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ABSTRACT
The pterosaurs first appear in the fossil record in the middle of the Late Triassic.
Their earliest representatives are known from Northern Hemisphere localities but,
by the end of the Jurassic Period, this clade of flying reptiles achieved a global
distribution, as well as high levels of diversity and disparity. Our understanding of
early pterosaur evolution and the fundamental interrelationships within Pterosauria
has improved dramatically in recent decades. However, there is still debate about
how the various pterosaur subgroups relate to one another and about which taxa
comprise these. Many recent phylogenetic analyses, while sampling well from among
the known Triassic and Early Jurassic pterosaurs, have not included many
non-pterosaurian ornithodirans or other avemetatarsalians. Given the close
relationship between these groups of archosaurs, the omission of other ornithodirans
and avemetatarsalians has the potential to adversely affect the results of phylogenetic
analyses, in terms of character optimisation and ingroup relationships recovered.
This study has addressed this issue and tests the relationships between the early
diverging pterosaur taxa following the addition of avemetatarsalian taxa and
anatomical characters to an existing early pterosaur dataset. This study has, for the
first time, included taxa that represent the aphanosaurs, lagerpetids, silesaurids
and dinosaurs, in addition to early pterosaurs. Anatomical characters used in other
recent studies of archosaurs and early dinosaurs have also been incorporated.
By expanding the outgroup taxa and anatomical character coverage in this pterosaur
dataset, better resolution between the taxa within certain early pterosaur subclades
has been achieved and stronger support for some existing clades has been
found; other purported clades of early pterosaurs have not been found in this
analysis—for example there is no support for a monophyletic Eopterosauria or
Eudimorphodontidae. Further support has been found for a sister-taxon relationship
between Peteinosaurus zambelli and Macronychoptera, a clade here named
Zambellisauria (clade nov.), as well as for a monophyletic and early diverging
Preondactylia. Some analyses also support the existence of a clade that falls as
sister-taxon to the zambellisaurs, here named Caviramidae (clade nov.).
Furthermore, some support has been found for a monophyletic Austriadraconidae at
the base of Pterosauria. Somewhat surprisingly, Lagerpetidae is recovered outside of
Ornithodira sensu stricto, meaning that, based upon current definitions at least,
pterosaurs fall within Dinosauromorpha in this analysis. However, fundamental
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ornithodiran interrelationships were not the focus of this study and this particular
result should be treated with caution for now. However, these results do further
highlight the need for broader taxon and character sampling in phylogenetic
analyses, and the effects of outgroup choice on determining ingroup relationships.

Subjects Evolutionary Studies, Paleontology, Taxonomy, Zoology
Keywords Pterosauria, Ornithodira, Phylogeny, Cladistics, Taxonomy, Systematics,
Triassic Period, Mesozoic Era, Evolution, Powered flight

INTRODUCTION
Pterosaurs were a diverse, disparate and highly specialised group of terrestrial reptiles
that represent the oldest set of vertebrates currently understood to have achieved powered
flight (Benton, 1985; Unwin, 2003; Andres, 2006; Barrett et al., 2008; Andres, Clark &
Xu, 2014; Britt et al., 2018). Originating at some time in either the Early or Middle Triassic
(Nesbitt et al., 2017), and first appearing in the fossil record in the middle of the Late
Triassic (Barrett et al., 2008; Bennett, 2013), the pterosaurs went on to thrive throughout
the Mesozoic Era as one of the dominant groups of land animals, lasting right up until the
very end of the Cretaceous Period and achieving a global distribution (Unwin, 2003;
Dalla Vecchia, 2004; Unwin & Martill, 2007; Barrett et al., 2008; Kellner et al., 2019).

The earliest pterosaurs were generally small bodied animals, with toothed upper and
lower jaws and usually an elongated tail (Padian, 1984, 2008a, 2008b; Hone & Benton,
2007; Bennett, 2007, 2014; Kellner, 2015; Britt et al., 2018; Dalla Vecchia, 2010, 2013, 2019).
In addition, all known early pterosaurs appear to be fully capable of powered flight and, as
yet, no transitional non-flying pterosaur taxa are known (though some specimens have
been suggested to be exactly that—Huene, 1914). Later pterosaurs went on to achieve a
broader, truly global, geographic range, as well as much larger body sizes and much
more unusual and often unique features of anatomy (Unwin & Bakhurina, 1994, 1995;
Unwin, 2001, 2003; Dalla Vecchia et al., 2002; Barrett et al., 2008; Hone et al., 2012;
Upchurch et al., 2015; Kellner et al., 2019).

