 8 R 44 34 pdL along curvature, preserved length

L 55

DR 9 R 42 25

L

DR 10 L max L cap tub preserved lengths

Notes.

apL, anteroposterior length (measured in a straight line); caf, capiular facet; cap, capitulum; dist, distal; dvH, dorsoventral height; maxD, maximum diameter; maxL,

maximum length; minD, minimum diameter; pdL, proximodistal length; tub, tuberculum; tuf, tubercular facet; tW, transverse width.
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Figure 50 Right dorsal rib 1 ofGaleamopus pabsti SMA 0011. The rib is shown in anterior (A), medial

(B), and posterior (C) views. The rib shaft is slightly incomplete at its distal end. Note the ridges on the

anterior (1, 2) and posterior (3) surfaces. Abb.: cap, capitulum; tub, tuberculum. Scale bar = 10 cm.

Medially, the acromion is concave. The glenoid surface is transversely concave and faces

slightly more medially than laterally. The surface is widest anterodorsally, close to the

articulation with the portion of the glenoid on the coracoid, and tapers posteroventrally.

The ventral edge is mostly straight, and does not bear a triangular process as present in

some Camarasaurus specimens, or Dystrophaeus (Osborn & Mook, 1921; McIntosh, 1997).

The distal end of the blade is slightly expanded ventrally as in Brontosaurus excelsus YPM

1980 (Upchurch, Tomida & Barrett, 2004). The dorsal, or acromial edge of the scapula is

much more concave than the ventral one, due to the stronger extensions of the dorsal

portion of the acromion and the indicated, wider distal expansion of the shaft, which starts

more anteriorly on this edge than on the ventral one. No oval rugose tubercle is present

on the base of the shaft, unlike in Brontosaurus excelsus YPM 1980 (Upchurch, Tomida &

Barrett, 2004), although a slightly elevated structure occurs in the left scapula.

The left scapula bears distinct bite marks medially along the broken posterodorsal edge

of the acromion. There are at least ten subparallel grooves oriented perpendicular to the

broken edge, and varying in length from 19 to 73 mm. Also on the lateral side, the left

scapula bears short, subparallel grooves, which mark the slightly elevated structure at the

base of the shaft. Seven grooves are present. Given that this structure was probably the
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Figure 51 Right dorsal rib 2 ofGaleamopus pabsti SMA 0011. The rib is shown in posterior (A) and an-

terior (B) views. Note the longitudinal ridge on the anterior surface (1), which is wider than the one in DR

1. Abb.: tub, tuberculum. Scale bar = 10 cm.

Figure 52 Right dorsal rib ?3 ofGaleamopus pabsti SMA 0011 in lateral view. The rib head is not pre-

served. Note the distal expansion for the attachment of sternal cartilages (1). Scale bar = 10 cm.

attachment site for soft tissue (the M. scapulohumeralis cranialis, according to Remes,

2008), the theropod might have bitten only there in order to detach the muscle from the

bone.

Coracoid. The right coracoid is preserved, which is only observable in lateral view due to

the way it is mounted. The coracoid is somewhat tear-drop shaped (Fig. 59), with a concave

anterodorsal edge, and a strongly, continuously convex, narrow dorsal margin, unlike the

squared coracoids of apatosaurs (Riggs, 1903; Bakker, 1998). The coracoid foramen is

completely enclosed, but the coracoid is not fused with the scapula. The bone is gently

convex dorsoventrally. It curves slightly medially at its anterior margin. No distinct notch

is present anterior to the glenoid surface. The glenoid is strongly transversely expanded at

its center, and tapers posterodorsally and anteroventrally. The articular surface is barely

visible in lateral view. The glenoid surface and the articulation surface with the scapula

enclose an angle of about 155◦.
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Figure 53 Right dorsal rib ?5 ofGaleamopus pabsti SMA 0011. The rib is shown in posterior (A) and

anterior (B) views. Only the rib head is preserved. Note the absence of an oblique ridge crossing the poste-

rior surface. Abb.: tub, tuberculum. Scale bar = 10 cm.

Humeri. The humeri are both complete but slightly compressed anteroposteriorly, the

right humerus more so than the left (Figs. 60 and 61). The humeri are widely transversely

expanded at their proximal ends, both laterally and medially. The distal ends are expanded

as well, but less so. The proximal portion of the anterior side is concave transversely. A

small, rugose tubercle marks this concavity, as in most diplodocids (Tschopp, Mateus &

Benson, 2015), but it is more laterally positioned compared to the apatosaur AMNH 6114

or Galeamopus hayi HMNS 175 (Fig. 60). The deltopectoral crest of G. pabsti SMA 0011

does not extend to midshaft (Table 6). Its distal end is distinct and follows the lateral

margin. It is not transversely expanded as would be typical for titanosaurians (Wilson,

2002; Curry Rogers, 2005). The lateral surface of the crest is concave anteroposteriorly, but

this depression is probably exaggerated taphonomically. The humeral head is well offset

from the shaft and centrally located. The posterior surface is transversely convex in its

proximal half, but becomes concave distally, where it develops a shallow intercondylar

groove. Two ridges mark the distal end anteriorly, indicating the extensions of the medial

and lateral condyles. The ridges are relatively well visible and extend proximally up the

shaft (Fig. 61B). The medial condyle is much wider than the lateral one.

Ulna. The ulna lacks the proximal-most portion of the anterior arm of the condylar

processes. The bone is strongly anteroposteriorly compressed in its proximal half (Fig. 62).

It is generally slender, with a triradiate proximal end. The anterior arm is considerably

longer than the lateral one, even though this is enhanced due to compression. The ulna

has concave posterolateral and posteromedial surfaces. The lateral arm is somewhat wider
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Figure 54 Posterior right dorsal ribs ofGaleamopus pabsti SMA 0011. The ribs are estimated to be

dorsal ribs 6 in posterior (A), 7 in lateral (B), 8 in anterior (C) and 9 in posterior (D), view. Rib head and

distal tips of ribs 6, 7, and 9 are not preserved. The rib head of DR 6 is reconstructed. The rib 8 is pre-

served in three parts (fractures indicated by arrows). Abb.: tub, tuberculum. Scale bar = 20 cm.

than the anterior one. The distal part of the anterior surface bears two strong and elevated,

longitudinal ridges. They both taper distally and proximally, and have a smooth surface.

Proximally, the more lateral of the two ridges extends above midlength (Fig. 62D). Distally,

the more medial ridge is more pronounced, reaching the distal articular surface. The

distal end is expanded medially and somewhat anteroposteriorly. The articular surface is

subrectangular in outline.

Radius. The radius is complete, but its proximal end is compressed, and the distal end

taphonomically sheared such that the entire bone appears sigmoid (Fig. 63). The proximal

articular surface has thus a narrow, ellipsoid outline, but would probably be slightly more
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Figure 55 Left dorsal ribs 1, 2, and 6–10 ofGaleamopus pabsti SMA 0011. The ribs are shown in ante-

rior (ribs 1, 2, 8–10) and posterior (ribs 6, 7) view. Scale bar = 10 cm.

Figure 56 Bite marks on the left dorsal rib 2. The bite marks (arrowheads) occur on the distal end of DR

2, shown in lateral view. Scale bar = 5 cm.

Figure 57 Sternal rib ofGaleamopus pabsti SMA 0011. This bone can be attributed to morphotype C of

Tschopp & Mateus (2013a). Orientation unknown, both ends lacking. Scale bar = 10 cm.
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Figure 58 Sternal rib ofGaleamopus pabsti SMA 0011. This bone can be attributed to morphotype E of

Tschopp & Mateus (2013a). Orientation unknown. Scale bar = 10 cm.

subcircular if undeformed. The shaft is subrectangular in cross-section. As in the ulna,

also the distal end of the radius is slightly expanded transversely. The posterior surface

bears two longitudinal ridges on its distal portion for the articulation with the ulna. The

lateral ridge is stronger and marks the posterolateral edge of the radius. It extends from

the distal articular surface about one third up the shaft. The more medial ridge is weakly

developed and shorter. It does not reach the distal articular surface. The distal surface is

subrectangular, with convex medial and lateral margins and weakly concave anterior and

posterior borders. The lateral half of the distal articular surface is beveled.

Carpal. The carpal is an irregular, relatively thick element (Fig. 64). It does not bear distinct

articular surfaces, and was found slightly disarticulated, such that an orientation of the

carpal within the manus was not possible to definitely confirm. Only one element was

found. The entire bone is relatively rugose and was found between the radius and mtc

I–III. This is the same arrangement as found in the articulated manus of the indeterminate

diplodocine WDC-FS001A (Bedell & Trexler, 2005; Tschopp, Mateus & Benson, 2015), but

different from apatosaurines, where the carpal overlies mtc II–IV (CM 3018 and UW

15556;Hatcher, 1902; Gilmore, 1936). If the orientation of the carpal did not change during

diagenesis, the surface articulating with the radius is strongly convex transversely, but some

abrasion has occurred, and the internal bone structure is visible both medially and laterally.

