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ABSTRACT
A set of associated left pedal elements of a sauropod dinosaur from the Upper
Jurassic Morrison Formation in Weston County, Wyoming, is described here. Several
camarasaurids, a nearly complete small brachiosaur, and a small diplodocid have
been found at this locality, but none match the exceptionally large size of the pedal
elements. Next to the associated pedal elements, an isolated astragalus, phalanx and
ungual were found, which match the large metatarsals in size. The elements cannot
be ascribed to diplodocids due to the lack of a ventral process of metatarsal I.
Moreover, the morphology of metatarsal V has a broad proximal end, with a long
and narrow distal shaft, which differs from Camarasaurus. The size of the material and
a medially beveled distal articular surface of metatarsal IV imply an identification as
a brachiosaurid. This is the largest pes ever reported from a sauropod dinosaur and
represents the first confirmed pedal brachiosaur elements from the Late Jurassic of
North America. Furthermore, this brachiosaur material (the pes and the small nearly
complete specimen) is the northernmost occurrence of brachiosaurids in the Morrison
Formation.

Subjects Biogeography, Paleontology
Keywords Jurassic, Morrison Formation, Titanosauriformes, North America, Pes,
Brachiosauridae

INTRODUCTION
The Upper Jurassic (late Oxfordian to early Tithonian) Morrison Formation is famous for
its abundant dinosaur material, particularly sauropods (e.g., Camarasaurus, Diplodocus,
Apatosaurus, and Brachiosaurus; McIntosh, 1990a; McIntosh, 1990b; Foster, 2003; Chure et
al., 2006; Whitlock, 2011; Woodruff & Foster, 2017; Tschopp & Mateus, 2017). Occurrences
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of these sauropods are recorded throughout the Morrison Formation, which outcrops in
eight states, but it remains unclear if the more than 20 known species co-occurred in the
same place or if they were segregated geographically. This is particularly true for species
that are rarely found, such as Dyslocosaurus polyonychius (McIntosh, Coombs & Russell,
1992),Dystrophaeus viaemalae (Cope, 1877;McIntosh, 1997), Suuwassea emilieae (Harris &
Dodson, 2004), Kaatedocus siberi (Tschopp & Mateus, 2013), and Brachiosaurus altithorax
(Riggs, 1903; Riggs, 1904; Bonnan &Wedel, 2004).

The northern exposures of the Morrison Formation are little-known compared to the
ones farther south. In order to test for geographical segregation among sauropods, it is
therefore crucial to assess the taxonomy of any specimen found in the north in as much
detail as possible, no matter how incomplete the specimens are. Herein, we describe a
partial, potentially brachiosaurid pes from the Black Hills in Wyoming. Pedal elements
can be diagnostic at least at family level, sometimes even below that (McIntosh, Coombs
& Russell, 1992; D’Emic, 2012; Mannion et al., 2013; Tschopp et al., 2015). Though found
together with Camarasaurus, there are morphological differences that show the new foot
to be dissimilar to both Camarasaurus specimens from this quarry. Brachiosaurid material
from this site has been reported in the past (Foster, 2003; Bader, Hasiotis & Martin, 2009),
but without a detailed systematic assessment or description. Given that these would be
the northern-most occurrences of brachiosaurids in the Morrison Formation, the herein
described pes adds important data to our understanding of geographical patterning of the
Morrison Formation fauna.

MATERIALS AND METHODS
Material and association
The pes described herein consists of an astragalus (KUVP 142200), metatarsals I to V,
four non-ungual pedal phalanges, one ungual (KUVP 129724), an additional non-ungual
phalanx (KUVP 133862), and a second ungual (KUVP 144767). It was found at the Bobcat
Pit site in Weston County in the Black Hills in north-eastern Wyoming (see Fig. 1A). It has
been mentioned in Bader, Hasiotis & Martin (2009), but never described in detail.

In addition to the elements belonging to the pes described herein (KUVP 129724,
133862, 142200, 144767, Figs. 1B and 1C), Bobcat Pit has produced several specimens
belonging to camarasaurid, diplodocid, and brachiosaurid sauropods (Bader, Hasiotis &
Martin, 2009). During a 1998 expedition led by the University of Kansas, the sauropod
pes was found underneath the tail of the Camarasaurus KUVP 129716, with the phalanges
scattered around the skeleton (Fig. 1C). Metatarsals I, II, III, and IV of KUVP 129724 were
closely associated, whereas metatarsal V and a pedal ungual (likely from digit III) were
found nearby. Three proximal phalanges (field numbers BP013, BP194 and BP208; see
Table 1) were recovered about a meter away from the metatarsals with a proximal phalanx
(field number BP185) slightly further away. Phalanx KUVP 133862 was discovered during
preparation of a large field jacket containing caudal elements of Camarasaurus KUVP
129716. The astragalus KUVP 142200 was collected beneath KUVP 129713. A second large
claw, likely php I-2, was discovered when the site was later reopened by another excavation

