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ABSTRACT
Ornithomimosaur dinosaurs evolved lightweight, edentulous skulls that possessed
keratinous rhamphothecae. Understanding the anatomy of these taxa allows for a
greater understanding of “ostrich-mimic” dinosaurs and character change during
theropod dinosaur evolution. However, taphonomic processes during fossilisation
often distort fossil remains. Retrodeformation offers a means by which to recover a
hypothesis of the original anatomy of the specimen, and 3D scanning technologies
present a way to constrain and document the retrodeformation process. Using
computed tomography (CT) scan data, specimen specific retrodeformations were
performed on three-dimensionally preserved but taphonomically distorted skulls
of the deinocheirid Garudimimus brevipes Barsbold, 1981 and the ornithomimids
Struthiomimus altus Lambe, 1902 and Ornithomimus edmontonicus Sternberg, 1933.
This allowed for a reconstruction of the adductor musculature, which was then
mapped onto the crania, from which muscle mechanical advantage and bite forces
were calculated pre- and post-retrodeformation. The extent of the rhamphotheca
was varied in each taxon to represent morphologies found within modern Aves.
Well constrained retrodeformation allows for increased confidence in anatomical
and functional analysis of fossil specimens and offers an opportunity to more fully
understand the soft tissue anatomy of extinct taxa.
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INTRODUCTION
Fossil skulls can offer insights into many aspects of vertebrate ecology and evolution. The

cranium hosts the major sensory systems and, along with the mandible and hyolingual

apparatus, is responsible for the ingestion of food items. Three-dimensionally preserved

skulls provide even greater insight by allowing studies of endocranial morphology

(Brochu, 2000; Sanders & Smith, 2005; Witmer & Ridgely, 2009), reconstruction of soft

tissues (e.g., rhamphothecae and musculature: Holliday, 2009; Lautenschlager, 2013;

Lautenschlager et al., 2013), and functional analysis (Rayfield et al., 2001; Rayfield et

al., 2007; Lautenschlager, 2013; Button, Rayfield & Barrett, 2014). However, soft tissue

reconstructions in particular are limited by the quality of the specimens on which they

are based. This has often posed problems for palaeontologists as taphonomic processes
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(both pre- and post-burial) can lead to the disarticulation or distortion of skeletal remains.

As such, reconstructing and retrodeforming fossil remains can correct for taphonomic

damage and is important for furthering our understanding of extinct taxa (Tschopp, Russo

& Dzemski, 2013; Williams, 1990).

Various methods have been used to retrodeform fossil taxa. Methods particularly

applicable to fossils preserved on a 2D bedding plane range from rescaling drawings

(Rushton & Smith, 1993) to the determination of the strain ellipse (Cooper, 1990; Hughes

& Jell, 1992) or other ways of deducing tectonic deformation (Motani, 1997). Digital

techniques lend themselves to retrodeformation of 3D preserved fossils, including

employing 3D computer models for user manipulation of individual disarticulated bones

(Lautenschlager, 2013; Porro, Rayfield & Clack, 2015), modifying digital models by reference

to closely related extant taxa (Zollikofer et al., 2005; Gunz et al., 2009) or by using landmarks

(Molnar et al., 2012; Tallman et al., 2014) and geometric morphometrics (Angielczyk &

Sheets, 2007; Hedrick & Dodson, 2013). The efficacies of these methods may be debated,

but ultimately they are limited by the quality of preserved material (including brittle

and plastic deformation) and perception of what the original specimen should look like,

whether informed by symmetry or informed by closely related extant or extinct taxa.

Ornithomimosauria are a clade of coelurosaurian theropod dinosaurs that are com-

monly known as “ostrich-mimicking” dinosaurs due to their cranial and postcranial con-

vergences with palaeognathous birds. The convergence is seen in their lightweight skulls,

with relatively large orbits and edentate jaw margins that bear rhamphotheca (Makovicky,

Kobayashi & Currie, 2004). The most primitive members of Ornithomimosauria

(Nqwebasaurus thwazi De Klerk et al., 2000, and Pelecanimimus polyodon Perez-Moreno

et al., 1994) possess numerous tiny teeth in the premaxillae, maxillae and mandibles. More

derived members of the group lose their upper dentition, maintaining a reduced dentition

on the mandible (Harpymimus okladnikovi Barsbold & Perle, 1984; and Shenzhousaurus

orientalis Ji et al., 2003), before becoming fully edentate (as in deinocheirids (Lee et al.,

2014) and ornithomimids (Makovicky et al., 2010)). Where teeth are lost, ornithomimids

possess beaks, inferred from the presence of foramina on the lateral surfaces the premaxilla,

maxilla and mandible and the preservation of remnants of keratinous rhamphothecae

in two specimens, the Ornithomimus specimen used in this study, RTMP 1995.110.0001,

and Gallimimus bullatus Osmólska, Roniewicz & Barsbold, 1972, specimen GIN100/1133

(Norell, Makovicky & Currie, 2001). The posterior extent of the beak is subject to debate,

yet important for functional considerations as it provides a food capture and manipulation

surface and plays a role in the reduction of feeding-related bony stress (Lautenschlager et

al., 2013).