It is therefore possible that the complete element would be more block-like in shape, as

known from other diplodocine specimens (WDC-FS001A, Bedell & Trexler, 2005). It is

relatively narrow anteroposteriorly at its medial end. The lateral side is about double the
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Table 6 Forelimbmeasurements ofGaleamopus pabsti SMA 0011, in mm.

pdL acL min
sD

max
sD

min
apD

ptW dtW dpcL aprL lprL papD dapD dvH scaL max
tW gl

dvH
gl

Comments

Scapula, R 1,375 620
(inc)

178 240
(inc)

Max sD
measured at
distal-most
preserved
end

Scapula, L 1,370 620

(inc)

180 295 130 121 222 Distal end
incom-
plete, pdL
preserved
straight
length; max
sD measured
at distal-
most pre-
served end

Coracoid, R 379 515 290 105 200

Humerus, L 870 174 70
(est)

474 309 310

Humerus, R 893 180 75 480 328 325 89 104

Radius, L 601 89 44 165 140 87 74 Min apD
measured
laterally

Ulna, L 628 73 78 200 123 275 177 165 95 Proximal
surface de-
formed,
ptW, papD
estimated;
aprL, lprL
measured as
preserved;
papD mea-
sured from
posterior-
most point
of radial
fossa to
posterior-
most point
of olecranon
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Table 6 (continued)

pdL acL min
sD

max
sD

min
apD

ptW dtW dpcL aprL lprL papD dapD dvH scaL max
tW
gl

dvH
gl

Comments

Carpal, L 77 137 39 78 Min apD
measured
medially;
dapd mea-
sured later-
ally (is equal
to max apD

Mc I, L 194 62 46 79 112 75 57 Min apD,
dapD mea-
sured medi-
ally; papD
measured
laterally

Mc II, L 232 56 44 100 103 69 63 Min sW
measured
dorsally; min
apD, dapD
measured
medially

Mc III, L 242 43 41 47 85 90 48

Mc IV, L 220 44 50 60 87 110 70 dapD esti-
mated

Mc V, L 193 46 47 76 87 114 62 Distal end
recon-
structed

phm I-1, L 56 66 88 50 86 77 71 71 Min sW
measured at
midheight;
max sW
measured
palmarly;
dapD mea-
sured medi-
ally
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Table 6 (continued)

pdL acL min
sD

max
sD

min
apD

ptW dtW dpcL aprL lprL papD dapD dvH scaL max
tW
gl

dvH
gl

Comments

phm II-1, L 90 94 27 93 110 57 33 Min apD
measured
centrally at
midshaft;
dapD mea-
sured later-
ally

phm III-1, L

phm IV-1, L 53 21 93 45 24

phm V-1, L 39 83 49 9

Manual ungual, L 193/254 45 114 pdl
measured
straight/a-
long dorsal
curvature

phm II-2, L 20 42 31 Min apD =

max apD

Notes.

acL, acromion length; apD, anteroposterior depth; aprL, anterior process length; dapD, distal anteroposterior depth; dpcL, length deltopectoral crest; dtW, distal transverse width; dvH, dorsoven-

tral height; gl, glenoid; lprL, lateral process length; papD, proximal anteroposterior depth; pdL, proximodistal length; ptW, proximal transverse width; scaL, scapula-coracoid articular length; sD,

shaft diameter; sW, shaft width; tW, transverse width.
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Figure 59 Right scapula and coracoid ofGaleamopus pabsti SMA 0011 in lateral view. Lacking parts

indicated with dashed lines. Abb.: acr, acromion ridge; co, coracoid; cof, coracoid foramen; gl, glenoid; sc,

scapula. Scale bar = 20 cm.

Figure 60 Left humerus ofGaleamopus pabsti SMA 0011. The humerus is shown in anterior (A), lateral

(B), posterior (C), medial (D), proximal (E), and distal (F) view. Cross-sections of the disassembled pieces

are shown as well. Note the rugose tubercle on the anterior surface of the proximal half of the shaft (mt).

Abb.: dpc, deltopectoral crest; hh, humeral head; mt, median tubercle. Scale bar = 20 cm.
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Figure 61 Right humerus ofGaleamopus pabsti SMA 0011. The humerus is shown in posterior (A) and

anterior (B) views. Abb.: dpc, deltopectoral crest; hh, humeral head; icg, intercondylar groove; lr, lateral

ridge; mr, medial ridge. Scale bar = 10 cm.

anteroposterior length, thanks to a distolateral, posteriorly projecting process. Anterior

and posterior surfaces are fairly smooth. Distally, there are no distinct articulation surfaces

for the metacarpals, unlike the state in Camarasaurus (Tschopp et al., 2015). The carpal of

SMA 0011 is taller proximodistally than the elements known from the apatosaurines CM

3018 and UW 15556 (Hatcher, 1902; Gilmore, 1936).

Metacarpals. All metacarpals are complete and were found articulated. Metacarpal I was

recovered flipped 180◦ such that the distal articular surface was at the level of the proximal

articular surface of the remaining metacarpals. This displacement indicates that mtc I was

not rigidly included in the columnar metacarpal structure adapted for weight-bearing.

Given that digit I bears a large ungual, it did not have a primarily graviportal role, and was

probably therefore not so strongly bound to the othermetacarpals. Themetacarpals of SMA

0011 are relatively elongate bones (Fig. 65), but less so than inCamarasaurus (Tschopp et al.,

2015). Metacarpal III is the longest, followed by mtc II, IV, I, and V (Table 6). Metacarpal I

and II have subrectangular to trapezoidal proximal articulation surfaces, contrasting with

triangular ones in mtc III and IV.

Metacarpal I is relatively stout. The proximal surface is concave anteroposteriorly and

flat transversely. It is slightly deeper laterally than medially. The lateral edge of the articular

surface is strongly concave, whereas the medial one is somewhat convex in proximal view.
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Figure 62 Left ulna ofGaleamopus pabsti SMA 0011. The ulna is shown in proximal (A), anterior (B),

medial (C), posterior (D), lateral (E), and distal (F) views. Abb.: ap, anterior process; lp, lateral process; lr,

lateral ridge; mr, medial ridge. Scale bar = 10 cm.

The posterior surface bears two small but distinct nutritional foramina on the distal half.

The distolateral portion of the shaft is crushed, resulting in a triangular lateral surface.

The distal condyles are well separated from each other and anteroposteriorly convex.

The lateral condyle is much longer proximodistally than the medial one. This results in a

strongly inclined distal surface, such that the proximal phalanx projects posteromedially

(and distally) in the articulated manus.

Metacarpal II has very distinct, straight anteromedial and anterolateral edges. The

proximal and distal ends are slightly expanded in all directions. The proximal articular

surface is wider anteriorly than palmarly and slightly convex. The shaft is thicker medially

than laterally. The proximal portions of both the medial and lateral surfaces are concave,

laterally more than medially. A slightly rugose, longitudinal ridge separates the medial

from the palmar surface, and extends distally from the proximal end for about two thirds
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Figure 63 Left radius ofGaleamopus pabsti SMA 0011. The radius is shown in proximal (A), anterior

(B), medial (C), posterior (D), lateral (E), and distal (F) views. Note the laterally beveled distal articular

surface (1). Abb.: lr, lateral ridge; mr, medial ridge. Scale bar = 10 cm.
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Figure 64 Left carpal ofGaleamopus pabsti SMA 0011. The carpal is tentatively oriented according to

the situation in the quarry. The carpal is shown in probable proximal (A), anterior (B), medial (C), poste-

rior (D), lateral (E), and distal (F) views. Scale bar = 5 cm.

the length of mtc II. The distal surface slightly curves into the anterior surface. Its lateral

and medial condyles are only visible in distal and posterior view. The medial condyle is

larger than the lateral one.

Metacarpal III is the most elongate element of the manus. The proximal articular

surface is subtriangular to ovoid. No distinct transition from the anterior onto the medial

surface occurs on mtc III. The anterior and palmar faces unite laterally at a distinct ridge.

The medial surface is concave proximally. The concavity is bordered by two distinct

longitudinal, somewhat rugose ridges extending distally half way down the shaft. In the

articulated manus, these ridges would face internally. The proximal and distal articular

surfaces are slightly twisted. The distal surface is ovoid to subrectangular and does not

extend considerably onto the anterior face. The articular facet is flat transversely and convex

anteroposteriorly.

Metacarpal IV has a P-shaped proximal articulation surface, with a concave medial

edge. As in mtc III, the shaft of mtc IV is twisted, and a distinction of the anterior face is

not possible. A distinct ridge connects the posterior apex of the proximal articular surface

with the posteromedial corner of the distal articular surface. The distal articular surface is

subtriangular as well, with the apex anteriorly, and inclined medial and lateral edges. Two

condyles are visible posteriorly. The apex of the distal articular surface curves onto the

anterior face.

Metacarpal V is short and widely expanded both transversely and anteroposteriorly at its

proximal end. It is somewhat drop-shaped in proximal view, with the tip facing palmarly.
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Figure 65 Left metacarpals I to V ofGaleamopus pabsti SMA 0011. The metacarpals are shown in an-

terior, medial, palmar, lateral, proximal and distal view. Digits are indicated on the left with roman num-

bers. Portions covered by a semitransparent, white layer in proximal and distal view are visible, but do not

belong to the articular surface. Scale bar = 10 cm.
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The shaft is twisted anti-clockwise, in proximal view. The medial surface is slightly concave

for the reception of mtc IV. The free lateral face is gently convex. The medial and lateral

surfaces meet at a ridge in their proximal halves. The distal end is partially reconstructed,

but the preserved parts indicate that it is transversely expanded. A distinct concavity

marking the posterolateral corner of the distal articular surface is of taphonomic origin,

having collapsed while being closely attached to the distal articular surface of mtc IV during

diagenesis.

Manual non-ungual phalanges. The manual non-ungual phalanges are relatively short

and robust (Fig. 66). They are wider than long, as is typical for the eusauropod manus

(Bonnan, 2003). The phalanges were found disarticulated, but closely associated with the

metacarpals. A definitive assignation to distinct digits can be inferred for phm I–1 and II–1,

but the identification of the other three non-ungual phalanges remains uncertain. Based

on comparisons with the articulated manus of the Camarasaurus SMA 0002, we identified

the elements as phm IV–1, V–1, and II–2. However, they could also be phm III–1, IV–1,

and V–1, respectively. The latter arrangement would imply a clearly advanced stage in

phalangeal reduction compared to Camarasaurus, but would be supported to some degree

by the closer association of the nubbin-like phalanx with mtc IV and II than with mtc II

or phm II–1. Nonetheless, given that the other phalanges were dislocated and scattered

around the entire metacarpus, the burial location of the vestigial phalanx should not be

taken as strong evidence for its articulated position.

The proximal surface of manual phalanx I–1 is concave anteroposteriorly. The phalanx

I–1 has a concave posterior surface, with a proximally projecting palmar lip. Its medial

surface is shorter than the lateral one, enhancing the angulation of the ungual phalanx

even more. The lateral surface is concave proximodistally. The lateral extension of the

posterolateral edge forms a thin, short crest (Fig. 66). Nothing similar is present in the

manus of Camarasaurus (Osborn, 1904; Tschopp et al., 2015), but too few articulated

proximal manual phalanges are known in diplodocids in order to decide if this might

be autapomorphic in SMA 0011 or is instead more widespread within the clade. A

phalanx figured by Jensen (1985: fig. 1E) appears to show a similar development of the

posterolateral edge, but has not been identified below Sauropoda indet (Jensen, 1985). The

phm I–1 of SMA 0011 has well-developed medial and lateral distal condyles with a distinct

intercondylar groove occurring palmarly. The entire distal surface is subtrapezoidal, being

longest palmarly, than medially, laterally and finally dorsally.