Maltese et al. (2018), PeerJ, DOI 10.7717/peerj.5250 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.5250


Wyoming

New Mexico

Colorado

Nebraska

Texas

South Dakota

Kansas

Oklahoma

Montana

Utah

Idaho

Arizona

T

T

T

T
T

T T T

T

H

T

T
H

T

T

New Skeleton

Boundary of 
fossilbearing 
horizon
Boundary of 
excavation

unprepared 
material 10 m

N

1 m

A B

C

KUVP 129714

KUVP 129716

KUVP 129713

KUVP 129724

Figure 1 Location (A) and quarry maps (B, C) of Bobcat Pit inWeston County, Wyoming. The astra-
galus and pes described herein (KUVP 129724, 133862, 142200, 144767) were found associated with the
Camarasaurus skeletons KUVP 129713 and 129716. Quarry maps modified from Bader, Hasiotis & Mar-
tin, 2009: figs 2, 4.

Full-size DOI: 10.7717/peerj.5250/fig-1

crew. This claw was molded and a high fidelity cast was donated to KUVP, bearing the
number KUVP 144767. All elements described herein are referred to the same animal as
KUVP 129724 due to their great size, relative proximity in the quarry, and lack of any
duplication in the elements.

Based on comparisons with articulated camarasaurid and brachiosaurid pedes, we
interpret the phalanges as php I-1, II-1, III-1, and possible IV-1 and V-1, and the unguals
as probably representing unguals I and III. However, given that the specimen was found
disarticulated and incomplete, we refrain from reconstructing a pedal formula.

The elements of KUVP 129724, the astragalus KUVP 142200, the phalanx KUVP 133862,
and the ungual KUVP 144767 were not consistent in size with the Camarasaurus specimen
they were found with (KUVP 129716), nor with a second, larger Camarasaurus specimen
from the same quarry. The Camarasaurus KUVP 129716 was nearly complete and included
almost all the pedal material in articulation. All pedal bones from this specimen are
duplicated in KUVP 129724, so it is certain the large pes does not belong to this specimen.
A larger Camarasaurus (KUVP 129713) was excavated in 1997, approximately 7m adjacent
in the same quarry. However, this individual is also much smaller than the new pes. Finally,
all proximal phalanges display a peculiar bone texture on their proximal articular surfaces.

Maltese et al. (2018), PeerJ, DOI 10.7717/peerj.5250 3/24

https://peerj.com
https://doi.org/10.7717/peerj.5250/fig-1
http://dx.doi.org/10.7717/peerj.5250


Table 1 Measurements of brachiosaurid pes elements from Bobcat Pit (in mm). Catalog numbers are
indicated for the elements not included in KUVP 129724.

Element Length Proximal
width

Distal
width

Field
number

Astragalus (KUVP 142200) 246 370 –
mt I 266 133 167 BP099
mt II 290 163 183 BP098
mt III 332 134* 156 BP097
mt IV 329 154 134* BP145
mt V 269 182 91 BP096
php I-1 101 132 102 BP208
php II-1 100 147 130 BP013
php III-1 81 135 123 BP194
php ?IV-1 80 99 105 BP185
php ?V-1 (KUVP 133862) 52 68 –
Ungual ?III 185 52 BP014

Notes.
*Asterisks mark widths as preserved in elements with damaged bone surfaces.
Abbreviations: mt, metatarsal; php, pedal phalanx.

These surfaces are marked by irregularly undulating grooves generally extending from
the margins towards the center. Such a texture is likely due to remodeling in response to
specific stresses in vivo, supporting the interpretation that all phalanges belong to a single
pes, because all the joints between metatarsals and phalanges seem to be equally affected.
As specimens at this locality generally occur as discreet skeletons rather than a mass of
bonebed elements, these considerations suggest it is very likely the pes is a slightly scattered
assemblage of elements from a single individual.

Excavation and preparation
The pes and astragalus were excavated from a mudstone deposit, with some encrustation
of caliche on the bones, especially around the articular ends. The softer matrix was
removed primarily with X-acto knives and air abrasion utilizing sodium bicarbonate
abrasives. Concretionary material was removed much more slowly employing Aro and
Chicago Pneumatic air scribes and air abrasion with Dolomite (and very seldom glass
beads and Aluminum Oxide) abrasives. All elements were scanned using an Artec Spider
handheld structured light unit and processed using Artec Studio 12 software. Individual
scan files were organized and arranged in Blender software to produce figure images. The
three-dimensional models are available through KUVP for research purposes.