In addition to the rhamphotheca, variation in other soft tissues has important

functional consequences for the skull. Many studies have attempted to reconstruct the

adductor musculature anatomy of a wide range of taxa across the Dinosauria: ankylosaurs

(Haas, 1969); hadrosaurs (Bell, Snively & Shychoski, 2009; Holliday, 2009); Marginocephalia

(Haas, 1955; Holliday, 2009; Sereno, Zhao & Tan, 2010); prosauropods (Fairman, 1999);

sauropods (Haas, 1969; Holliday, 2009; Young et al., 2012) and theropods (Adams, 1919;
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Rayfield et al., 2001; Holliday, 2009; Bates & Falkingham, 2012; Lautenschlager, 2013). The

studies range from simple identification and line drawings based on osteological correlates

(e.g., Haas, 1969), to clay modelling of the muscles (Rayfield et al., 2001), to digital

reconstructions (e.g., Lautenschlager, 2013). The increased sophistication of adductor

reconstruction has permitted more accurate estimation of not just the size of individual

muscles, and therefore the force they can potentially generate, but their spatial relations to

each other and effects of muscle bulging during contractions.

The aim of this paper is to document the process and consequences of retrodeformation

of the crania of three ornithomimosaur theropod dinosaurs. Then using our hypotheses of

retrodeformed morphology we reconstruct the comparative adductor muscle anatomy and

calculate and compare the relative differences between adductor mechanical advantage

and the resulting estimated bite force along the jaw. We do this for skulls pre- and

post-retrodeformation, to deduce, in the context of the specimens presented here, the

influence of retrodeformation on our predictions of function. This allows characterisation

of bite forces arising during the evolution of edentulism between the ornithomimids

and deinocheirids and more broadly within the ornithomimosaurs, one of at least three

clades of coelurosaurian theropods that diverge from hypercarnivory (Zanno & Makovicky,

2011). We compare our predicted bite forces to the only other estimate from a herbivorous

theropod, Erlikosaurus andrewsii Perle, 1981, a therizinosaur (Lautenschlager et al., 2013).

Given that the three ornithomimosaurians and E. andrewsii have similar sized skulls, we

test for congruence in bite force magnitudes between these putatively herbivorous taxa.

METHODS
Specimens
Few well preserved, three-dimensional ornithomimosaur skulls are known. Here we focus

on crania from three taxa: Garudimimus brevipes, Struthiomimus altus and Ornithomimus

edmontonicus. Garudimimus is known from only a single specimen. Our chosen specimens

of S. altus and O. edmontonicus represent the best prepared material for either taxon. There

are other cranial remains, but most are badly crushed, encased within matrix prohibiting

detailed observation, or remain taxonomically contentious. A number of specimens were

examined first hand (see Appendix S1) and information from the published literature

on the well preserved skulls of Gallimimus (Osmólska, Roniewicz & Barsbold, 1972),

Deinocheirus (Lee et al., 2014), and Sinornithomimus (Kobayashi & Lü, 2003), was used

for comparison where possible and inform on the retrodeformation process.

The specimen of Garudimimus brevipes (GIN 100/13, described by Barsbold (1981)

and Kobayashi & Barsbold (2005)) was scanned at the University of Texas using a P250D

scanner at 419 kV, 1.8 mA, aluminum filter, slice thickness = 0.5 mm, total slices = 517.

The Ornithomimus edmontonicus specimen (RTMP 1995.110.0001) was scanned along

the coronal axis for a total of 420 slices (0.63 mm thickness) with a GE LightSpeed

Plus CT scanner (Tahara & Larsson, 2011). The Struthiomimus altus specimen (RTMP

1990.026.0001) was scanned using the same parameters as the Ornithomimus specimen,

creating a dataset of 416 slices along the coronal axis. For both Ornithomimus and
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Struthiomimus the scans are of relatively low quality. To provide better detail, the scans

were upsampled in Avizo 7.0 (FEI Visualization Sciences Group, USA). This process creates

interpolations between each of the original CT slices to provide twice the number of slices

in every axis for smoother reconstructions, but not providing any further resolution. The

Garudimimus CT dataset was not resampled.

Reconstructions
The CT datasets were loaded into the visualisation and analysis package Avizo 7.0.

Segmentation and isolation of each individual cranial bone was performed, as far as the

deformed, and in some places incomplete, datasets permitted. As all of the specimens

suffered deformation, it was necessary to undertake retrodeformation to provide a

complete undeformed skull for each species on which the soft tissue reconstructions

could be based. Notably, the nature and magnitude of deformation differed in each taxon,

and hence specimen-specific retrodeformation processes were applied to each specimen.

Furthermore, there is no known undistorted skull for any of the taxa studied. The process

of deformation was therefore informed by the topographic relationships of the individual

cranial elements in the 3D dataset, evidence of breakage and cracks revealed from direct

observation of specimens and the CT scan data, and information gathered from related

ornithomimosaur material from museum collections and the literature (as outlined above,

and see Appendix S1). Where possible, a set of criteria were employed to perform and

constrain the process. As outlined in Arbour & Currie (2012), the shape of the orbit was

used a proxy to determine the degree of deformation. Orbital retrodeformation was

therefore employed to reconstruct the arrangement of the surrounding facial bones. In

all studied ornithomimosaurs, both actual specimens and literature study, the pattern

of breakage and deformation to the bones of the orbital region suggest that the orbits in

undeformed taxa should be approximately circular. As such, this was the first correction

applied to the Garudimimus and Struthiomimus skulls. In Garudimimus, the individual

bones were segmented from the CT scan datasets and the bones surrounding the orbit

were rotated into position using the editing tools in Avizo (sensu Lautenschlager et al.,

2013; Button, Rayfield & Barrett, 2014). This process was sequentially repeated with bones

further from the orbits, until all of the right side of the specimen was reconstructed with

the original material (no obvious plastic deformation was seen in this specimen except for

the posterior margin of the maxilla). In the Struthiomimus skull, the orbital region was

dorsally shifted by translating the bones within the “edit label field” function in Avizo until

a circular orbit was restored. This process was continued anteriorly and posteriorly until

a smooth cranial roof was created. The orbit was then measured in anteroposterior and

dorsoventral axes with the “measure” tool within Avizo to check whether a near circular

structure has been achieved via the retrodeformation process.