Manual phalanx II–1 has a concave proximal surface, which is oval in outline. It is only

minimally wider than the shaft. The medial surface is broader, but shorter than the lateral

one. The anterior surface is convex transversely. The posterior surface is marked by a bulge

at the center of its proximal portion, and a pit distal to it. The distal articular surface is

expanded transversely, and the condyles extend onto the medial and lateral surfaces. In

anterior view, the distal surface is nearly flat, whereas in distal view, the palmar margin is

concave.

Manual phalanx II–2 (as identified herein) is a vestigial, suboval bony nubbin. A distinct

ridge separates the proximal and distal surfaces, which are convex and rough.
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Figure 66 Left manual phalanges ofGaleamopus pabsti SMA 0011. The phalanges are shown in ante-

rior, medial, palmar, lateral, proximal, and distal view. Digits are indicated on the left with roman num-

bers. Abb.: pvl, posteroventral lip; pvlp, posterior ventrolateral process. Scale bar = 5 cm.

The probable manual phalanges IV–1 and V–1 are very similar, with IV–1 being

slightly larger. They have concave proximal articular surfaces, transversely more so than

anteroposteriorly. The surfaces are suboval in outline, and their anterior margins are

pronounced laterally. The anterior surfaces are concave proximodistally, but slightly

convex transversely. Medial and lateral surfaces are very narrow. The distal surfaces are

without condyles. They have a continuous, rounded surface in dorsal view, which curves

proximally at its medial and lateral end, almost reaching the proximal articular surface.

The medial and lateral surfaces are thus practically nonexistent. The lack of medial and

lateral condyles implies that these elements were the terminal phalanges of these digits.

Manual ungual. One ungual is present, situated on the first digit (Fig. 66). It is a long,

high, and transversely compressed element. The proximal surface is ovoid, with a narrow

anterior tip, and a widened palmar portion, where the articular surface lies. Above the

articular surface, the proximal surface projects somewhat proximally, and is rugose. This

rugosity extends as a short ridge posteriorly, onto the articular surface. The articular
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Figure 67 Possible preservation of keratinous sheet on left manual ungual I-2 ofGaleamopus pabsti

SMA 0011 (medial view). Note the different surface texture at the tip (arrow), compared to more poste-

rior portions. Abb.: dg, distal groove; pas, proximal articular surface. Scale bar = 5 cm.

surface is inclined such that when articulated, the ungual would be slightly laterally

deflected, compared to the long axis of the preceding phalanx. The medial surface is convex

anteroposteriorly. A short groove marks the distal-most portion, which is slightly elevated

(about 1 mm) above the more proximal portion of the claw, and shows a different surface

texture (Fig. 67). The latter might represent fossilized remnants of the keratinous sheet

covering the claw. The lateral surface is almost flat, with a long, proximodistally extending,

straight groove covering the distal half of the surface. The palmar surface is strongly convex

proximally and flat distally.

Hindlimb (Figs. 68–77; Table 7)

Terminology. The pubis and ischium are described as if they were oriented vertically and

horizontally, respectively. The distal shaft of the ischium thus has long dorsal and ventral

edges in lateral view.

Ilium. The right ilium is preserved, but was found in such a bad state that the medial

side had to be covered immediately with plaster (B Pabst, pers. comm., 2014). Therefore,

no morphological information can be gleaned from that side. The ilium lacks a large

part of the posterodorsal portion of the iliac blade, and the distal-most end of the pubic

peduncle (Fig. 68). The preacetabular process has a very pointed apex, which is directed

anterolaterally, and is relatively broad transversely. The anterior portion is strongly concave,

with the ventral margin facing ventrolaterally. The ventral preacetabular border and the

pubic process form an angle of 90◦. A triangular depression is located laterally at the base

of the pubic process, with a horizontal and medio- and lateroventrally inclined sides. This

is similar to the putative diplodocid ilium from Spain (CPT-1074; Royo-Torres & Cobos,

2004; E Tschopp, pers. obs., 2012), and has also been reported in other sauropod taxa (e.g.,

Cetiosaurus oxoniensis, Lirainosaurus astibiae, and Jobaria tiguidensis; Upchurch & Martin,

2003; Díez Díaz, Pereda Suberbiola & Sanz, 2013; Tschopp, Mateus & Benson, 2015). The

pubic peduncle is distinctly concave transversely on its posterior face, but fractures indicate

that the concavity is exaggerated and that the transverse width of the pubic peduncle

would be slightly larger otherwise. The ischial tubercle faces ventrolaterally. The acetabular
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Figure 68 Right ilium ofGaleamopus pabsti SMA 0011. The ilium is shown in dorsal (A), posterior (B),

lateral (C), anterior (D), and ventral (E) view. Note the triangular depression above the pubic peduncle

(1). The yellowish area in B is artificial matrix on which the ilium was mounted for display. Abb.: ac, ac-

etabular surface; isa, ischial articular surface; prap, preacetabular process; pup, pubic peduncle. Scale bar

= 20 cm.

margin is thinnest just posterior to the pubic peduncle, and extends transversely towards

the articulation surfaces of the ischium and pubis.

Pubes. Both pubes are almost complete, but lack a portion of the ischial articulation. The

pubes are relatively slender (Fig. 69). The obturator foramen is completely enclosed and

located in the proximal third of the ischial articulation. It is subtriangular in outline and

oriented dorsomedially-ventrolaterally. Even though eroded, the anterodorsal corner of

the pubis does not seem to bear a very pronounced, hook-like ambiens process, unlike

the condition seen in Diplodocus or Supersaurus (Hatcher, 1901; Lovelace et al., 2007). This

corner is laterally expanded, and from here, the pubis slightly tapers along the acetabular

surface. The medial surface of the proximal half of the bone is proximodistally concave

and transversely slightly convex. The latter convexity becomes more pronounced towards

midlength, where the ventral margin curves back from the expanded ischial articulation

to the narrow midshaft. The dorsal edge of the pubis is gently concave. Its anterior end

is expanded both transversely and anteroposteriorly. The narrowest portion of the shaft

lies below midshaft, at about two thirds of the entire length of the pubis. The ischiadic

articulation is not preserved in its entire length, but broken surfaces indicate that a

distinct ridge extended from the ischiadic facet along the ventromedial margin of the

shaft to the distal articular surface. The reconstructed length of the ischiadic articulation

is about 38% the total length of the pubis (Table 7). The distal end is convex, expanded
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Table 7 Hindlimbmeasurements ofGaleamopus pabsti SMA 0011, in mm.

pdL pp

pdL

pp

apL

pp

tW

prapL min

sW

max

tW

isaL puaL ptW dtW aaL ptr papD dapD apD Comments

Ilium, R 885 340 105 120

(est)

335 prapL measured

ventrally

Pubis, R 845 71 142 320 98 66 200 320 235 97 aaL measured in

straight distance

between ischial

and iliac articula-

tion facets; papD

measured hor-

izontally from

anterior-most

point of ischial

articular surface

to ambiens pro-

cess; apD mea-

sured laterally at

min shaft apD

Pubis, L 870 55 110 80 273

Ischium, L 244 482 197

Femur, L 1,160 208 435 657 145 142 Distal end lack-

ing, pdL is pre-

served length;

ptr: measured

to distal end 4th

trochanter; apD

is min apD

Tibia, L 845 133 255 238

Fibula, L 850 85 350 218 145 ptr: measured

to center of

iliofibular

trochanter

Astragalus, L 142 250 79 105 sw corresponds

to maximum

transverse width

(continued on next page)
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Table 7 (continued)

pdL pp

pdL

pp

apL

pp

tW

prapL min

sW

max

tW

isaL puaL ptW dtW aaL ptr papD dapD apD Comments

mt I L 124 85 120 141 126 76 47 pdL, apD mea-

sured laterally

mt II L 153 64 106 128 98 67 54 pdL measured

laterally; papD,

apD measured

medially

mt III L 164 30 100 94 76 58 38 pdL, apD mea-

sured laterally

mt IV L 180 36 82 82 80 43 38 apD measured

medially

mt V L 178 52 124 86 72 64 40 apD measured

medially

php I-1 L 82 76 94 84 87 85 74 pdL measured

medially

php II-1 L 96 74 81 88 68 55 48 pdL, dapD, apD

measured medi-

ally

php III-1 L 85 52 70 80 62 53 40 pdL, dapD, apD

measured medi-

ally

php II-2 L 30 51 41 69 pdL measured

medially

pedal ungual I 170/247 47 150 pdL measured

straight prox-

imodistal-

ly/oblique from

proximal-most

to distal-most

point

pedal ungual II 150/205 33 91 pdL measured

straight prox-

imodistal-

ly/oblique from

proximal-most

to distal-most

point

pedal ungual III 138/183 51 65 pdL measured

straight prox-

imodistal-

ly/oblique from

proximal-most

to distal-most

point

Notes.

aaL, acetabular articulation surface length; apD, anteroposterior depth; dapD, distal anteroposterior depth; dtW, distal transverse width; est, estimated; isaL, ischial articular surface length; papD,

proximal anteroposterior depth; pdL, proximodistal length; ppapD, pubic peduncle anteroposterior depth; ppW, pubic peduncle transverse width; prapL, preacetabular process length; ptr, vertical

distance from proximal articular surface to trochanter; ptW, proximal transverse width; puaL, pubic articular surface length; pupL, pubic peduncle length; sW, shaft width.
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Figure 69 Right pubis ofGaleamopus pabsti SMA 0011. The pubis is shown in medial (A), posterior

(B), and lateral (C) view. Abb.: ac, acetabular surface; ip, iliac peduncle; isa, ischial articular surface; of,

obturator foramen. Scale bar = 20 cm.

anteroposteriorly, but not transversely. It is heavily rugose, concave laterally in distal view,

and convex medially.