DESCRIPTION AND COMPARISON
Astragalus
The astragalus KUVP 142200 (Fig. 2) is slightly wider transversely than proximodistally tall
and anteroposteriorly long (Table 1). It has neosauropod affinities based on the ascending
process that reaches the posterior margin (Wilson & Sereno, 1998). As in most sauropods,
it is wedge-shaped, with a reduced medial corner. However, it differs from diplodocids
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Figure 2 Single bones of the brachiosaurid pes described herein. Astragalus KUVP 142200 in proximal,
distal, anterior, posterior, medial and lateral view, and metatarsals I to V, phalanges I-1 to IV-1 (KUVP
129724), phalanx V-1 (KUVP 133862), and unguals I (KUVP 144767) and III (KUVP 129724) in plantar,
lateral, dorsal, medial, proximal and distal views. Dorsal surface in proximal and distal views points up-
wards. Scale bar= 10 cm (valid for all bones).

Full-size DOI: 10.7717/peerj.5250/fig-2
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medial

KUVP 142200 Giraffatitan

Camarasaurus Galeamopus

Figure 3 Comparative outline drawings of neosauropod astragali in posterior view. KUVP 142200
(left) is compared to the brachiosaurids Giraffatitan (MB.R.2562, left; traced from Janensch (1961)), the
camarasaurid Camarasaurus (AMNH FARB 5761, right reversed; traced from Osborn & Mook (1921)), and
the diplodocid Galeamopus (SMA 0011, left; traced from Tschopp & Mateus (2017)). Note the expanded
shelf with a distinctly convex margin below the fibular facet in the diplodocid Galeamopus (grey arrow).
Drawings scaled to equal transverse width in order to highlight shape differences.

Full-size DOI: 10.7717/peerj.5250/fig-3

and camarasaurids by a more pentagonal instead of subtriangular outline in posterior view
(Fig. 3). The extension of the medial corner is similar to the brachiosauridsGiraffatitan and
Lusotitan, which have a relatively shorter and more rounded medial end than Janenschia
and Camarasaurus (Fig. 3; Janensch, 1961; Mannion et al., 2013; Tschopp et al., 2015). The
lateral surface of the astragalus KUVP 142200 received the fibula. It faces laterally, and
has no distinct bony shelf that would have supported the fibula, unlike the condition in
diplodocids (Whitlock, 2011; Tschopp, Mateus & Benson, 2015).

Metatarsals
The pes KUVP 129724 (Fig. 2) has the typical shape of a eusauropod pes, having a spreading,
asymmetrical metatarsus with an entaxonic structure, wheremt I is themost robust element
(Table 1; Coombs Jr, 1975; Cooper, 1984; McIntosh, 1990a; Farlow, 1992; Upchurch, 1998;
Wilson & Sereno, 1998; Bonnan, 2005).

The metatarsals (Fig. 2) are generally hour-glass shaped with transversely and
dorsoplantarly expanded proximal and distal articular surfaces. As is typical for
eusauropods, the mt V differs from the rest in having a much more widely expanded
proximal end compared to the distal one, resulting in a paddle-like shape (Bonnan, 2005).
The distal articular surfaces bear distinct condyles in mt I, which gradually decrease in size
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KUVP 129724 Vouivria Galeamopus

dorsal

plantar

lateral

A B C

D E F

Figure 4 Comparative outline drawings of neosauropodmetatarsals I in proximal (A–C) and
dorsal view (D–F). KUVP 129724 (A, D; left metatarsal) is compared with the brachiosaurid Vouivria
MNHN.F.1934.6 DAM 12 (B, E; left metatarsal; traced fromMannion, Allain & Moine, 2017) and the
flagellicaudatan Galeamopus SMA 0011 (C, F; left metatarsal; traced from Tschopp & Mateus, 2017).
Note the pointed dorsolateral corner of the proximal articular surface in the brachiosaurids (arrows).
Drawings scaled to equal transverse width (A–C) and proximodistal length (D–F) in order to highlight
shape differences.

Full-size DOI: 10.7717/peerj.5250/fig-4

and distinctiveness towardsmtVwith its gently rounded surface without any differentiation
into separate condyles.