In ankylosaur skulls, it was noted that the bones of the palate suffered little deformation

(Arbour & Currie, 2012). This was also true for the specimens studied here, although

the palatines and pterygoids in Ornithomimus were mediolaterally displaced and

overlapped. As such, palatal morphology and width were used as a marker to determine
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the mediolateral dimensions and required expansion of the skulls. For Ornithomimus

the palatal bones were separated and aligned, and the remainder of the skull expanded

mediolaterally to fit the palate. The palatal morphology of observed and well preserved

specimens in the literature was used to inform on this procedure.

For the remaining bones it was possible to determine whether cortical bone had

collapsed or was damaged using the CT scan data, so that the surface topography of

the bones could be reconstructed using the paintbrush region-selecting tool within

Avizo to match that seen in other specimens or ornithomimosaur taxa (e.g., the jugals

in Ornithomimus). In some places bone was so badly damaged that full reconstruction

required material from the other scans and digital manipulation using the paintbrush tools

to create “new bone”. This was always informed by the individuals studied here as well as

other specimens and taxa from museum collections and the literature. For example, in the

anterior portion of the jugal in Garudimimus, the bone is broken and partially missing, but

should overlap the posterior ramus of the maxilla and contact the lacrimal. The maxillary

ramus was therefore ventrally displaced to bring it into alignment with the preserved

remains of the jugal (as described for the orbit of Struthiomimus), and the jugal was

extended using the paintbrush tool in three dimensions to provide the required contact

whilst maintaining the shape seen in the other scanned and observed ornithomimosaurs.

In Garudimimus the right side of the skull was better preserved than the left, whilst the

opposite was true in Struthiomimus. Bones of the better preserved sides, once aligned

and reconstructed, were mirrored about the sagittal midline of the skull, using the mirror

function in Avizo (Lautenschlager, 2013).

Ornithomimosaur myology
Following methods of Holliday (2009), Lautenschlager (2013) and Button, Rayfield &

Barrett (2014), the individual insertions and origination sites for the adductor muscles

were digitally mapped onto the 3D ornithomimosaur skull reconstructions. Where there

was a lack of osteological correlates on the bones in either the CT scans or the actual

specimens, phylogenetic bracketing was used to ascertain likely insertion and origination

locations. These originations and insertions were demarcated on the skull and mandible.

As there was no scanned Garudimimus jaw, the Struthiomimus jaw was used (scaled and

rotated into place) to ascertain muscle orientation as it was the closest in morphology of

the two ornithomimids.

For each of the individual muscles, a number of simple rods were used to connect

the limits of the origins and insertions (following Curtis et al., 2008). This process was

used to assess the margins of the muscles and ensure there was no overlap with either the

bone or other muscle bodies. In places, these rods were manually wrapped around the

bones within Avizo. In other reconstructions, the neurovascular system also has been used

(Lautenschlager, 2013), but its canals were not readily traceable in-silico from our lower

quality CT scans. In museum specimens with matrix-obscured neurocrania, these canals

were not visible either. Muscles were fully ‘fleshed’ by connecting all of the rods belonging

to the same muscles until they were all merged to form a single “muscle” (Lautenschlager,
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2013; Button, Rayfield & Barrett, 2014). This process was repeated for all adductor muscles.

All of the fleshed out muscles were then enlarged until they occupied the maximum

amount of space within the chambers without intersecting in three-dimensional space,

which Avizo can prevent. The expanded muscle bodies were then digitally smoothed using

tools in Avizo.

Muscle forces were estimated using the dry skull method (Thomason, 1991), where force

(Fmus) equals the cross-sectional area (CSA) multiplied by the isometric muscle stress (σ

here taken as 0.3 N mm−2: Weijs & Hillen, 1985; Thomason, 1991):

Fmus = CSA × σ.

The CSA is calculated in Avizo, using the ‘clipping plane’ tool to define the cross section

and the ‘material statistics’ module which calculates the surface area. This was done for

each muscle at its widest location to give the maximum CSA and thus maximum estimated

force. As this method fails to take into account pennation angle of muscle fibres, the forces

were multiplied by a scale factor (calculated from experimental comparisons between

modelled and actual data (Thomason, 1991)) of 1.5 to compensate. Given the arrangement

of muscle bodies, the total muscle force is the resultant of anteroposterior, dorsoventral

and mediolateral force components. Mediolaterally orientated muscle force has limited

influence on jaw closing due to the almost vertical orientation of the muscle lines of

action. As such the dorsoventral component is studied for bite force lever mechanics

(as in Lautenschlager, 2013). The force of each muscle (Fmus: Table 2) can be multiplied by

the perpendicular distance of the muscle centroid from the jaw joint (measured in Avizo)

to provide a muscle moment:

Fin = Fmus × perpendicular distance from joint.

The sum of each of the muscle input moments can then be used to calculate bite forces

(Fbf) at individual locations along the skull (Table 2):

Total Fin = Σ(Fmus × perpendicular distance from joint)

Total Fin = Total Fout

Total Fout = Fbf × perpendicular distance from joint.