Ischium. The ischium lacks the distal half of the shaft (Fig. 70). It is mounted on plaster,

such that only the medial view is accessible. Its proximal portion is wide and concave. The

acetabular surface is inclined, such that the medial border forms a thin crest. This crest

is relatively straight in medial view, but concave and curved in proximal view. Unlike the

state in rebbachisaurids, the acetabular surface does not expand towards the articulation

surfaces for the ilium and the pubis (Mannion et al., 2012). The iliac process has no distinct

neck and is relatively narrow. The pubic articulation is much longer, and slightly convex in

medial view. It curves slightly medially towards its ventral end. The shaft is weakly convex

at its base, separating the concave acetabular portion from the again shallowly concave

posterior shaft. The dorsal and ventral margins are parallel, only the posterior-most

preserved portion of the dorsal edge indicates a slight dorsal expansion towards the end,

as is typical for diplodocids (McIntosh, 1990a; McIntosh, 1990b; Upchurch, 1998; Wilson,

2002). No distinct ridges or scars can be seen on the internal surface.

Femur. The greater trochanter and the distal end are not preserved in the femur of SMA

0011 (Fig. 71). The medial edge is gently curved below the femoral head, not as distinct as

in Dyslocosaurus (McIntosh et al., 1992). The head is separated from the shaft ventrally, but

does not project far medially. It is slightly wider transversely than anteroposteriorly, and

Tschopp and Mateus (2017), PeerJ, DOI 10.7717/peerj.3179 87/126

https://peerj.com
http://dx.doi.org/10.7717/peerj.3179


Figure 70 Left ischium ofGaleamopus pabsti SMA 0011 in medial view. The distal end of the ischium

is reconstructed. Abb.: ac, acetabular surface; ip, iliac peduncle; pua, pubic articular surface. Scale bar =

20 cm.

has a strongly rugose surface. The lateral margin of the shaft is slightly convex proximally,

forming a weak lateral bulge, but no medial deflection of the proximal end occurs. The

shaft is crushed at its center, but it is obvious that the medial side was anteroposteriorly

wider than the lateral one. There is no indication of a large foramen opening at the center of

the anterior surface, as occurs in some specimens of Diplodocus and Dicraeosaurus (Wilson,

2002; Whitlock, 2011a; Tschopp, Mateus & Benson, 2015), but some parts in that area are

reconstructed. The fourth trochanter is entirely located on the posterior surface of the

shaft, but close to the medial border proximally. The distal end of the fourth trochanter

curves distinctly laterally towards the midline of the shaft. The fourth trochanter is medially

accompanied by a shallow depression proximally and two rugose tubercles centrally and

distally (Fig. 71D). The shaft is 1.5 times as wide as it is anteroposteriorly thick (Table 7).

The more distally located tubercle of the two is the more developed. The preserved,

distal-most part of the shaft slightly expands transversely.
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Figure 71 Left femur ofGaleamopus pabsti SMA 0011. The femur is shown in proximal (A), anterior

(B), lateral (C), posterior (D), and medial (E) view. Note the rugose tubercles on the posterior surface of

the shaft (1). The distal end is restored, and parts of the distal anterior surface are covered with epoxy for

the mounting (indicated by white lines). Abb.: fh, femoral head; ft, fourth trochanter; icg, intercondylar

groove; lb, lateral bulge. Scale bar = 20 cm.

Tibia. The tibia is complete, but compressed anteroposteriorly (Fig. 72). It is slightly

expanded at both ends. The proximal end is longer transversely than anteroposteriorly, but

this is partly due to taphonomic compression. The outline of the proximal articular surface

is subrectangular as in apatosaurines, and unlike the subtriangular state as in diplodocines

(Lovelace et al., 2007). However, it is unclear how much this shape is influenced by the

compression. The cnemial crest is somewhat displaced distally, and is thicker distally than

proximally. It projects laterally. Posterior to the crest, a fossa occurs for the reception of the

fibula, which is posteriorly bound by a wide longitudinal ridge of about the same length

as the cnemial crest. The lateral side of the shaft is much narrower than the medial one. A

small convexity marks the distal end of the lateral edge. The distal articular surface has the

typical step-like arrangement as in all sauropods, for the articulation with the ascending

process of the astragalus.
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Figure 72 Left tibia ofGaleamopus pabsti SMA 0011. The tibia is shown in proximal (A), medial (B),

anterior (C), lateral (D), and distal (E) view. Abb.: cc, cnemial crest. Scale bar = 10 cm.

Fibula. The fibula is a slender bone, with a strongly anteroposteriorly expanded proximal

end, and a less expanded distal end (Fig. 73). The proximal end is transversely compressed.

It has a pointed anterior end, which projects somewhat medially, similar to Diplodocus

carnegii CM 94 (Hatcher, 1901). A distinct, but proximodistally short ridge extends from

the posterior end down the shaft (Fig. 73B), for about 9 cm. The medial surface is marked

by a subtriangular area with a striated rugosity, which covers about the proximal-most

20–25% of the shaft. The attachment site for the iliofibularis muscle, which is often called
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Figure 73 Left fibula ofGaleamopus pabsti SMA 0011. The fibula is shown in proximal (A), lateral (B),

posterior (C), medial (D), and distal (E) view. Note the anteromedially projecting process on the proximal

articular surface (1), the short longitudinal ridge on the posterior surface (2), and the striated rugosity on

the medial surface (3). Abb.: fit, fibular trochanter. Scale bar = 10 cm.

fibular trochanter, is situated slightly above midheight, as in Diplodocus (Whitlock, 2011a),

and has an oval outline. Towards its distal end, the shaft expands more strongly transversely

than anteroposteriorly, but the distal articular surface still remains anteroposteriorly longer

than transversely wide. In particular the distomedial edge expands to articulate with the

fibular facet on the astragalus. The distal articular surface has an oval outline.

Astragalus. The astragalus is wedge-shaped in both anterior and proximal views (Fig. 74).

The anteromedial corner is reduced. Posteriorly, the astragalus is marked by a high ridge
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Figure 74 Left astragalus ofGaleamopus pabsti SMA 0011. The astragalus is shown in proximal (A),

medial (B), anterior (C), lateral (D), posterior (E), and distal (F) view. Note the autapomorphic, concave

posteroventral edge, with a distinct bulge medial to it (1). Abb.: af, astragalar foramen; asp, ascending pro-

cess; dro, distal roller; fif, fibular facet; tif, tibial facet. Scale bar = 5 cm.

connecting to the ascending process. The latter extends backwards to the posterior end.

The high, 42 mm wide ridge separates the two fossae for the articulation with the tibia

medially and the fibula laterally. The ridge itself is slightly concave transversely, and

bound by two distinct, dorsoventrally extending margins. The two margins end in two

pronounced, bulge-like posteroventral expansions. The two expansions are separated by a

strongly concave posteroventral margin in ventral view, similar to the condition considered

autapomorphic in Janenschia robusta (Bonaparte, Heinrich & Wild, 2000). The tibial fossa

is larger than the fibular fossa and subdivided by a shallow, oblique, anteroposteriorly

oriented ridge into a medial and a lateral portion. The medial portion is pierced by three

large foramina. The fibular fossa is relatively uniform, with the anterior edge forming

a distinct lip-like lateral extension. The fibular fossa is thus visible in posterior view, a

diplodocoid synapomorphy convergently acquired by Jobaria (Whitlock, 2011a). The distal

roller is flattened due to compression, and appears to be subdivided horizontally into three

distinct parts: an anteriorly facing portion, an anteroventral face, and a ventral part.

Pes. The pes was found associated with the astragalus, tibia and fibula, but slightly out of

articulation. The absence of a calcaneummight therefore be due to taphonomy.Metatarsals

I and II were found somewhat separated from mts III–V, with the phalanges php I–1 and

III–1 in between. The first ungual was lying above the astragalus, whereas digit II was found

in articulation. No other phalanges were found associated, but a small left pedal ungual

was recovered mingled with the skull elements, and was therefore used in the mount. It is

here described, but attribution to SMA 0011 must be considered preliminary.

Metatarsals. All left metatarsals were recovered complete (Fig. 75). Metatarsals III and IV

are the longest elements, and mts I and II the stoutest (Table 7).
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Figure 75 Left metatarsals ofGaleamopus pabsti SMA 0011. The metatarsals are shown in anterior, me-

dial, plantar, lateral (distal surface towards the bottom), proximal, and distal view (plantar surface towards

the bottom). Digits are indicated on the left with roman numbers. Note the lip-like extension of the prox-

imal articular surface that overhangs the plantar surface (1). Abb.: dlr, dorsolateral ridge; plp, posterolat-

eral process. Scale bar = 10 cm.
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Figure 76 Surface structure onmetatarsal I. The left metatarsal I of Galeamopus pabsti SMA 0011 in an-

terior view (A), with the particular bone surface texture shown in (B). Scale bar = 2 cm.

Metatarsal I is very robust, and the bone surface collapsed diagenetically in two areas on

the dorsal and the lateral surface. The first metatarsal has a D- to drop-shaped proximal

surface, which is wider anteriorly than plantarly and has a concave lateral margin. The

anterior surface is considerably shorter medially than laterally, resulting in angled proximal

and distal surfaces, compared to the long axis of the shaft. The anterior surface bears few

nutrient foramina, as is the case in Cetiosauriscus and Suuwassea, but not in camarasaurids

(Harris, 2007; Tschopp, Mateus & Benson, 2015; Tschopp et al., 2015). The posterior surface

is convex proximally and bears a small foramen centrally on its distal half. The medial

surface is slightly convex anteroposteriorly, the lateral one concave for the reception of

mts II. Distally, the lateral condyle projects much further than the medial, and develops

a distinct posterolateral process, as is typical for diplodocids (McIntosh, 1990a; McIntosh,

1990b). The distal part of the anterolateral edge is marked by a rugose tubercle accompanied

by a particular bone surface structure resembling a net of veins (Fig. 76). The distal articular

surface bears a distinct intercondylar groove visible in anterior and plantar view.

Metatarsal II has a more squared proximal surface compared to mts I, but with concave

medial and lateral margins. The anterior surface is less trapezoidal than in mts I. However,

the proximal and distal articular surfaces of mts II are still angled to the long-axis of

the shaft. As in mts I, mts II has a strong posterolateral process. The distal portion of

the anterolateral edge bears a distinct rugosity, which does not extend onto the anterior

surface, unlike in Dyslocosaurus AC 663 or Cetiosauriscus NHMUK R3078 (McIntosh et

al., 1992; Tschopp, Mateus & Benson, 2015). Metatarsal II of SMA 0011 has a very distinct

anteromedial edge, but a less developed anterolateral one. No intercondylar groove can be

seen between the distal condyles in anterior view, but a shallow groove occurs posteriorly.