The metatarsals of KUVP 129724 can be distinguished from diplodocid ones by the
absence of a well-developed posterolateral process on the distal articular surfaces of mt I
and II, and from flagellicaudatan metatarsals more generally by the lack of distinct rugose
ridges close to the dorsolateral edges (McIntosh, Coombs & Russell, 1992; Harris, 2007;
Whitlock, 2011; Tschopp, Mateus & Benson, 2015).

Metatarsal I (Fig. 2) has a subrectangular to D-shaped proximal articular surface,
with a concave lateral and a convex medial edge. The surface is dorsoplantarly higher
than transversely wide. The dorsolateral corner of the proximal articular surface bears
a distinct, tapered projection, as occurs in the mt I of the early brachiosaurid Vouivria
(Fig. 4;Mannion, Allain & Moine, 2017). The proximal articular surface is strongly beveled
compared to the long axis of the shaft, whereas the distal articular surface is approximately
perpendicular to it. The distal articular surface is usually similarly beveled as the proximal
one in flagellicaudatans (Fig. 4; Janensch, 1961: Beilagen P, R;McIntosh, Coombs & Russell,
1992: Fig. 3; Harris, 2007: Fig. 8; Tschopp & Mateus, 2017: Fig. 75).

Metatarsal II (Fig. 2) is slightly longer thanmt I (Table 1). It has a subtrapezoid proximal
articular surface with an expanded dorsolateral corner. Both the medial and the lateral
edges are dorsoplantarly straight in proximal view (Fig. 5A). As such, it differs from many
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Figure 5 Comparative outline drawings of macronarian metatarsals II in proximal (A–C) and dor-
sal view (D–F). KUVP 129724 (A, D; left metatarsal) is compared with GiraffatitanMB.R.2181 (B, E;
left metatarsal; traced from Janensch (1961)) and Camarasaurus GMNH-PV 101 (C, F; right metatarsal
reversed; traced fromMcIntosh, 1997). Drawings scaled to equal dorsoplantar height (A–C) and proxi-
modistal length (D–F) in order to highlight shape differences.

Full-size DOI: 10.7717/peerj.5250/fig-5

diplodocids, in which medial and lateral edges are concave (Tschopp, Mateus & Benson,
2015; Tschopp & Mateus, 2017), as well as from the rather subquadrangular shape of the
proximal articular surface of mt II in Camarasaurus (Fig. 5A; Tschopp et al., 2015). It most
resembles the proximal outline of mt II of Giraffatitan brancai (Fig. 5A), although these
also have slightly concave medial and lateral edges (Janensch, 1961; MB.R.2268, E Tschopp,
pers. obs., 2014). The shaft of mt II of KUVP 129724 is stout, but less so than in mt I.

Metatarsal III (Fig. 2) is the most slender and longest of the five elements (Table 1).
The proximal articular surface was damaged during excavation. What remains of the
proximal articular surface indicates that the surface had a rhomboid to slightly sheared
subrectangular outline, probably similar to Ligabuesaurus (D’Emic, Wilson & Williamson,
2011). It is dorsoplantarly higher than transversely wide. The shaft expands considerably
transversely towards the proximal and distal ends. The dorsal surface of the shaft is relatively
flat and straight, whereas the plantar surface is concave in lateral view. The distal articular
surface has distinct medial and lateral condyles.

Metatarsal IV (Fig. 2) is slightly more robust than mt III. It has a subtriangular proximal
articular surface (Fig. 6A), which is different from the L-shaped one of Camarasaurus
(Fig. 6A; Tschopp et al., 2015), and the kidney-shaped surface of the putative brachiosaurid
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KUVP 129724 Camarasaurus Europasaurus
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Figure 6 Comparative outline drawings of macronarian metatarsals IV in proximal (A–C) and dorsal
view (D–F). KUVP 129724 (A, D; left metatarsal) is compared with Camarasaurus SMA 0002 (B, E; right
metatarsal reversed; traced from Tschopp et al., 2015) and Europasaurus DFMMh-FV886-3 (C, F; right
metatarsal reversed; traced from photo by E Tschopp from 2014). Drawings scaled to equal dorsoplantar
height (A–C) and proximodistal length (D–F) in order to highlight shape differences.

Full-size DOI: 10.7717/peerj.5250/fig-6

Europasaurus (Fig. 6A; DFMMh FV886.3; E Tschopp, pers. obs., 2014). The distal articular
surface is beveled medially, so that the medial side of the bone is shorter than the lateral
one. Such a beveling has been identified as a synapomorphy for Brachiosauridae by D’Emic
(2012) and Mannion et al. (2013).