Within Pterosauria, which currently comprises the same set of taxa as the clade
Pterosauromorpha (see, Nesbitt, Desojo & Irmis, 2013), there exists a number of distinct
subgroups, many of which were already present in the Late Triassic. The many
proposed subgroups within Pterosauria include the Eopterosauria, which is believed to
comprise Preondactylia and Eudimorphodontoidea (Andres, Clark & Xu, 2014), and
Macronychoptera, which comprises, inter alia, Dimorphodontidae, Anurognathidae and
Pterodactyloidea (Britt et al., 2018; Dalla Vecchia, 2019) (Figs. 1A–1C).

The recent phylogenetic analysis by Dalla Vecchia (2019) suggested that the earliest
diverging members of Pterosauria that were considered by that study were the
Preondactylia—comprising Preondactylus buffarinii and Austriadactylus cristatus.
This pairing of Preondactylus buffarinii and Austriadactylus cristatus concurs with the
findings of Andres, Clark & Xu (2014). However, the results of these two analyses differ in
that in the trees produced by Andres, Clark & Xu (2014), the Preondactylia form the
sister-taxon to the clade comprising Peteinosaurus zambellii and Eudimorphodontoidea,
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a topology also supported by Upchurch et al. (2015). These clades together form
Eopterosauria, a group not supported in the analysis by Britt et al. (2018) or Dalla Vecchia
(2019). Equally, in the analysis by Dalla Vecchia (2019) no support was found for the clade
Eudimorphodontidae (sensu Dalla Vecchia, 2014). In this respect, the analyses of Dalla
Vecchia (2019) and Britt et al. (2018) also differ from each other, despite using the same
dataset and having only a very small number of differences in terms of the operational taxa
included (see Fig. 1). This just highlights the relative instability of some of the early
branching pterosaur taxa in phylogenetic analyses. Dalla Vecchia (2019) even admits that
Bremer support values for many of the clades in his analysis were low.

A monophyletic Macronychoptera was found to be in a sister-taxa relationship with
Peteinosaurus zambellii in the analysis of Dalla Vecchia (2019), and this unnamed clade
was found as sister-taxon to another unnamed group of pterosaurs containing a number of
other Late Triassic forms (Fig. 1B). Unlike in the analysis by Andres, Clark & Xu (2014),
Dalla Vecchia recovers Eudimorphodon ranzii within Lonchognatha, and finds no
evidence for a close relationship between Eudimorphodon ranzii, Carniadactylus rosenfeldi
and Arcticodactylus cromptonellus (contra Andres, Clark & Xu, 2014) (Figs. 1A and 1B).
Similarly, a close affinity between Eudimorphodon ranzii and Raeticodactylidae—which
comprises Raeticodactylus filisurensis and Caviramus schesaplanensis according to Andres,
Clark & Xu (2014)—was found by Britt et al. (2018) but not Dalla Vecchia (2019)

Figure 1 Previous recent hypotheses of early pterosaur relationships. (A) The results of the reduced
taxon analysis by Britt et al. (2018); (B) the results of the analysis by Dalla Vecchia (2019); (C) the results
of the analysis by Andres, Clark & Xu (2014). Full-size DOI: 10.7717/peerj.9604/fig-1
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(Figs. 1A–1C). In the reduced strict consensus tree produced in the analysis by Britt et al.
(2018), the earliest diverging pterosaur clade contained a pair of taxa—Austriadraco
dallavecchiai and Arcticodactylus cromptonellus—a similar result to that obtained by
Kellner (2015), who named this clade Austriadraconidae (see also, Dalla Vecchia, 2009a,
2009b). But again, this result differs from the analysis of both Upchurch et al. (2015)
and Dalla Vecchia (2019). In an analysis by Codorniú et al. (2016), the results vary even
more dramatically at the base of Pterosauira, with Anurognathidae diverging earlier within
the trees recovered than either Eudimorphodon ranzii or Austriadactylus cristatus.
Codorniú et al. (2016) also found evidence for a possible a Dimorphodon macronyx +
Peteinosaurus zambelli sister-taxon relationship, which was not recovered in any of the
other analyses discussed above.

It is clear from all of the differences observed between the various analyses discussed
above that much work still needs to be done to resolve the interrelationships between
the many early pterosaur taxa currently known. The ingroup relationships of the various
early pterosaur clades are unstable, as are the interrelationships between clades. However,
in all the studies discussed above, there is a potential problem with the analyses in that
they perhaps do not include adequate sampling from without Pterosauria—that is, the lack
of informative anatomical information from certain key outgroup taxa could be causing
the poor resolution within Pterosauria.