Rhamphothecae
Foramina are regularly cited as evidence for a keratinous rhamphotheca (e.g., Kobayashi

& Lü, 2003). In modern birds, foramina can be found on the surface of the anterior

premaxilla and mandible, where the rhamphothecae may be expected to be thickest (Fig. 1)

(see Morhardt, 2009). In extant palaeognaths, the beak provides a close sheath over the

bones of the mandible and skull (Davies, 2003), whereas in neognaths the rhamphotheca

extends well beyond the oral margins. In many species, the beak also extends well beyond

the anterior margins of the bone; in extreme examples such as hornbills and toucans, the

rhamphotheca may be two to three times longer than the amount of bone it covers (Seki,

Bodde & Meyers, 2010).
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Figure 1 Foramina and rugosities in the rostra of certain taxa. (A) Anterior, right mandible
of Struthiomimus altus (RTMP 1990.026.0001); (B) Dorsal view of anterior premaxilla of ostrich
and mandible (ROM R1080); (C) Anterior dentary of a tyrannosaur (Daspletosaurus?) RTMP
(1967.009.0164). Scale bars = 1 cm.

In non-avian theropods, the picture is more complicated. Ornithomimosaurs,

oviraptorids, therizinosaurs, and Limusaurus (a ceratosaur) underwent tooth loss leading

to partial edentulism and inferences of rhamphothecae (Zanno et al., 2009; Zanno &

Makovicky, 2011). These taxa bear regular foramina across the lateral surface of edentulous

regions of the premaxilla and dentary. There are also grooves on the mandible of

Erlikosaurus (a therizinosaur) that appear to demarcate a keratinous rhamphotheca/beak

(Lautenschlager, 2013; Lautenschlager et al., 2013). However, neurovascular foramina are

also present in large theropods (e.g., tyrannosaurs: Fig. 1; spinosaurs: Dal Sasso et al., 2005;

Morhardt, 2009) where teeth are present and keratinous beaks are not inferred.

As the presence of foramina is not a reliable characteristic for modelling rhamphothe-

cae, we must rely on other lines of evidence. Because ornithomimosaurs (and other

edentulous theropods) had downturned dentaries, the jaws do not occlude across the

entire oral margin (Zanno et al., 2009; Zanno & Makovicky, 2011). As this would limit

the functionality of the jaws, it is reasonable to expect the rhamphotheca to fill the gap

to form an occlusal surface. Preserved rhamphothecae also exist on two ornithomimid

specimens. In Ornithomimus RTMP 1995.110.0001 (the specimen used in this analysis) the

rhamphotheca is around 4.30 mm in dorsoventral depth on both the upper and lower

jaws. This is similar to a remnant of rhamphotheca approximately 3.0 mm depth on

the Gallimimus specimen (GIN 100/1133) (measured from Norell, Makovicky & Currie,

2001). Assuming that the jaws occluded along their oral margins, the rhamphotheca was

modelled here in all taxa to fill the oral margins, deeper at the anterior (using the preserved

specimens as indicating a minimum dorsoventral thickness) and tapering posteriorly (as

in modern birds). Two reconstructions accommodated uncertainty about the extent of

the rhamphotheca beyond the oral margins, and two morphologies were made for the

skull. These include: a conservative, ‘small’ beak model that is modelled on an ostrich

beak, with limited extension of the rhamphotheca around the nares; and a more extensive

‘big’ beak model where the beak margins border the antorbital fossa. In neornithines, a

naricorn rhamphothecal plate covers variable extents of the nares depending on the species

(Hieronymus & Witmer, 2010), and we have taken a conservative approach by not covering

any of the nares. In addition, we have not covered any of the antorbital fossa similar to the

practice of Lautenschlager et al. (2013) (Fig. 7), who did however partially cover the larger
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Table 1 Selection of measurements pre- and post-retrodeformation for each skull. Length is measured
from the centre of the quadrate condyle to the tip of premaxilla; width is measured as the distance
between the centres of each quadrate condyle; orbit height is measured as the dorsoventral height of
the centre of the orbit. All measures are in millimetres.

Garudimimus Struthiomimus Ornithomimus

Pre- Post- Pre- Post- Pre- Post-

Length 226 225 183 183 185 185

Width 34a 46 64a 56 26 42

Orbit height 59.5 61 35 54 68 68

Notes.
a Where there is an anterior–posterior offset resulting in a shear, inflating the measure.

Table 2 Reconstructed muscle originations and insertions for the ornithomimosaurs studied here (see text for muscle abbreviations).

Muscle Origination Insertion

AMEM Posterior portion of supratemporal fossa Posterior, mediodorsal edge of mandible

AMEP Medial portion of supratemporal fossa Mandibular margin anterior to AMEM
insertion

AMES Medial edge of supratemporal bar Dorsolateral edge of mandible

AMP Lateral surface of quadrate Posterior medial margin of mandibular fossa

PSTs Rostromedial portion of temporal fossa Rostromedial mandibular fossa

PTd Dorsal surface of rostral portion of pterygoid and palatine Medial surface of articular

PTv Caudoventral surface of pterygoid Lateral surface of articular and angular

nares of Erlikosaurus (Lautenschlager et al., 2013). As the lower jaw was not used in any

functional studies, beaks were not reconstructed for the mandibles.

RESULTS
The cranial reconstructions are shown in Figs. 2–4. No new gross anatomical descriptive

information is revealed but the overall dimensions of the skull are modified by retrodefor-

mation (Table 1). The width of the skull is modified in all taxa post-retrodeformation, as

are the dimensions of the orbit in Garudimimus and Struthiomimus. The few areas where

cranial material was digitally added compared to original bone can be seen in Fig. 5.