Metatarsal V (Fig. 2) has a widely expanded proximal end, which strongly tapers into
a long slender shaft, similar to the brachiosaurids Giraffatitan brancai (Janensch, 1961)
and Sonorasaurus (D’Emic, Foreman & Jud, 2016). In Janenschia and Camarasaurus,
the expansion is wide too, but it extends further distally along the shaft (Fig. 7;
Bonaparte, Heinrich & Wild, 2000; Tschopp et al., 2015), whereas in many diplodocids,
the proximal expansion is similarly developed as in KUVP 129724 (Fig. 7; Janensch, 1961;
Tschopp & Mateus, 2017). The distal articular surface of mt V of KUVP 129724 is only
weakly transversely expanded compared to minimum shaft width, which is similar to
Camarasaurus, but different from flagellicaudatans (Janensch, 1961; Remes, 2009; Tschopp
et al., 2015; Tschopp & Mateus, 2017), see Table S1 and Fig. 7 for mt V proportions).
The distal articular surface of mt V of KUVP 129724 is less expanded in relation to
proximodistal length than the metatarsals V of both Camarasaurus and diplodocids, and
are instead comparable to the somphospondylians Tastavinsaurus and MUCPv-1533
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Full-size DOI: 10.7717/peerj.5250/fig-7

(Canudo, Royo-Torres & Cuenca-Bescós, 2008; González Riga, Calvo & Porfiri, 2008) and
the brachiosaurids Cedarosaurus and Sonorasaurus (Fig. 7; D’Emic, 2013; D’Emic, Foreman
& Jud, 2016).

Pedal phalanges
The phalanges (Fig. 2) are generally wider than long (Table 1) and have distinctly expanded
proximal articular surfaces and no collateral ligament pits, which is typical for eusauropods
(Upchurch, 1998; Wilson & Sereno, 1998; Wilson, 2002; Upchurch, Barrett & Dodson, 2004).
In php II-1, III-1, and IV-1, also the distal articular surfaces are expanded transversely.

Phalanx php I-1 (Fig. 2) is just slightly wider than dorsoplantarly high, both proximally
and distally, resembling the proportions of Giraffatitan (Janensch, 1961) and diplodocids
(Tschopp & Mateus, 2017), but not Camarasaurus (Tschopp et al., 2015). The proximal
articular surface lacks the plantar ‘‘lip’’ typical for diplodocids (Upchurch, Tomida &
Barrett, 2004;Whitlock, 2011; Tschopp, Mateus & Benson, 2015). The distal articular surface
projects slightly dorsomedially, resulting in a distinctly concave medial edge. This corner
is equally developed in Giraffatitan (Janensch, 1961) and Sonorasaurus (D’Emic, Foreman
& Jud, 2016), but no projection occurs in any other sauropod taxon known to us (Fig. 8).

The putative php II-1 and III-1 of KUVP 129724 (Fig. 2) are relatively short, compared
to Giraffatitan (Janensch, 1961), and more similar in proportion to Camarasaurus (Tschopp
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KUVP 129724

Sonorasaurus

Giraffatitan

Camarasaurus

lateral distal

Figure 8 Comparative outline drawings of macronarian pedal phalanges I-1 in lateral and distal view.
KUVP 129724 (left) is compared with the brachiosaurids Sonorasaurus (ASDM 500, right reversed; traced
from D’Emic, Foreman & Jud, 2016), and Giraffatitan (MB.R.2287, left; Janensch, 1961), and the cama-
rasaurid Camarasaurus (SMA 0002, right reversed; traced from Tschopp et al., 2015). Note the straight to
concave medial margin of the distal articular surface in the brachiosaurid phalanges, and their elongated
shape in lateral view. No lateral view was available from Giraffatitan. Drawings scaled to equal dorsoplan-
tar height in order to highlight shape differences.

Full-size DOI: 10.7717/peerj.5250/fig-8

et al., 2015). However, the distal condyles of php III-1 of KUVP 129724 are less distinct in
dorsal view than in Camarasaurus (Tschopp et al., 2015), and resemble more the state in
Giraffatitan (Janensch, 1961).

The other two non-ungual phalanges do not provide any particular morphological
information for comparative purposes. Phalanx IV-1 has a very irregular dorsal surface
(Fig. 2). The smallest element (KUVP 133862) is a nubbin-like bone typical for the reduced
terminal, non-ungual phalanges of digits IV and V of most neosauropods (Bonnan, 2005).
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KUVP 144767 Sonorasaurus Giraffatitan Camarasaurus

ungual I

ungual III

KUVP 129724

Figure 9 Comparative outline drawings of macronarian pedal unguals I and III in lateral view. KUVP
129724 and 144767 (left) are compared with the brachiosaurids Sonorasaurus (ASDM 500, right reversed;
traced from D’Emic, Foreman & Jud, 2016), and Giraffatitan (MB.R. XX 2, left; Janensch, 1961), and the
camarasaurid Camarasaurus (SMA 0002, right reversed; traced from Tschopp et al., 2015). No ungual III
is known from Sonorasaurus and Giraffatitan. Drawings of unguals I scaled to equal dorsoplantar height
in order to highlight shape differences; drawing of unguals III are scaled proportionally to their respective
ungual I to show relative sizes of the unguals in the pedes of the included taxa.