In the analysis of Britt et al. (2018), and of other studies that utilised the same data
(Codorniú et al., 2016; Dalla Vecchia, 2019), the only other ornithodiran taxa to be
included in the analysis as an outgroup taxon is the unusual hypercarnivoreHerrerasaurus
ischigualastensis. The taxon was presumably chosen as a representative of the Dinosauria,
a clade supposedly closely related to Pterosauria. However, H. ischigualastensis is not
necessarily the best representative of the ‘basal’ dinosaurian condition, being a very
large predator that is quite distinct in terms of its anatomy to many, if not most, of the
earliest dinosaurs (see, Brusatte et al., 2010; Baron, Norman & Barrett, 2017a). In fact,
the position of this taxon has proved to be highly unstable in recent times (see, Baron,
Norman & Barrett, 2017b; Langer et al., 2017; Lee et al., 2019; Pacheco et al., 2019) and
belongs to a wider clade of Triassic hypercarnivores that may or may not fall within
Dinosauria at all (see, Baron & Williams, 2018). Moreover, in the analyses by Britt et al.
(2018) and Dalla Vecchia (2019), H. ischigualastensis is recovered as the sister taxon to the
rauisuchid paracrocodylomorph Postosuchus kirkpatricki, which might suggest that
character optimisation outside of the pterosaurian lineage is somewhat confused and
misleading. If the character distribution among taxa in this analysis was fairly reflective of
the topology expected to be found for these taxa, H. ischigualastensis should, according
to almost all modern phylogenetic hypotheses, fall closer to the pterosaurs than to
Postosuchus kirkpatricki. This result, while not the key focus of any of the studies that
recovered it, perhaps should have raised alarm bells in terms of what the data for taxa
immediately at the base of and just outside of Pterosauria was like. The purpose of
outgroup taxa is to reflect, as best as is possible, the ‘basal’ condition for the ingroup clade
being studied—it is arguable that this is not the case in the analyses by Britt et al. (2018)
and Dalla Vecchia (2019) and that these analyses fall short in this key respect.
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This omission of important anatomical data may, in turn, be having a substantial adverse
effect on the resolution of the ingroup relationships among the numerous pterosaur taxa
included in the studies.

Also missing from the datasets is a range of other close pterosaur relatives, the
anatomical characteristics of which are potentially even more helpful in determining
the ancestral state of Pterosauria than H. ischigualastensis is when considered alone.
Silesaurids, who along with dinosaurs form the dinosauromorph clade Dracohors (Cau,
2018) are omitted, as are the dinosauriforms known as the lagerpetids. Similarly, looking
the other way along this particular branch of the archosaur group, the aphanosaurs, a
group believed to form the sister-taxon to the ornithodirans (see Nesbitt et al., 2017),
are also not included. All of the anatomical information that could be provided by the
inclusion of these taxa is lost from the early pterosaur phylogenetic analyses and ought to
be corrected for.

Other studies of early pterosaur interrelationships have similar shortcomings in
terms of the outgroup taxa sampling. The analysis of Unwin (2003), for example, only
used a single outgroup taxon in the form of the non-archosaurian archosauriform
Euparkeria capensis. The analyses of Kellner (2003) had three outgroup taxa—
Ornithosuchus longidens,H. ischigualastensis and Scleromochlus taylori. Of these, only one,
H. ischigualastensis, is an ornithodiran. While Scleromochlus taylori was considered as
a possible close relative of pterosaurs at the time Kellner (2003) was published, subsequent
work on this taxon has demonstrated that it is more likely an archosauriform
belonging to the clade Doswelliidae (see, Bennett, 2020). Finally, in the analyses of
Andres, Clark & Xu (2014), the chosen outgroups were the non-avemetatarsalian
archosauromorphs Euparkeria capensis and O. longidens, and the putative dinosaur
H. ischigualastensis.

This study aims to test what effect, if any, the omission of such close pterosaur relatives
from analyses has had on the overall topology within Pterosauria by using a modified
version of the recent dataset of Britt et al. (2018). Many of the disagreements between the
recent results of Andres, Clark & Xu (2014), Upchurch et al. (2015), Kellner (2015),
Britt et al. (2018) and Dalla Vecchia (2014, 2019) could be resolved through a simple
addition of better and more appropriate outgroup taxa, and this is what this study attempts
to do. By also incorporating new anatomical characters, taken from recent early dinosaur
and archosaur studies, this study aims to better anchor the base of Pterosauria to a
position within Avemetatarsalia and Ornithodira, so as to allow the ‘basal’ condition of
pterosaurs to be better expressed in the data.

MATERIALS AND METHODS
The dataset of Britt et al. (2018), as modified by Dalla Vecchia (2019), was expanded
through the addition of the following taxa: Aphanosauria, Lagerpetidae, Marasuchus
lilloensis, Silesauridae, Ornithischia, Theropoda and Sauropodomorpha.