The Garudimimus specimen is the most damaged skull with a fragmentary left side, and

fairly complete, but disarticulated, right side cranial elements (Kobayashi & Barsbold, 2005;

Fig. 2). Here the right side elements were digitally realigned. The anterior process of the

jugal is broken, as is the posterior ramus of the maxilla. The posterior ramus of maxilla

was aligned so that the buccal margins of the maxilla formed a continuous, approximately

linear, margin. The jugal was reconstructed anteriorly so that it overlapped the maxilla

and contacted the lacrimal. When the right side was fully reconstructed, it was mirrored

about the sagittal plane to create a complete skull. The palate remained incomplete after

mirroring, with the vomers poorly preserved (only a possible fragment exists). The vomers

were reconstructed based on the shape and size of those found in the Struthiomimus
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Figure 2 Garudimimus brevipes reconstruction (GIN 100/13). (A), (C), (E), original skull, (B), (D),
(F), retrodeformed skulls. (A), (B), right lateral; (C), (D) dorsal; (E), (F), ventral views. Scale bar = 5 cm.
See Video S1 and Video S2 showing video of the skull before and after retrodeformation.

Figure 3 Struthiomimus altus reconstruction (RTMP 1990.026.0001). Note the dorsoventral expansion
of the skull after retrodeformation, particularly of the orbital region. (A), (C), (E), original skull, (B), (D),
(F), retrodeformed skulls. (A),(B), right lateral; (C), (D) dorsal; (E), (F), ventral views. Scale bar = 5 cm.
See Videos S3 and S4 showing video of the skull before and after retrodeformation.
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Figure 4 Ornithomimus edmontonicus reconstruction (RTMP 1995.110.0001) showing the effect of
the mediolateral expansion after separating the taphonomically deformed bones of the palate. (A),
(C), (E), original skull, (B), (D), (F), retrodeformed skulls. (A), (B), right lateral; (C), (D) dorsal; (E),
(F), ventral views. Scale bar = 5 cm. See Videos S5 and S6 showing video of the skull before and after
retrodeformation.

specimen (Figs. 2E and 2F) as this is one of the better preserved and prepared skulls

available to study.

The dorsoventral compression in Struthiomimus was removed by dorsoventrally

expanding the regions dorsal and posterior to the orbit until the orbit was approximately

circular (as seen in other ornithomimids (Makovicky, Kobayashi & Currie, 2004)) (Fig. 3).

There is also a slight asymmetrical mediolateral shearing, particularly of the left side, so

the right side of the skull was mirrored to create exactly the same bones for the left side.

Only after CT scanning was it possible to make a more accurate estimate of the extent of

the mediolateral crushing in Ornithomimus. Using the palate, which is obscured by matrix

on the actual specimen, it is possible to see that the elements from each side of the palate

have overlapped rather than flattened (Figs. 4E and 4F). By separating the palatal elements

using Avizo 7.0 and realigning to life position, the width of the palate was recreated. The

skull was then expanded so that the palate would fit between the medial surfaces of the

facial bones (Fig. 4). In addition to this, the anterior processes of the jugals are crushed on

both sides. This likely occurred when the thin cortical bone in the region collapsed into the

medial trabecular bone regions, and as such the jugals were reconstructed in these areas

(Figs. 4A, 4B and 5).
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Figure 5 Reconstructions showing the regions where material was added using the paintbrush region-
selecting tool within Avizo. Regions in red showing the areas where new material was added. (A)–(C)
Garudimimus, (D)–(F) Struthiomimus, (G)–(I) Ornithomimus.

Myology
The reconstructions do not find any major differences between insertions and originations

of the ornithomimosaurian myology and other dinosaurs (Fig. 6 and Table 2), except

that we could not reliably restore the M. pseudotemporalis profundus. This muscle

usually attaches on the epipterygoid in extant sauropsids and has been identified in other

dinosaurs (Holliday, 2009). Because none of the specimens had an identifiable epipterygoid

attachment visible on the quadrate (as in birds: Holliday & Witmer, 2007) the muscle was

not reconstructed. It is possible the muscle occupies some of the space used here in the

reconstruction of the M. adductor mandibulae posterior.

The amounts by which muscle moment arm lengths and mechanical advantages are

affected by retrodeformation are variable between taxa and between different muscle

groups (Tables 3–5 and Fig. 8). Muscle moment arms and mechanical advantages are

modified most in Garudimimus and least in Ornithomimus. The M.AMEm, M.AMEs and

the M.AMP are least affected by retrodeformation. The M.AMEp and the pterygoideus

complex are most affected by retrodeformation. Comparison between species shows that

for all three ornithomimosaurs the mechanical advantage for the pterygoideus complex

is always very low pre- and post-retrodeformation, because the muscle centroids are close

to the jaw joint (Table 4). The rest of the muscles possess broadly similar mechanical

advantages (Table 4). Using the muscle moment arms and PCSA estimates, muscle forces

were calculated (Table 6). There are some notable differences in comparable adductor

muscle forces. For example, Ornithomimus has typically less forceful muscle contraction,

with the exception of the M. pterygoideus dorsalis. Struthiomimus and Garudimimus have

broadly comparable adductor muscle force production with the exception of lower force

production in the M. pterygoideus complex of Garudimimus. Struthiomimus produces the

highest total adductor force. Given that the skulls are all similar lengths and therefore the

‘out’ lever arms (jaw lengths) are similar in length, Struthiomimus produces the highest bite
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Figure 6 Full cranial reconstruction including musculature of the jaw. (A) Garudimimus, (B)
Struthiomimus, (C) Ornithomimus. Scale bars = 5 cm. Pink, PSTs; purple, AMEp; red, AMEm; blue,
AMEs; green, AMP; yellow, PTd; orange, PTv.

forces at any of the positions along the jaw, whilst Ornithomimus produces the lowest. The

presence of a rhamphotheca marginally reduces estimated bite forces.