Full-size DOI: 10.7717/peerj.5250/fig-9

Pedal unguals
Two unguals were recovered with the pedal elements (Fig. 2). The larger of the two (KUVP
144767; interpreted to be php I-2 herein) has the typical sickle-shape of eusauropod unguals
(Wilson & Sereno, 1998), whereas the smaller ungual (part of KUVP 129724; interpreted
to be php III-4) is rather straight (Fig. 9). The high dorsal projection of the proximal
articular surface is however also present in Giraffatitan (Janensch, 1961) and Sonorasaurus
(D’Emic, Foreman & Jud, 2016). The proximal and distal outlines resemble Giraffatitan
(Janensch, 1961). The scalene cross-section of the unguals differs from the isosceles shape
of Camarasaurus (Fig. 9; Tschopp et al., 2015).

DISCUSSION
Systematics
The morphological comparisons lead to an identification of the pes as belonging to
Titanosauriformes, and more specifically Brachiosauridae, in particular due to the
orientation of the distal articular surface of mt IV that was recovered as a synapomorphy
for the clade in two independent phylogenetic analyses (D’Emic, 2012; Mannion et al.,
2013). In addition, the elongation of mt V is most similar to titanosauriform taxa sampled
herein (see Fig. 7 and Table S1); Camarasaurus has more widely expanded proximal and
distal articular surfaces relative to proximodistal length, whereas diplodocids all have
more widely expanded distal articular surfaces. The morphology of the phalanx php I-1,
with its rounded proximal articular surface and the dorsomedial projection on the distal
articular surface strongly suggest a close affinity with the brachiosaurids Giraffatitan and
Sonorasaurus. Finally, the relatively straight ungual php III-3 of KUVP 129724 resembles
the latter two taxa most and its scalene triangle cross section differs substantially from the
isosceles triangle cross section ofCamarasaurusKUVP 129716 (AMaltese, pers. obs., 2018).
This shape rarely occurs outside of Brachiosauridae. The features distinguishing KUVP
129724 fromGiraffatitan are most likely representing differences at a lower taxonomic level
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within Brachiosauridae, given that many of them are more variable among eusauropods
than the traits mentioned above.

The only currently known titanosauriform taxon from the Morrison Formation is
Brachiosaurus altithorax. The type locality for this species is close to the town of Grand
Junction, Colorado (Riggs, 1903; Riggs, 1904; Fig. 3), and several other localities have been
reported to have produced brachiosaurid material in the meantime (Jensen, 1987; Curtice,
Stadtman & Curtice, 1996; Carpenter & Tidwell, 1998; Bonnan &Wedel, 2004; Taylor,
2009; Bader, Hasiotis & Martin, 2009). However, the absolute number of brachiosaurid
specimens from the Morrison Formation is still low relative to other sauropods, and none
of these specimens preserve any bones from the lower hindleg (Taylor, 2009), so that no
overlapping material of Brachiosaurus exists with which the pes described herein could
be compared. Therefore, even though attribution to Brachiosaurus seems reasonable, we
cautiously refer KUVP 129724, 133862, 142200, and KUVP 144767 to Brachiosauridae
indet.

The largest neosauropod pes
Although the taxonomic position of the new specimen cannot be determined for certain,
it does represent a dinosaur of enormous proportions. Indeed, the metatarsals of KUVP
129724 are slightly larger than the largest ones of Giraffatitan, and they are considerably
larger than those of Dreadnoughtus, which was reported to be one of the largest sauropods
ever found (Table 2; Lacovara et al., 2014). The only other sauropod pes known so far that is
close to these proportions is from the non-neosauropod eusauropodTuriasaurus riodevensis
from the Late Jurassic of Spain (Royo-Torres, Cobos & Alcalá, 2006; R Royo-Torres, pers.
commm., 2018).