Metatarsal III is elongate, with a narrow shaft and greatly expanded proximal and distal

ends. The proximal and distal articular surfaces stand perpendicular to the shaft axis. The
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proximal articular surface is subtriangular, with anterior, lateral, andmedioplantarmargins.

It is relatively flat, and does not show distally curving edges as in mts I and II. A strong,

narrow projection occurs on the posteromedial corner. A weak, narrow rugosity marks

the distal end of the anterolateral edge of the shaft. The proximal portions of the medial

and lateral faces are anteroposteriorly concave. The distal articular surface is subtriangular,

with the lateral side being much shorter than the medial. It is anteroposteriorly convex and

transversely nearly flat.

Metatarsal IV is elongate like mts III, but the proximal expansion reaches further down

the shaft. The proximal end is slightly twisted in respect to the long axis. It is subtriangular

in outline, with a rather straight lateroplantar margin, unlike the shape of mts IV of the

camarasaur SMA 0002 (Tschopp et al., 2015). The surface is flat, as in mts III. The shaft

is smooth, and maintains the subtriangular shape of the proximal articular surface. It is

concave transversely on its lateroplantar surface, and does not bear any distinct rugosities.

The distal end has only incipient condyles, which are hardly recognizable in either anterior

or distal view. In distal view, the articular surface is trapezoidal, with a shorter anterior

than plantar margin.

Metatarsal V has the typical paddle-shaped outline known from almost all sauropods

(Bonnan, 2005). The proximal articulation surface is subtriangular, with the apex pointing

anteromedially. From there, a ridge extends distally, separating the proximal portion of

the anterior surface from the medial one. The ridge disappears in the distal half. The

shaft is smooth, unlike in mts V of the camarasaurid SMA 0002 (Tschopp et al., 2015).

The posterior surface is flat transversely, but a lip-like posterior extension of the proximal

surface overhangs the face (Fig. 75). The distal surface is a single, convex facet.

Pedal non-ungual phalanges. The left pes of SMA 0011 preserves three proximal non-

ungual phalanges and the second non-ungual phalanx of the second digit (Fig. 77). They

are relatively short bones with subsequently less well-developed distal condyles, from php

I-1 to php III-1.

Pedal phalanx I–1 is slightly wedge-shaped, with a considerably shorter lateral than

medial surface. Therefore, the distal condyles face laterodistally, resulting in the typical

lateral deflection of the pedal unguals of eusauropods (Bonnan, 2005). The proximal

articular surface is subtrapezoid, with two distinct, concave facets for the two distal

condyles of mts I. In the medial facet, a deep pit is located close to the midline, and

somewhat more anteriorly than plantarly. A similar pit was interpreted as the result of

osteochondrosis in the camarasaurid SMA 0002 (Tschopp et al., 2016). The anterior surface

is transversely narrower than the posterior surface. It is clearly separated from the medial

surface, but grades continuously into the lateral one. The posterior surface is transversely

concave, with a smooth transition into the distal articular surface. Laterally, the proximal

and distal articular surfaces nearly meet in the plantar half. The distal condyles are in an

angle to each other, with the medial one being oriented nearly vertically, whereas the lateral

one is oblique, resulting in an articular facet that is anteriorly narrower than plantarly.

Pedal phalanges II-1 and III-1 are similar to each other in general shape. The former

is slightly broader than php III-1, which has subequal widths and lengths (Table 7). The

medial condyle of both phalanges is transversely compressed, but projects considerably
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Figure 77 Left pedal phalanges ofGaleamopus pabsti SMA 0011. The phalanges are shown in anterior,

medial, plantar, lateral (distal surface towards the top), proximal, and distal view (plantar surface towards

the bottom). Digits are indicated on the left with roman numbers. Scale bar = 5 cm.
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further distally than the lateral one. The proximal articular surface of php II-1 bears a deep

pit as in php I-1. Laterally, the proximal facets of both php II-1 and III-1 taper, such that

the outline becomes subtriangular in proximal view.

The pedal phalanx II-2 is a proximodistally shortened element, which basically only

consists of proximal and distal articular surfaces and a short medial face. The proximal

articular surface has two facets for the condyles of php II-1. It is at an angle to the long-axis

as indicated by the orientation of the short medial surface. The distal articular surface has

a relatively wide medial condyle, and a thin and narrow lateral one. The orientation of the

two condyles is subparallel.

Pedal unguals. Three left unguals are preserved and mounted in the left pes of SMA 0011

(Fig. 77). The third ungual was found at some distance to the associated pes, together

with skull material, but would fit in size for digit III. As mounted, this amounts to a pedal

phalangeal formula of 2-3-2-0-0. This, however, is most probably underestimated, as

comparisons with other diplodocid feet indicate (Hatcher, 1901; Gilmore, 1936; Janensch,

1961; Bonnan, 2005). The pedal unguals are sickle-shaped and decrease in length from

the first to the third. Ungual III is the most stout element, because the proximal width

remains more or less the same from ungual I to III, whereas the length decreases. The

pedal unguals I and II are strongly transversely compressed, but this is exaggerated due

to taphonomy. The anterior edge is strongly curved and narrow. It is S-shaped in ungual

I, because of deformation in the proximal-most part. The medial surfaces are convex,

and the lateral sides are anteroposteriorly concave on their anterior portion and convex

plantarly. The pedal unguals are wider transversely in their plantar half, especially at the

proximal end, where the wider area bears the proximal articular surface. A groove marks

the lateral surface, and follows more or less the curvature of the claw. The plantar surface

of pedal ungual I is marked by a deep oblique groove, extending from the proximomedial

corner to about midlength of the lateroplantar edge. Such a groove has not been described

previously, and does not occur in the other two unguals of the same pes. The groove might

be caused by taphonomy, because according to the quarry map, a sternal rib was found

above it. During diagenesis, this rib could have been pressed onto the claw resulting in

such a relatively wide, but elongate groove. The plantar surfaces of pedal unguals I and II

bear a weak tubercle, resembling that of Tastavinsaurus sanzi Ars1-3 (Canudo, Royo-Torres

& Cuenca-Bescós, 2008: figs. 10A–19B).

DISCUSSION

Phylogenetic analysis

The phylogenetic position of SMA 0011 was determined using a species-level version of an

updated matrix of Tschopp, Mateus & Benson (2015), who recovered it consistently within

the genus Galeamopus, closely related to its type species G. hayi, but potentially specifically

different. However, in their input file for the software TNT, the multistate character

statements to be ordered were erroneously defined with their real character numbering,

whereas TNT requires a character numbering initiating with ‘‘0’’. This resulted in only

two supposed ordered multistate character statements that were actually treated as ordered
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(their C49, C380), and one multistate character statement that should have been treated

as unordered (according to Tschopp, Mateus & Benson, 2015), which was in fact treated as

ordered (their C154).

The input file was therefore updated in several aspects: multistate characters were

reanalyzed in detail, resulting in the split of several characters into two binary characters,

following the reasoning of Sereno (2007) and Brazeau (2011). Ordering was only

implemented for the remaining multistate characters if they described numerical or

meristic features (as e.g., the number of cervical vertebrae), and if the states described an

obvious, morphological transformational series. Character scores were updated based on

personal observations of ET between 2014 and 2016 of specimens of the OTUs Jobaria

tiguidensis, Brachiosaurus altithorax, Giraffatitan brancai, Haplocanthosaurus priscus, and

the specimen described here, SMA 0011. Species-level OTUs were created following the

identifications of Tschopp, Mateus & Benson (2015: tab. 5), excluding the specimens that

could not be unambiguously referred to a diplodocid species, and using frequency scoring

(Wiens, 1995;Wiens, 1998;Wiens, 2000) for polymorphic characters in species represented

by more than two specimens, and polymorphic scores if the only two specimens of a

species showed conflicting states. The outgroup was reduced to include only species with

well-established phylogenetic positions. The final matrix included 489 character statements

and 35 operational taxonomic units.

The analysis was performed under implied weights, with the concavity constant k set to

5. We used the new technology tree searches in TNT v. 1.1 (Goloboff, Farris & Nixon, 2008),

with all algorithms enabled, and stabilizing the consensus tree five times with a factor of

75. One best tree was found with a score of 124.01986. A second iteration using TBR did

not yield additional shortest trees.

The topology of the tree (Fig. 78) is nearly the same as in the combined cladogram

proposed by Tschopp, Mateus & Benson (2015: fig. 120), when excluding the yet unnamed,

potentially new species. The only difference is the inclusion of Amphicoelias altus in a

clade with the species of Brontosaurus, and the more basal position of Kaatedocus siberi

within Diplodocinae (Fig. 78). The placement of Amphicoelias among Brontosaurus was

already recovered by the main analyses of Tschopp, Mateus & Benson (2015), but additional

analyses showed that this positionmight be dubious and actually due to the limited amount

of data in the holotype specimen AMNH 5764, which is the only one that can currently

be referred to the species with certainty (Tschopp, Mateus & Benson, 2015). An updated,

specimen-level analysis is in preparation, evaluating these issues in more detail, but is

outside the scope of the current paper.

SMA 0011 is recovered as sister taxon to Galeamopus hayi (Fig. 78). Together, they

form the sister taxon to a clade uniting Barosaurus and Diplodocus. TNT provided ten

autapomorphies for G. hayi, and 18 for the new species G. pabsti (see Data S1–Data S2).

Given the numerous morphological differences between SMA 0011 and G. hayi, specific

separation of the two is warranted. The numerical values for generic distinction proposed

by Tschopp, Mateus & Benson (2015) cannot be applied equally here because we changed

both taxon and character sampling. Also, it remains unclear if a similar system of assessing

variability can work with matrices at species level, where intraspecific variation has already
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Figure 78 Single tree with best fit of the phylogenetic analysis under implied weighting (k = 5). The

analysis is based on an updated matrix of Tschopp, Mateus & Benson (2015), transformed to a species-level

analysis. Galeamopus pabsti sp. n. is recovered within Diplodocinae, as sister taxon to Galeamopus hayi.