DISCUSSION
Retrodeformation has previously been used to gain a better understanding of the

musculoskeletal anatomy of skulls (e.g., Lautenschlager, 2013), which was largely limited
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Figure 7 Ornithomimosaur beaks. (A) Small and (B) big beak morphs on Garudimimus; (C) small and
(D) big beak morphs on Ornithomimus; (E) small and (F) big beak morphs on Struthiomimus. Scale bars
= 5 cm. Triangles represent bite locations for mid-beak and tip of the beak bites (Table 6).

Figure 8 Effects of retrodeformation on myological reconstructions. (A) Moment arm distances, (B)
Mechanical advantages. ‘Pre’ and ‘Post’ refer to pre- and post-retrodeformation.
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Table 3 Muscle moment arms and mechanical advantages for the specimens prior to retrodeforma-
tion. The mechanical advantage out-lever was calculated as the distance from the jaw joint to the anterior
tip of the premaxilla with no rhamphothecae: Garudimimus = 226 mm; Struthiomimus = 183 mm;
Ornithomimus = 185 mm.

Moment arm distances
(mm)

Mechanical advantage
(jaw tip-joint)

Garudi. Struthio. Ornitho. Garudi. Struthio. Ornitho.

AMEm 33.4 27.1 30.2 0.120 0.148 0.163

AMEp 49.0 30.5 26.0 0.135 0.166 0.141

AMEs 31.8 30.4 30.7 0.135 0.166 0.166

AMP 32.8 20.2 20.8 0.089 0.110 0.112

PSTs 50.8 33.3 37.1 0.147 0.182 0.200

PTd 27.0 7.90 13.8 0.035 0.043 0.075

PTv 14.7 13.1 9.3 0.058 0.072 0.050

Table 4 Muscle moment arms and mechanical advantages for the specimens after retrodeforma-
tion. The mechanical advantage out-lever was calculated as the distance from the jaw joint to the anterior
tip of the premaxilla with no rhamphothecae: Garudimimus = 225 mm; Struthiomimus = 183 mm;
Ornithomimus = 185 mm.

Moment arm distances (mm) Mechanical advantage (jaw tip-joint)

Garudi. Struthio. Ornitho. Garudi. Struthio. Ornitho.

AMEm 33.3 31.3 31.0 0.148 0.171 0.168

AMEp 37.8 39.5 30.1 0.168 0.216 0.163

AMEs 27.3 33.8 31.1 0.121 0.185 0.168

AMP 25.2 20.4 21.4 0.112 0.111 0.116

PSTs 42.5 40.5 38.3 0.189 0.221 0.207

PTd 18.1 8.95 16.0 0.080 0.049 0.087

PTv 8.6 15.0 11.4 0.038 0.082 0.062

to well preserved specimens (Rayfield et al., 2001; Holliday, 2009). The reconstructions

here were based on specimen specific taphonomic distortion and relied on knowledge

of other well preserved ornithomimosaurs. By restoring the skulls to our interpretation

of their original shapes, improved confidence in muscle anatomy and muscle and bite

force calculation is now possible. The retrodeformation process influenced measurements

of muscle moment arms and calculation of mechanical advantage by variable degrees

depending on the amount of deformation in the original specimen. The Garudimimus

specimen is mediolaterally compressed and dorsoventrally sheared and the snout is bent

along its long axis. Correcting for these deformations lead to notable differences between

the myological reconstructions before and after retrodeformation (Table 5 and Fig. 8).

Widening the Ornithomimus skull and making the Struthiomimus skull taller and narrower

influenced functional variables, but to a lesser degree. This demonstrates the importance

of performing retrodeformations to fully understand ornithomimosaur biomechanics.
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Table 5 Percentage change in muscle moment arms and mechanical advantage after retrodeformation.

Moment arm distances (mm) Mechanical advantage (jaw tip-joint)

Garudi. Struthio. Ornitho. Muscle group suma Garudi. Struthio. Ornitho. Muscle group suma

AMEm −0.3 15.5 2.6 18.4 23.3 15.5 3.1 41.9

AMEp −22.9 29.5 15.8 68.2 24.4 30.1 15.6 70.1

AMEs −14.2 11.2 1.3 26.7 −10.4 11.4 1.2 23.0

AMP −23.2 1.0 2.9 27.1 25.8 0.9 3.6 30.3

PSTs −16.3 21.6 3.2 41.1 28.6 21.4 3.5 53.5

PTd −33.0 13.3 15.9 62.2 128.6 14.0 16.0 158.6

PTv −41.5 14.5 22.7 78.7 −34.5 13.9 24.0 72.4

Sum of % change −151.4 106.6 64.4 275.6a 107.2 67.0

Notes.
a Sum of absolute percentage change.

Table 6 Muscle loads and bite forces as calculated from muscle reconstructions for each ornithomi-
mosaur. All forces in Newtons. Positions for mid beak (half the distance from the rostral to distal margins
of the rhamphothecae) and tip of beak bites are shown in Fig. 7.

Garudimimus Ornithomimus Struthiomimus

AMEm 14.1 8.69 24.1

AMEp 29.0 12.9 28.3

AMEs 17.2 10.5 31.7

AMP 14.3 15.0 13.2

PSTs 23.7 10.4 30.7

PTd 3.17 17.1 40.4

PTv 8.56 7.08 35.3

Tip of beak 19.0 22.0 57.6

Mid beak 23.9 28.6 75.2

The degree to which functional performance metrics such as bite force and skull stress

are influenced by changing skull proportions are also dependent on the relative sizes of

muscle groups and therefore the force each group can generate, but our study highlights

the importance of retrodeformation in general. Ornithomimosaurs appear to generate

relatively low bite forces (Table 6), particularly when considering the body size of the

taxa studied here (97.8–195 kg) (Zanno & Makovicky, 2013). The only major difference in

muscular performance between the deinocheird Garudimimus and the two ornithomimids

is that most muscles are more mechanically advantageous within Ornithomimus and

Struthiomimus. This is mainly linked to the longer skull in Garudimimus. Garudimimus

has the smallest bite force, although this calculation may be limited by having to

use the mandible of Struthiomimus for the Garudimimus reconstruction or that the

Garudimimus specimen used has been described as sub-adult (Kobayashi, 2004). Most

known ornithomimosaurs with preserved skulls are relatively small (Zanno & Makovicky,