Based on the hindlimb proportions of the brachiosaurid Vouivria (Mannion, Allain &
Moine, 2017), we estimated a femur length of 2071 mm and a tibia length of 1,220 mm
for KUVP 129724. This is slightly larger (2%) than the type specimen of Brachiosaurus
altithorax (2,030 mm femur length; Riggs, 1903). Assuming that the cartilage caps on the
proximal and distal articular surfaces of the longbones would increase their length by
approximately 10% (Schwarz, Wings & Meyer, 2007; Bonnan et al., 2010; Holliday et al.,
2010), this would result in a hip height of approximately 3.99 m. Although this appears to
be the largest pes reported to date, traces and other incomplete body fossils show that the
pes described herein does not represent the maximum body size of sauropod dinosaurs.
Some of the largest sauropods such as Argentinosaurus or Patagotitan do not preserve pedal
material but have femur lengths that considerably exceed our estimate for KUVP 129724
(Argentinosaurus: 2,557 mm, estimated based on incomplete femur; Patagotitan: 2,360
mm; Mazzetta, Christiansen & Fariña, 2004; Carballido et al., 2017). The largest sauropod
tracks from the Broome Sandstone of Australia are >1,100 mm in diameter, indicating
a similar hip height as calculated for KUVP 129724 herein (>3.41 m; Salisbury et al.,
2016). However, all these finds are from the Cretaceous, so that the type specimen of
Brachiosaurus altithorax and the pedal elements described herein still represent the largest
individual specimens found in the Morrison Formation, only matched in size during the
same period by Turiasaurus from Spain and Giraffatitan from Tanzania. Given that the
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Table 2 Sauropodmetatarsal proximodistal lengths of the largest specimens (to our knowledge) of selected species (in mm).Ordered after size within major sauro-
pod subclades. Asterisks mark estimated measurements. Specimen numbers and left (L) and right (R) pedes are indicated, and specified with the single measurements
where metatarsals of a single pes have different specimen numbers.

Non-neosauropod Eusauropoda

Turiasaurus Jobaria Omeisaurus Cetiosauriscus Omeisaurus Shunosaurus

riodevensis tiguidensis tianfuensis stewarti tianfuensis lii

CPT; L MNN TIG4 ZDM T5704; R NHMUK R3078; L ZDM T5701; L ZDM T5402; L

Metatarsal I 230 (CPT-1318) 165 152 192 110

Metatarsal II 300 (CPT-1309) 215 204 202 150

Metatarsal III 300 (CPT-3967) 300 212 180

Metatarsal IV 280 (CPT-1268) 207

Metatarsal V 245 (CPT-3965) 187

Source R Royo-Torres,
pers. comm., 2018

Sereno et al. (1999) He, Li & Cai (1988) E Tschopp,
pers. obs., 2011

He, Li & Cai (1988) Zhang (1988)

Diplodocoidea

?Barosaurus Apatosaurus Diplodocus Suuwassea Galeamopus Dyslocosaurus

lentus louisae carnegii emilieae pabsti polyonychius

?CM 11984; L CM 3018; L CM 94; L ANS 21122; R SMA 0011; L AC 663; L

Metatarsal I 208 195 163 130.7 124 123

Metatarsal II 217 213 191 154.3 153 140

Metatarsal III 242 236 213 164 171

Metatarsal IV 239 236 206 172.8 180

Metatarsal V 231 160 178

Source McIntosh (2005) Gilmore (1936) Hatcher (1901);
Mazzetta, Christiansen & Fariña (2004)

Harris (2007) Tschopp & Mateus (2017) McIntosh, Coombs & Russell (1992)

Non-titanosauriform Macronaria

Camarasaurus Camarasaurus Camarasaurus Janenschia Camarasaurus Camarasaurus

supremus grandis grandis robusta sp. lentus

AMNH FARB 5761; R GMNH-PV 101; R YPM VP.001905; L SMNS 12144; R SMA 0002; R CM 11338; L

Metatarsal I 172 133 140 113 70

Metatarsal II 193 174 160 134 90

Metatarsal III 225 223 182 160 133 88

Metatarsal IV 206 165 150 112 80

Metatarsal V 166 125 115 108 60

Source Osborn & Mook (1921) McIntosh et al. (1996) E Tschopp & OMateus,
pers. obs., 2014

Fraas (1908);
J Nair, pers. comm., 2015

Tschopp et al. (2015) Gilmore (1925)

(continued on next page)
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Table 2 (continued)
Element Length Proximal

width
Distal
width

Field
number

Brachiosauridae

Brachiosauridae Giraffatitan Sonorasaurus Vouivria Cedarosaurus Venenosaurus

indet. brancai thompsoni damparisensis weiskopfae dicrocei

KUVP 129724; L MB.R.2181 ASDM 500; R MNHN.F.1934.6; L DMNS 39045; DMNS 40932; R

Metatarsal I 266 194 175 165 128

Metatarsal II 290 276 242 205

Metatarsal III 332 234 172

Metatarsal IV 329 261 247 180

Metatarsal V 269 221

Source This study Paul (1988) D’Emic, Foreman & Jud (2016) Mannion, Allain & Moine (2017) AMaltese,
pers. obs., 2012