Note that the position of Amphicoelias altus among the species of Brontosaurus is dubious (see text).

been accounted for by using frequency and polymorphic scoring. We therefore prefer to

distinguish the two at species level only, and revised the diagnoses accordingly (see above).

Comparison with Galeamopus hayi

Specific distinction of SMA 0011 from the type species Galeamopus hayi was already

proposed by Tschopp, Mateus & Benson (2015). These authors recognized six features

unique to the holotype specimen of G. hayi, HMNS 175: (1) a low posterolateral process of

the parietal, compared to foramenmagnum height; (2) basipterygoid processes that diverge

more than 60◦; (3) the ulna that is longer than 76% the length of the humerus; (4) a radius

with relatively weak posterodistal ridges for articulation with the ulna; (5) the strongly

beveled distal articular surface of the radius; and (6) the presence of a projection of the

proximal articular surface of the tibia, behind the origin of the cnemial crest. Furthermore,

Tschopp, Mateus & Benson (2015) found one unambiguous autapomorphy for SMA 0011,

the presence of a neural arch foramen connecting the POCDF and the SPOF, and seven

ambiguous ones: (1) anterior cervical vertebrae that are more than 1.2 times higher than

wide; (2) PCDL and PODL of posterior cervical vertebrae that do not meet at the base of

the transverse process; (3) strong opisthocoely of dorsal centra disappears between DV 2

and 3; (4) posterior dorsal neural spines that are longer than wide at their ventral base;

(5) a very robust humerus, with an RI (sensu Wilson & Upchurch, 2003) of 0.37 (Table 6);

(6) absence of a shallow tubercle in the center of the proximal half of the anterior surface
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of the humerus; and (7) a radius that has a proximal articular surface that is 0.3 times its

proximodistal length.

A more detailed reevaluation of these characteristics in SMA 0011 shows that some were

interpreted wrongly by Tschopp, Mateus & Benson (2015) and others are more widespread

among diplodocids. In fact, the angle of the basipterygoid processes cannot be accurately

assessed in SMA 0011, and the processes are broken and incomplete in the other two skulls

referred to Galeamopus by Tschopp, Mateus & Benson (2015; AMNH 969, USNM 2673).

A beveling of the distal surface of the radius also occurs in SMA 0011, but affects only the

lateral half of the surface, whereas HMNS 175 has a nearly entirely beveled surface. The

tibiae of the two specimens have a similar proximal articular surface, such that the presence

of the projection behind the cnemial crest can be interpreted as an autapomorphy of the

genus Galeamopus. Strong opisthocoely in dorsal vertebrae actually disappears between

DV 1 and 2 in SMA 0011, which is even more anterior than what would already be unique

in diplodocines (Tschopp, Mateus & Benson, 2015). Such an anteriorly located change from

strongly opisthocoelous to relatively flat anterior condyles in dorsal centra would be unique

among diplodocoids, but the state in HMNS 175 cannot be currently assessed due to the

apparent lack of associated ribs. Given that the overall morphology of the centra from

the cervico-dorsal transition of SMA 0011 and HMNS 175 is very similar, the anterior

position of the first flat anterior articular surface in the dorsal column is more cautiously

interpreted as an autapomorphic feature of the genus. The width of the base of the neural

spines cannot be assessed on HMNS 175 with certainty due to extensive reconstruction.

The humerus of SMA 0011 actually bears a marked, rugose area anteriorly in the center

of the proximal half (Fig. 60), contrary to what was stated in Tschopp, Mateus & Benson

(2015).

In addition to the autapomorphic features of Galeamopus hayi and G. pabstimentioned

in the diagnoses, SMA 0011 reveals several additional differences from HMNS 175. The

distinction between dorsal and posterior surfaces of the parietal are less clear in HMNS

175 compared to SMA 0011. The distal ends of the paroccipital processes are straight in

lateral view in SMA 0011 and curved in HMNS 175 (Tschopp, Mateus & Benson, 2015). The

basisphenoid of SMA 0011 is marked by a pit between the occipital condyle and the basal

tubera.

In the cervical vertebrae, transverse processes of SMA 0011 do not have any posterior

projections. Bifurcation of the neural spines already occurs in CV 5 or more anteriorly in

HMNS 175 (Tschopp, Mateus & Benson, 2015), whereas in SMA 0011 the first bifid element

is CV 8. The spine summits of the bifid cervical vertebrae of HMNS 175 are more rounded

than in SMA0011, and do not bear a horizontal, rugose ridge below the neural spine summit

on the lateral surfaces of posterior cervical neural spines. Mid-cervical centra of HMNS

175 are less elongate than the ones from SMA 0011, which also have pre-epipophyses

that extend distinctly beyond the prezygapophyseal facets. Mid- and posterior cervical

vertebrae of SMA 0011 have vertical SPRLs without any fossa ventrolateral to them on the

prezygapophyseal ramus. In contrast to the state in HMNS 175, SMA 0011 has epipophyses

of posterior cervical vertebrae that are dorsoventrally compressed, and pleurocoels of

anterior and mid-dorsal vertebrae that invade the neural arches. The dorsal neural arches
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appear to be higher and with a less distinct lamination in SMA 0011 compared to HMNS

175, although the development of the lamination in SMA 0011 might be affected by

taphonomy.

The acromial ridge of the scapula is better developed in HMNS 175 compared to SMA

0011, as is a ridge following the long axis of the distal blade. The latter results in a somewhat

triangular cross-section of the distal blade in HMNS 175, whereas it is rather D-shaped in

SMA 0011. The laterally projecting sheet of bone on the lateropalmar edge of phm I-1 in

SMA 0011 does not have an equivalent structure in HMNS 175, but it remains unclear if

this feature might be of pathological origin in SMA 0011.

Given all these differences, and the fact that Tschopp, Mateus & Benson (2015) already

found strong evidence for specific separation of the two specimens, the erection of

Galeamopus pabsti as second species of Galeamopus can be confidently justified (based

on both morphological and phylogenetic species concepts). Based on the additional

information from the articulated type specimens on differing skull morphology in the two

species, also the two skulls referred to the genus by Tschopp, Mateus & Benson (2015) can be

identified more precisely: AMNH 969 has a relatively narrow sagittal nuchal crest, curved

distal ends of the paroccipital processes, and a slightly laterally expanded otosphenoidal

crest, and can thus be referred to G. hayi. USNM 2673 appears to have a similarly shaped

anterior notch between the frontals as SMA 0011, and a vertical median groove on the

sagittal nuchal crest, favoring a referral to G. pabsti.

Ontogenetic implications

The specimen SMA 0011 shows a variety of features that have been previously reported

to indicate a juvenile age for an animal. However, histology indicates that it reached

sexual maturity (see below). Cranial ontogeny in diplodocids was extensively discussed

by Whitlock, Wilson & Lamanna (2010), who proposed the following juvenile features in

Diplodocus: a relatively rounded snout, with tooth rows that reach further back, and a large

orbit. Whereas the latter is typical for most amniotes (Varricchio, 1997; Whitlock, Wilson

& Lamanna, 2010), the first two characteristics also occur in subadults and adults of other

diplodocines (Tschopp & Mateus, 2013b). The skull of SMA 0011 has an orbit of about

the same relative size as the large diplodocine skull CM 11161, and thus relatively smaller

than the juvenile diplodocine CM 11255 (Whitlock, Wilson & Lamanna, 2010). However,

the snout of SMA 0011 is more rounded, with a premaxillary–maxillary index reaching

only 72%, compared to more than 80% in CM 11161 (Whitlock, 2011b). Thus, whereas

orbit size seems indeed to be controlled by ontogeny, snout curvature appears to be more

variable and potentially phylogenetically informative.

Potential osteological characteristics of young age in the postcranial skeleton of SMA

0011 include unfused vertebral centra and neural arches (although only in mid-cervical and

mid-dorsal vertebrae), unfused cervical ribs, and a separate scapula and coracoid (Gilmore,

1925; Janensch, 1961; McIntosh, 1990b; Wedel & Taylor, 2013). Other characteristics have

often been proposed to be an indicator for a young age, but are absent in SMA 0011:

unlike what is seen in juveniles, the coracoid and pubic foramina are completely enclosed

in SMA 0011, and the articular surfaces of the long bones are strongly rugose in SMA
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0011 (Hatcher, 1903; McIntosh, 1990b; Bonnan, 2003; Schwarz et al., 2007). Furthermore,

the absence of fusion between sacral vertebrae was shown to reflect ontogeny (Riggs,

1903; Mook, 1917; Wedel & Taylor, 2013), and the sternal plates are thought to adopt

their definitive shape in adult animals only (Wilhite, 2003; Wilhite, 2005), but neither

the sacrum nor any sternal plate is preserved in SMA 0011. Carpenter & McIntosh (1994)

also proposed that the longitudinal ridges on the distal shafts of radius and ulna develop

during ontogeny, but this could also be a phylogenetically informative character, given that

adult Dyslocosaurus and Diplodocus specimens appear to have them much less developed

than Apatosaurus (E Tschopp, pers. obs., 2011). Several authors showed that vertebral

lamination and pneumaticity increases during ontogeny (Wilson, 1999; Wedel, Cifelli &

Sanders, 2000;Wedel, 2003; Bonnan, 2007; Schwarz et al., 2007; Carballido & Sander, 2014),

but only the smallest neosauropod specimens show largely reduced pleurocoels and laminae

(equivalent to the MOS 1; Schwarz et al., 2007; Carballido & Sander, 2014; CM 566, SMA

0009, E Tschopp, pers. obs., 2011). Wedel, Cifelli & Sanders (2000) reported an increase

in cervical centrum elongation of 35–65% in Apatosaurus. However, their calculation was

based on juvenile vertebrae from Oklahoma, identified as Apatosaurus by Carpenter &

McIntosh (1994), but some of them might actually belong to Camarasaurus (Upchurch,

Tomida & Barrett, 2004). Increase in centrum elongation was also shown to happen during

ontogeny of Europasaurus (Carballido & Sander, 2014). Recently, it has furthermore been

suggested that the bifurcation of the neural spine is ontogenetically controlled (Woodruff

& Fowler, 2012), but this has been shown to be questionable (Wedel & Taylor, 2013).