2013), but the recently described skull of Deinocheirus mirificus is 1.02 m in length
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(Lee et al., 2014). This large, derived (almost hadrosaurid-like) skull has relatively small

temporal fenestrae so may have had small adductor muscles (Lee et al., 2014). This,

combined with the long rostrum, suggests it too had a relatively small bite force despite

its large size. This likely has a consequence on its diet: Deinocheirus is known to have

consumed small fish based on stomach contents, but is also believed to have consumed

plant matter, as hypothesized for other ornithomimosaurs.

Ornithomimosaur bite forces are the lowest reported to date for any non-avian

theropod and are lower than those found in another putatively herbivorous theropod

(Zanno et al., 2009; Zanno & Makovicky, 2011), Erlikosaurus (Lautenschlager, 2013). In

that study, it was suggested that such low bite forces (43–134 N depending on location

of the bite along the jaw) combined with a keratinous rhamphotheca, could be used to

help hold plant material, whilst neck musculature (Rayfield, 2004; Snively & Russell, 2007)

provided a ventrocaudal force to strip vegetation (Lautenschlager, 2013; Lautenschlager et

al., 2013; Button, Rayfield & Barrett, 2014). This may be a valid method of food acquisition

in ornithomimosaurs but further study is required. There are few estimates of bite force

in other herbivorous dinosaur taxa. For Sauropoda, estimates of between 235–324 N

and 982–1859 N have been calculated for Diplodocus and Camarasaurus respectively

(Button, Rayfield & Barrett, 2014). The bite force of Stegosaurus stenops (USNM 4934)

has been estimated at between 140 and 275 N depending on the bite position along the jaw,

modelled as sufficient to bite through smaller braches and leaves (Reichel, 2010). Further

investigation of individual taxa will contribute to a broader picture of cranial evolution

within Dinosauria.

CONCLUSION
The retrodeformation of three ornithomimosaurian skulls has allowed for greater

insight into ornithomimosaur cranial anatomy and function than was possible with

deformed skulls, particularly the reconstruction of the myology and rhamphothecae.

The reconstructions and functional interpretations presented here should be treated as

biologically informed hypotheses of musculoskeletal anatomy that can inform on future

myological, endocranial and biomechanical studies.

Institution abbreviations

GIN Mongolian Academy of Sciences, Ulan Bator, Mongolia

RTMP Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada

Myological abbreviations

AMEm adductor mandibulae externus medialis

AMEp adductor mandibulae externus profundus

AMEs adductor mandibulae externus superficialis

AMP adductor mandibulae posterior

PSTp pseudotemporalis profundus

PSTs pseudotemporalis superficialis
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PTd pterygoideus dorsalis

PTv pterygoideus ventralis

ACKNOWLEDGEMENTS
We would like to thank Hans Larsson and Yoshi Kobayashi for providing the CT scans used

in the study. Thanks also to Stephan Lautenschlager and Jen Bright for help with Avizo.

In addition, thanks go to Kevin Seymour (ROM), Brandon Strilisky (RTMP), Chinzorig

Tsogtbataar (GIN), Xu Xing (IVPP) for allowing access to the museum collections. We

also thank Eric Snively, Victoria Arbour and an anonymous reviewer for comments and

suggestions that have improved the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was carried out as part of a self-funded PhD. The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Andrew R. Cuff performed the experiments, analyzed the data, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

• Emily J. Rayfield conceived and designed the experiments, contributed

reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding the deposition of related data:

Ornithomimus

http://phenome10k.org/ornithomimus-edmontonicus-2/

http://phenome10k.org/ornithomimus-edmontonicus/

Struthiomimus

http://phenome10k.org/struthiomimus-altus/

http://phenome10k.org/struthiomimus-altus-2/

Garudimimus

http://phenome10k.org/garudimimus-brevipes-2/

http://phenome10k.org/garudimimus-brevipes/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1093#supplemental-information.

Cuff and Rayfield (2015), PeerJ, DOI 10.7717/peerj.1093 17/21

https://peerj.com
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus-2/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/ornithomimus-edmontonicus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/struthiomimus-altus-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes-2/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://phenome10k.org/garudimimus-brevipes/
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093#supplemental-information
http://dx.doi.org/10.7717/peerj.1093


REFERENCES
Adams LA. 1919. A memoir of the phylogeny of the jaw muscles in recent and fossil vertebrates.

Annals of the New York Academy of Science 58:51–166.

Angielczyk KD, Sheets HD. 2007. Investigation of simulated tectonic deformation in fossils using
geometric morphometrics. Paleobiology 33:125–148 DOI 10.1666/06007.1.

Arbour VM, Currie PJ. 2012. Analyzing taphonomic deformation of ankylosaur skulls using
retrodeformation and finite element analysis. PLoS ONE 7(6):e39323
DOI 10.1371/journal.pone.0039323.

Barsbold R. 1981. Toothless carnivorous dinosaurs of Mongolia. Transactions, Joint
Soviet-Mongolian Palaeontological Expedition 15:28–39.

Barsbold R, Perle A. 1984. On first new find of a primitive ornithomimosaur from the Cretaceous
of the MPR. Paleontologicheskii Zhurnal 2:121–123.