A Maltese,
pers. obs., 2012

Somphospondyli

Dreadnoughtus Alamosaurus Tastavinsaurus Ligabuesaurus Notocolossus Opisthocoelicaudia

schrani sanjuanensis sanzi leanzai gonzalezparejasi skarzynskii

MPM-PV 1156; R NMMNH P-49967; R MPZ 99/9; R MCF-PHV-233; R UNCUYO-LD 302; R ZPAL MgD-I/48; R

Metatarsal I 210 195 162 140 164 150

Metatarsal II 250 245 190 190 185 180

Metatarsal III 270 230 220 197 200

Metatarsal IV 291 212 220 218 180

Metatarsal V 281 180 180 196 140

Source Lacovara et al. (2014) D’Emic, Wilson & Williamson (2011) Canudo, Royo-Torres & Cuenca-Bescós (2008) Bonaparte, Riga & Apesteguía (2006) González Riga et al. (2016) Borsuk-Bialynicka (1977)
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Figure 10 Map of occurrences of Brachiosauridae in the Upper Jurassic Morrison Formation. The lo-
cality of the pes described herein (1) and the type locality of Brachiosaurus altithorax (5) are highlighted
in red. The gray area indicates the distribution of the Morrison Formation. 1, Bobcat Pit, Weston County,
WY; 2, Freezeout Hills general, Carbon Co., WY; 3, Reed’s Quarry 13, Albany Co., WY; 4, Jensen/Jensen
Quarry, Uintah Co., UT; 5, Fruita Paleontological Area general, Mesa Co., CO; 6, Riggs Quarry 13, Mesa
Co., CO; 7, Dry Mesa Quarry, Mesa Co., CO; 8, Potter Creek Quarry, Montrose Co., CO; 9, Felch Quarry
1, Fremont Co., CO; 10, Kenton Pit 1, Cimarron Co., OK. Modified from Bonnan &Wedel (2004: fig. 2).

Full-size DOI: 10.7717/peerj.5250/fig-10

type specimen of Brachiosaurus altithorax was found in western Colorado (Riggs, 1904)
and the pes described herein in northeastern Wyoming, this shows that sauropods with
very large body size were distributed across wide ranges in the Morrison Formation.

Brachiosaurid distribution in the Late Jurassic of North America
Our detailed description and systematic assessment of the pedal elements KUVP 129724,
133862, 142200, and 144767 confirms the presence of large-sized brachiosaurids in the
Upper Jurassic Morrison Formation of the Black Hills. Together with the small-sized
brachiosaur mentioned in Bader, Hasiotis & Martin (2009), this pes is the northern-most
occurrence of this taxon reported so far in the Late Jurassic of North America (Fig. 10). If
the material described herein belonged to the currently only known Late Jurassic North
American species Brachiosaurus altithorax, this taxon would cover a range of latitudes
across the Morrison Formation. Brachiosaurids, like camarasaurids, were sauropods with
broad-crowned teeth, which could process relatively tougher vegetation than the peg-
like diplodocoid teeth (Janensch, 1935; Calvo, 1994; Wiersma & Sander, 2017). It would,
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therefore, seem reasonable to assume they could cover a wide range of vegetational zones.
Camarasaurids are also known to (seasonally) migrate (Fricke, Hencecroth & Hoerner,
2011), and Camarasaurus specimens have been found from New Mexico to Montana
(Ikejiri, 2005; Woodruff & Foster, 2017). Given the similarities in tooth crown morphology
in the two genera, brachiosaurs could have displayed similar geographical spreading and/or
migrational habits as camarasaurids. However, additional information will be needed to
assess species diversity within brachiosaurids of theMorrison Formation, and to understand
in more detail how their distribution, the climate, and vegetation changed throughout the
time of deposition of the formation. This is outside of the scope of the current study.

CONCLUSION
We present the first brachiosaurid pedal elements from the Late Jurassic of North America.
The pes represents the largest sauropod pes described to date. Size estimations scaled due
to lack of anatomical overlap indicate that these pedal elements belonged to a brachiosaur
slightly larger than the holotype of Brachiosaurus altithorax. Moreover, this pes and a small
specimen of a brachiosaur from the same quarry represent the northernmost occurrences
of the taxon in the Morrison Formation.
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