Given the presence of both open neurocentral synchondroses and closed synostoses in

some cervical and dorsal vertebrae of SMA 0011, the present specimen qualifies for the

MOS 3 and 4 of Carballido & Sander (2014). Vertebrae of Europasaurus holgeri of these

stages already show all phylogenetically significant characters of the species (Carballido &

Sander, 2014). The same was hypothesized for Suuwassea emilieae ANS 21122 (Hedrick,

Tumarkin-Deratzian & Dodson, 2014) and Bonitasaura salgadoiMPCA-460 (Gallina, 2011;

Gallina, 2012), which are the only sauropod specimens for which information from long

bone histology and neurocentral closure could be correlated until now. It therefore seems

clear that unfused vertebrae with well-developed lamination as in SMA 0011 can be

identified to species level, and that the several morphological differences between SMA

0011 and the type specimen of Galeamopus hayi qualify as species autapomorphies.

Histology. The histology of the scapula, humerus, and femur of SMA 0011 has

been described by Klein & Sander (2008). This allows for an accurate comparison of

morphological and histological ontogenetic markers. Both the humerus as well as the

femur of SMA 0011 were classified within histological ontogenetic stage 9, whereas the

scapula showed a varying degree of remodeling from medial to lateral (Klein & Sander,

2008). This is the same age proposed for Suuwassea (Hedrick, Tumarkin-Deratzian &

Dodson, 2014) and Bonitasaura (Gallina, 2012), and is probably the stage where sexual

maturity is reached (Klein & Sander, 2008), because it correlates with a decrease of growth

rates (see also Scheyer, Klein & Sander, 2010).

Timing of neurocentral closure. The pattern of neurocentral closure is variable among

archosaurs (Brochu, 1996; Irmis, 2007; Birkemeier, 2011; Ikejiri, 2012). Even within
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Sauropoda, varying patterns have been reported (Harris, 2006b; Irmis, 2007; Gallina, 2011;

Carballido & Sander, 2014). The incomplete nature and rareity of immature specimens

result in additional difficulties, and very little information is available from articulated or

associated vertebral columns (Gilmore, 1925; Harris, 2006b; Schwarz et al., 2007; Gallina,

2011; Carballido et al., 2012). The current specimen is thus of special importance for the

study of neurocentral closure in sauropods.

SMA 0011 has closed but visible neurocentral synostoses in anterior and posterior

cervical vertebrae, and in anterior-most andmid- to posterior dorsal vertebrae.Mid-cervical

and one mid-dorsal vertebrae of SMA 0011 have open neurocentral synchondroses, but

not all mid-dorsal elements are preserved. No cervical rib is fused to its corresponding

centrum. Given that long bone histology shows that SMA 0011 had already reached

sexual maturity (Klein & Sander, 2008), it seems that open synchondroses still occurred in

sexually mature sauropods, a fact already reported from flagellicaudatan and titanosaur

specimens (Gallina, 2011; Gallina, 2012; Hedrick, Tumarkin-Deratzian & Dodson, 2014).

In the flagellicaudatan Suuwassea emilieae ANS 21122, vertebral fusion was apparently

already completed in the preserved presacral vertebrae, but not in caudal vertebrae (Harris,

2006b). However, only fragmentary mid- and posterior cervical, and no mid- and posterior

dorsal vertebrae are preserved in ANS 21122, which are the only elements still showing

unfused centra and neural arches in SMA 0011. As in SMA 0011, ANS 21122 also has

unfused cervical ribs, a separate scapula and coracoid, but a closed coracoid foramen

and relatively rugose articular surfaces of the longbones (Harris, 2006b; Harris, 2007;

Hedrick,Tumarkin-Deratzian & Dodson, 2014). The two specimens therefore seem to be of

about the same morphological ontogenetic stage. The titanosaur Bonitasaura MPCA-460

appears to show a slightly different pattern of neurocentral closure, with a completely fused

axis, but open anterior cervical and anterior dorsal vertebrae, and closed posterior cervical

and posterior dorsal elements (Gallina, 2011). However, MPCA-460 was shown to fit

into HOS 9 (Gallina, 2012), like SMA 0011 (Klein & Sander, 2008). These three specimens

therefore indicate that neurocentral closure was delayed and only partially completed by

sexual maturity in sauropods, as is the case in some crocodiles and lizards (Brochu, 1996;

Maisano, 2002; Ikejiri, 2012). They also show that the pattern of closure is not as simple as

previously thought. Based on comparisons with crocodiles, and on specimens with open

synchondroses and closed neurocentral synostoses, a posterior-to-anterior sequence was

postulated (Brochu, 1996; Irmis, 2007; Birkemeier, 2011; Ikejiri, 2012; Tschopp & Mateus,

2013b). However, SMA 0011 shows that—at least in diplodocids—in both the cervical

and the dorsal column, the middle elements fuse last, and that within one single vertebra,

the fusion starts posteriorly and progresses anteriorly (Fig. 29). Moreover, a detached,

and partly broken left prezygapophysis of a posterior cervical vertebra shows the typical

surface of a synchondrosis at the ventral end of the CPRL, whereas the right portion of

the neural arch is clearly fused with the centrum. This peculiar feature indicates that there

might even be some left–right asymmetry in the fusion pattern. Adding the information

from Suuwassea ANS 21122, anterior cervical vertebrae appear to fuse first (also in

SMA 0011, these are the ones where the synchondroses are the least visible), followed

by anterior and posterior dorsal and posterior cervical vertebrae, whereas mid-cervical,
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mid-dorsal, and anterior to mid-caudal vertebrae fuse last. This varies from the condition

in Bonitasaura, where a posterior-to-anterior pattern was proposed in both the postaxial

cervical and dorsal columns (Gallina, 2011). A general posterior-to-anterior fusion pattern

also appears to be present in at least one specimen of Camarasaurus (Trujillo et al., 2011)

and the small juvenile possible Brachiosaurus SMA 0009, which already have closed,

but still visible, synchondroses in anterior caudal vertebrae (Schwarz et al., 2007; Trujillo

et al., 2011; Carballido et al., 2012). Different fusion patterns might thus prove to be a

phylogenetically informative character, with macronarians showing a faster neurocentral

closure than diplodocoids, and following amore strict posterior-to-anterior pattern, at least

in the single vertebral regions. However, too few specimens are known to date, in which

neurocentral closure can be directly compared with histology, in order to evaluate this

character statistically. Nonetheless, these finds have further implications for the individual

age of the holotype specimen of Kaatedocus siberi, SMA 0004 (Tschopp & Mateus, 2013b),

which does not show any traces of neurocentral synostoses in any cervical vertebra, and

also has completely fused cervical ribs (Tschopp & Mateus, 2013b). Being a diplodocine,

this implies that Tschopp & Mateus (2013b) were right in identifying SMA 0004 as at least

a subadult specimen, which retained a relatively small size. Moreover, as Carballido &

Sander (2014) showed for Europasaurus, sauropod vertebrae already show the majority of

the phylogenetically informative characters of their respective species before the completion

of neurocentral closure. These results corroborate the findings of Wedel & Taylor (2013)

that the posterior onset of neural bifurcation in cervical and dorsal vertebrae is not clearly

correlated with ontogeny (contra Woodruff & Fowler, 2012).

Cervico-dorsal transition in Diplodocidae

Vertebral segmentation is a complex phenomenon. According to Romer (1956, p. 228),

‘‘the study of segmentation is comparable to the study of the Apocalypse. That way lies

madness’’. Among sauropods, SMA 0011 is one of few specimens that preserves articulated

posterior cervical and anterior dorsal vertebrae with closely associated ribs. Five vertebrae

were found in articulation, with the first clearly being a posterior cervical, and the last

two being anterior dorsal vertebrae. Several morphological changes occur in the two

intermediate vertebrae, which are outlined above. The most important ones concern the

shortening of the centrum, the loss of a distinct anterior condyle, and the changing position

of the parapophysis.

Generally, the position of the parapophysis is considered to be ventral or anterior to the

pleurocoel in the first two dorsal centra of diplodocid sauropods (Hatcher, 1901; Gilmore,

1936); whereas in the dicraeosaurid Brachytrachelopan, the macronarian Camarasaurus,

and in the stegosaur Miragaia, the parapophysis of the first dorsal vertebra is situated on

the anterodorsal corner of the centrum (McIntosh et al., 1996; Rauhut et al., 2005; Mateus,

Maidment & Christiansen, 2009). A distinct shortening of the vertebral centrum, as occurs

between the third and the fourth vertebra of the articulated transitional block in SMA 0011

was interpreted to happen between DV 2 and 3 in Diplodocus carnegii (Hatcher, 1901) and

Barosaurus lentus (McIntosh, 2005). The first dorsal vertebra without a distinct anterior
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condyle was proposed to be DV 5 in D. carnegii (Hatcher, 1901), DV 3 in Apatosaurus

louisae (Gilmore, 1936), and DV 4 in B. lentus (McIntosh, 2005).

Different researchers have used varying morphological indicators to distinguish cervical

from dorsal vertebrae.Hatcher (1901) andGilmore (1936) used the presence of fused or free

ribs to define cervical or dorsal vertebrae, respectively. Furthermore, Hatcher (1901) noted

that the first dorsal vertebrae had a convex ventral surface. Janensch (1929) stated that the

transition from cervical to dorsal vertebrae is often gradual, and that only the vertebrae

bearing ribs that are connected to the sternum can be regarded as dorsal vertebrae, following

the definition of dorsal vertebrae given by Stannius (1846). In fact, the definition of Stannius

(1846) appears to be the most universally applicable, and has therefore been applied in a

wide variety of vertebrates (Hoffstetter & Gasc, 1969). In any case, it seems that it is not

possible to consistently identify the vertebrae alone as either cervical or dorsal elements, a

fact that is also exemplified by the difficulties in defining the exact cervico-dorsal transition

in the macronarian Euhelopus, where the proposed first dorsal vertebra lacks ribs (Wilson

& Upchurch, 2009). Ribs that are connected to the sternum usually have expanded and

rugose distal ends (Schwarz et al., 2007). However, the ribs identified as the first dorsal

ribs in Diplodocus carnegii and Apatosaurus louisae have tapering distal tips (Hatcher, 1901;

Gilmore, 1936) and were mainly identified as dorsal elements due to the abrupt length

increase and the differing orientation compared to the preceding, probable cervical rib

(vertical rather than parallel to the vertebral centrum; Hatcher, 1901; Gilmore, 1936).