Bates KT, Falkingham PL. 2012. Estimating maximum bite performance in Tyrannosaurus
rex using multi-body dynamics. Biology Letters 8:660–664 DOI 10.1098/rsbl.2012.0056.

Bell PR, Snively E, Shychoski L. 2009. A comparison of the jaw mechanics in hadrosaurid and
ceratopsid dinosaurs using finite element analysis. The Anatomical Record 292:1338–1351
DOI 10.1002/ar.20978.

Brochu CA. 2000. A digitally-rendered endocast for Tyrannosaurus rex. Journal of Vertebrate
Paleontology 20:1–6 DOI 10.1671/0272-4634(2000)020[0001:ADREFT]2.0.CO;2.

Button DJ, Rayfield EJ, Barrett PM. 2014. Cranial biomechanics underpins high sauropod
diversity in resource-poor environments. Proceedings of the Royal Society B 281:20142114
DOI 10.1098/rspb.2014.2114.

Cooper RA. 1990. Interpretation of tectonically deformed fossils. New Zealand Journal of Geology
and Geophysics 33:321–332 DOI 10.1080/00288306.1990.10425690.

Curtis N, Kupczik K, O’Higgins P, Moazen M, Fagan MJ. 2008. Predicting skull loading:
applying multibody dynamics analysis to a macaque skull. Anatomical Record 291:491–501
DOI 10.1002/ar.20689.

Dal Sasso C, Maganuco S, Buffetaut E, Mendez MA. 2005. New information on the skull of the
enigmatic theropod Spinosaurus, with remarks on its sizes and affinities. Journal of Vertebrate
Paleontology 25:888–896 DOI 10.1671/0272-4634(2005)025[0888:NIOTSO]2.0.CO;2.

Davies SJJF. 2003. Struthioniformes (Tinamous and Ratites). In: Hutchins M, Jackson A, Bock
WJ, Olendorf D, eds. Grzimek’s animal life encyclopedia. 8 birds I tinamous and ratites to hoatzin.
2nd edition. Farmington Hills: Gale Group, 75–77.

De Klerk WJ, Forster CA, Sampson SD, Chinsamy A, Ross CF. 2000. A new coelurosaurian
dinosaur from the Early Cretaceous of South Africa. Journal of Vertebrate Paleontology
2:324–332 DOI 10.1671/0272-4634(2000)020[0324:ANCDFT]2.0.CO;2.

Fairman JE. 1999. Prosauropod and iguanid jaw musculature: a study on the evolution of form
and function. Unpublished M.A. thesis, Johns Hopkins University.

Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL. 2009. Principles for the virtual
reconstruction of hominin crania. Journal of Human Evolution 57:48–62
DOI 10.1016/j.jhevol.2009.04.004.

Haas G. 1955. The jaw musculature in Protoceratops and in other ceratopsians. American Museum
Novitates 1729:1–24.

Haas G. 1969. On the jaw muscles of ankylosaurs. American Museum Novitates 2399:1–11.

Cuff and Rayfield (2015), PeerJ, DOI 10.7717/peerj.1093 18/21

https://peerj.com
http://dx.doi.org/10.1666/06007.1
http://dx.doi.org/10.1371/journal.pone.0039323
http://dx.doi.org/10.1098/rsbl.2012.0056
http://dx.doi.org/10.1002/ar.20978
http://dx.doi.org/10.1671/0272-4634(2000)020[0001:ADREFT]2.0.CO;2
http://dx.doi.org/10.1098/rspb.2014.2114
http://dx.doi.org/10.1080/00288306.1990.10425690
http://dx.doi.org/10.1002/ar.20689
http://dx.doi.org/10.1671/0272-4634(2005)025[0888:NIOTSO]2.0.CO;2
http://dx.doi.org/10.1671/0272-4634(2000)020[0324:ANCDFT]2.0.CO;2
http://dx.doi.org/10.1016/j.jhevol.2009.04.004
http://dx.doi.org/10.7717/peerj.1093


Hedrick BP, Dodson P. 2013. Lujiatun psitacosaurids: understanding individual and
taphonomic variation using 3D geometric morphometrics. PLoS ONE 8(8):e69265
DOI 10.1371/journal.pone.0069265.

Hieronymus TL, Witmer LM. 2010. Homology and evolution of avian compound
rhamphothecae. The Auk 127:590–604 DOI 10.1525/auk.2010.09122.

Holliday CM. 2009. New insights into the dinosaur jaw muscle anatomy. The Anatomical Record
292:1246–1265 DOI 10.1002/ar.20982.

Holliday CM, Witmer LM. 2007. Archosaur adductor chamber evolution: Integration of
musculoskeletal and topological criteria in jaw muscle homology. Journal of Morphology
268:457–484 DOI 10.1002/jmor.10524.

Hughes NC, Jell PA. 1992. A statistical/computer-graphic technique for assessing variation in
tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia
25:317–330 DOI 10.1111/j.1502-3931.1992.tb01401.x.

Ji Q, Norell M, Makovicky PJ, Gao K, Ji S, Yuan C. 2003. An early ostrich dinosaur and
implications for ornithomimosaur phylogeny. American Museum Novitates 3420:1–19
DOI 10.1206/0003-0082(2003)420<0001:AEODAI>2.0.CO;2.

Kobayashi Y. 2004. Asian ornithomimosaurs. PhD Thesis, Southern Methodist University.

Kobayashi Y, Barsbold R. 2005. Anatomy of Harpymimus okladnikovi Barsbold and Perle 1984
(Dinosauria; Theropoda) of Mongolia. In: Carpenter K, ed. The carnivorous dinosaurs.
Bloomington: Indiana University Press, 97–126.
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