The complete set of associated ribs with the cervico-dorsal transition in specimen

SMA 0011 also implies that the first dorsal rib has a tapering distal tip. Notwithstanding

the gradual shape changes concerning the disappearing anterior process of the ribs, and

the morphology of the articular facets of tuberculum and capitulum, the length and

orientation of the ribs changes abruptly in Galeamopus pabsti SMA 0011. Here, this change

in rib morphology is accompanied by a distinct shortening of the vertebral centrum, the

elevation of the parapophysis to a position anterodorsal to the pleurocoel, and a more

upright orientation of the neural spine. This transition is significantly different from the

one in Diplodocus or Barosaurus, where the first two to three dorsal vertebrae are more

similar to cervical elements (Hatcher, 1901; McIntosh, 2005). The dorsal position of the

parapophysis on DV 1 is different from all other diplodocids where the transition is

preserved and indicates that cervicalization of the anterior-most dorsal vertebrae was less

developed in Galeamopus than in other forms.

Implications for the process of cervicalization. The shape of the transitional ribs also

yield more information on the possible process of cervicalization within Diplodocidae. We

consider cervicalization to represent an evolutionary process, in which an anterior dorsal

vertebra loses its connection to the sternum through macroevolutionary processes, and

becomes incorporated into the neck. The fact that the first dorsal rib of SMA 0011 does

not have an expanded distal end indicates that its connection to the sternum was already

weakened or entirely lost. The loss of the connection to the sternum was then followed

by a reduction in length of the rib shaft, the change to a more horizontal orientation, the

development of an anterior process, and an elongation of the vertebra.
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Cervicalization also occurred in the long-necked stegosaur Miragaia longicollum, which

has 17 cervical vertebrae, compared with only 12–13 in Stegosaurus (Mateus, Maidment &

Christiansen, 2009). The most posterior preserved elements of Miragaia have the general

aspect of stegosaur dorsal vertebrae (i.e., tall neural spines, a short centrum, and well

separated capitulum and tuberculum), despite the low position of the parapophyses and

short ribs typical of cervical elements. These features are not seen in Galeamopus pabsti

and in other diplodocids, where cervicalization was mostly inferred to have occurred

because of the number of cervical and dorsal vertebrae that differ from their sister-group

Dicraeosauridae and other more distantly related sauropods like Camarasaurus, all of

which have 25 presacral vertebrae in total (e.g., McIntosh, 2005).

Vertebral count. Diplodocid cervical series are generally considered to comprise 15

vertebrae (Hatcher, 1901; Gilmore, 1936; Upchurch, 1998; Wilson, 2002; Whitlock, 2011a),

with the exception of Barosaurus, which was interpreted to have 16 cervical vertebrae

(McIntosh, 2005). However, since only two nearly complete, and largely articulated

diplodocid necks have been reported to date (Diplodocus carnegii CM 84, lacking the

atlas, Hatcher, 1901; and Apatosaurus louisae CM 3018, Gilmore, 1936), this count may

well have been different in other diplodocid genera. In SMA 0011, evidence suggests a

maximum of 14 cervical vertebrae (based on the number of cervical ribs, and the lack of

large gaps in both morphological sequence and preservation in the quarry; Fig. 3).

Diplodocid diversity in the Morrison Formation

The Morrison Formation shows the highest diversity of diplodocid sauropods worldwide,

together with macronarian sauropods such as Camarasaurus and Brachiosaurus, and the

diplodocoids Haplocanthosaurus and Suuwassea (Foster, 2003; Button, Rayfield & Barrett,

2014; Tschopp, Mateus & Benson, 2015). In fact, with 13 named species, Diplodocidae

is the most species-rich family of vertebrates of the Morrison Biota. This diversity of

megaherbivores might be surprising, but can probably be explained by a combination

of extrinsic and intrinsic factors. Extrinsic factors include spatial segregation, which is

supported by ecological conditions that changed with latitude throughout the extension

of the Morrison Formation (Sellwood & Valdes, 2008). The high number of fragmentary

specimens that do not preserve diagnostic bones precludes the identification of many

remains at the species level, and thus a meaningful assessment of geographic species ranges

throughout the Morrison Formation. However, there are some indications that the species

Kaatedocus siberi only occurred in central to northern portions of the Morrison Formation,

whereas the specimens referred to Diplodocus hallorum are restricted to more southern

areas (Lucas et al., 2006; Tschopp, Mateus & Benson, 2015; Whitlock, Hanik & Trujillo,

2016). Barosaurus lentus, on the other hand, is known from both southern and north-

eastern exposures (McIntosh, 2005; Tschopp, Mateus & Benson, 2015;Melstrom et al., 2016).

In addition, there is evidence for temporal segregation of diplodocid species (Tschopp,

Giovanardi & Maidment, 2016), but also here, more detailed studies are needed to confirm

those. Temporal resolution across the Morrison Formation is incompletely known, and

long-distance correlations between quarries are only nowbecomingmore accurate (Trujillo,

2006; Trujillo & Kowallis, 2015; Maidment, & Muxworthy, 2016). The entire duration of
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the deposition of the Morrison Formation, however, has been considered to represent

between seven and eleven million years (Swierc & Johnson, 1996; Kowallis et al., 1998; Platt

& Hasiotis, 2006), so it would seem reasonable to expect at least some temporal segregation

of the species.

Finally, the open, savannah-like environment of large parts of the depositional basin

of the Morrison Formation (Turner & Peterson, 2004, and references therein) might have

provided favorable conditions for diplodocids. In fact, diplodocids show a high degree

of specialization for grazing, as indicated by the relatively squared snout, tooth wear

patterns (Whitlock, 2011b), and high tooth replacement rates (D’Emic et al., 2013). Niche

partitioning must have been necessary in order to sustain such a high diversity, and has

been shown to have occurred between major clades of sauropods (Barrett & Upchurch,

1994; Calvo, 1994; Fiorillo, 1998; Upchurch & Barrett, 2000), but little work has been done

comparing diplodocid species until recently (Whitlock, 2011b; Button, Rayfield & Barrett,

2014). The latter studies, however, indicate that some partitioning occurred among

diplodocids (Whitlock, 2011b; Button, Rayfield & Barrett, 2014), which explains at least

in part the high diplodocid diversity in the Morrison Formation. Nonetheless, how this

diversification exactly took place remains an open question that can only be assessed with

more precise identifications and stratigraphic correlations.

CONCLUSIONS

We describe in detail a new specimen of diplodocine sauropod dinosaur, SMA 0011.

Comparison with other diplodocine specimens shows that it constitutes a second species

within the genus Galeamopus, which we name Galeamopus pabsti. The type specimen died

at a particular ontogenetic stage, where histology indicates that it reached sexual maturity,

but neurocentral fusion in cervical and dorsal vertebrae has not yet been completed. The

lack of fusion between vertebral centra and neural arches can thus not be taken as definitive

evidence for a juvenile ontogenetic stage. Furthermore, the specimen indicates that the

number of vertebrae in the cervical column of diplodocids might have been more variable

than previously assumed, and that the transition from cervical to dorsal elements was

variable between genera. Although potentially surprising, the high diversity of sauropods

in the Upper Jurassic Morrison Formation can be explained by a combination of extrinsic

and intrinsic factors that allowed in particular a radiation of Diplodocidae. These include

spatial and temporal segregation of the species and niche partitioning.
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Anatomical abbreviations

aaL acetabular articulation surface length
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ACDL anterior centrodiapophyseal lamina
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ACPL anterior centroparapophyseal lamina
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caf capitular facet

cap capitulum

cc cnemial crest

CDF centrodiapophyseal fossa

cdH height condyle

cdW width condyle

cif crista interfenestralis

cL centrum length

cL-cd centrum length without condyle

cmW centrum minimum width

cn cranial nerve

co coracoid

cof coracoid foramen

comp compressed

CPOL centropostzygapophyseal lamina

CPRL centroprezygapophyseal lamina

CPRL-F centroprezygapophyseal lamina-fossa

CR cervical ribs
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ctH height cotyle
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d dentary

dapD distal anteroposterior depth

def deformed
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dH distal dorsoventral height

di diapophysis
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f frontal

fe femur

fh femoral head

fi fibula

fif fibular facet

fit fibular trochanter

fl forelimb

fm foramen magnum

ft fourth trochanter

gH greatest height

gl glenoid

h humerus

hh humeral head

hl hindlimb
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il ilium

inc incomplete

ip iliac peduncle
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isa ischial articular surface
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m maxilla
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mp medial process
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n external nares
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naH height neural arch

nc neural canal

ncs neurocentral synostosis

nsH height neural spine

nW width notch

o orbit

oc occipital condyle

ocL lateral length contributing to orbit

ocv orbitocerebral vein foramen
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osr otosphenoidal crest

osrL length otosphenoidal crest

p parietal

pap parapophysis

papD proximal anteroposterior depth
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paofe preantorbital fenestra
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pe pes

pf prefrontal
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ppapD pubic peduncle anteroposterior depth
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prap preacetabular process

prapL preacetabular process length
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pu pubis

pua pubic articular surface

puaL pubic articular surface length

pup pubic peduncle

pupL pubic peduncle length

pvf posteroventral flanges
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pvg pelvic girdle

pvl posteroventral lip

pvlp posterior ventrolateral process

pW posterior width

q quadrate

qj quadratojugal

qr quadrate ramus

r radius

sa surangular

sc scapula

scaL scapula-coracoid articular length

sD shaft diameter

SDF spinodiapophyseal fossa

so supraoccipital

SPDL spinodiapophyseal lamina

SPOF spinopostzygapophyseal fossa

SPOL spinopostzygapophyseal lamina

SPRF spinoprezygapophyseal fossa

SPRL spinoprezygapophyseal lamina

sq squamosal

sqr squamosal ramus

SR sternal ribs

stf supratemporal fenestra

SV sacral vertebrae

sW shaft width
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t teeth

ti tibia

tbL length tooth-bearing portion

tc tooth crown

tif tibial facet

tpol interpostzygapophyseal lamina

tprl interprezygapophyseal lamina

tr tooth root

tub tuberculum

tuf tubercular facet

tW transverse width

u ulna

vk ventral keel

vL length ventral edge

vrH dorsoventral length ventral ramus
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MOS morphological ontogenetic stage
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