Full details of each new operational taxonomic unit, which specimens were studied, and
which other sources of anatomical information were used are given in Table 1.
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In addition to the new taxa, 27 new anatomical characters were incorporated into the
dataset of Britt et al. (2018)—five were taken from the early dinosaur dataset of Baron,
Norman & Barrett (2017a, 2017b), which had built upon previous works (Langer &
Benton, 2006; Nesbitt, 2011), and a further nine from the archosaur dataset of Nesbitt et al.
(2017). Some other characters that were added were taken from both of these studies, as
they had been used in each and either entirely or partially overlapped in terms of the
features that they described (chars 111–116). These characters were conflated or otherwise
adjusted so as to prevent repetition or over-scoring of each feature. A further three
additional characters were added based upon the range of anatomical features observed in
the various taxa in the study, including a simple absent/present statement for the pteroid
(char. 94) to supplement character 71 of Britt et al. (2018), itself a modification from
character 132 in the data of Bennett (2013). In addition, a character describing the radius to
humerus ratio was added (char. 110), and a character describing the shape of the distal end
of the scapula (char. 95). Four more ‘classic pterosaur characteristics’ were accounted for

Table 1 Sources of anatomical information for taxa added to the phylogenetic analyses.

Operational taxonomic unit Based upon Specimens Additional sources

Aphanosauria Teleocrator rhadinus NHMUK PV R6795-6 Nesbitt et al. (2017, 2018)

Dongusuchus efremovi Multiple - PIN Nesbitt et al. (2017), Niedźwiedzki, Sennikov &
Brusatte (2016)

Yarasuchus deccanensis Multiple - ISIR Nesbitt et al. (2017)

Lagerpetidae Lagerpeton chanarensis Multiple - PVL Specimens only

D. gregorii TMM 31100–1306 Nesbitt et al. (2009a)

D. romeri GR 218; DMNH EPV.29956 Irmis et al. (2007), Martz & Small (2019)

D. gigas PVSJ 898 Martínez et al. (2016)

Ixalerpeton polesinensis ULBRA-PVT059 Cabreira et al. (2016)

Marasuchus lilloensis Marasuchus lilloensis Multiple - PVL Specimens only

Silesauridae Silesaurus opolensis Multiple - ZPAL Dzik (2003)

Kwanasaurus williamparkeri Multiple - DMNH Martz & Small (2019)

Asilisaurus kongwe NHMUK R16303 Nesbitt et al. (2010)

Ornithischia Hetero Multiple - NHMUK; SAM; BP Butler, Porro & Norman (2008), Norman et al.
(2011), Galton (2014)

Lesothosauru diagnosticus Multiple - NHMUK; BP Knoll (2002a, 2002b, 2002c), Porro, Witmer &
Barrett (2015), Barrett et al. (2016), Baron,
Norman & Barrett (2017c), Butler (2005)

Eocursor parvus SAM-PK-K8025 Butler (2010), Butler, Smith & Norman (2007)

Theropoda Tawa hallae Mutiple - GR Nesbitt et al. (2009b)

Coelophysis bauri AMNH FR 7224 Specimens only

Eodromaeus murphi Multiple - PVSJ Martínez et al. (2011)

Sauropodomorpha Buriolestes schultzi CAPPA/UFSM 0035 Cabreira et al. (2016)

Pampadromaeus barberenai ULBRA-PVT016 Cabreira et al. (2011)

Saturnalia tupiniquim Multiple - MCP Langer et al. (1999), Langer (2003)

Eoraptor lunensis PVSJ 512 Sereno, Martínez & Alcober (2013)

Plateosaurus engelhardti Multiple - AMNH; SMNS Nesbitt (2011)
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with new characters, each modified from the datasets of Vidovic & Martill (2014) and Lü
et al. (2009) and were included in this study as characters 117–120. Character 99 in this
analysis is a modified form of character 301 of Baron, Norman & Barrett (2017a)—Dorsal
margin of the ilium in lateral view: 0, sinusoidal; 1, concave (saddle-shaped), pre and
preacetabular and postacetabular processes upturned relative to craniocaudal centre; 2,
relatively straight or convex—state 0 has been added to describe the condition seen in
Macrocnemus bassanii, Postosuchus kirkpatricki and aphanosaurs. State (2) is present in
theropods and ornithischians, whereas state (1) describes the condition in ‘basal’
pterosaurs, herrerasaurs, sauropodomorphs, silesaurids, lagerpetids and Marasuchus
lilloensis. The full list of characters added to the data matrix is given in the Supplementary
File.

Of the additional characters, 108 and 109 were treated as ordered, following Nesbitt
(2011) and Baron, Norman & Barrett (2017a, 2017b) in addition to characters 62, 74 and
91, which were also treated as ordered in the analyses of Britt et al. (2018) and Dalla
Vecchia (2019).

Trees were searched for using equal weights implementation of parsimony, using TNT
1.5-beta (Goloboff, Farris & Nixon, 2008), through the New technology search method.
Following the protocol of Baron, Norman & Barrett (2017a, 2017b) and Nesbitt et al.
(2017), memory was first set at its maximum of 99,999, and trees were then searched for
under equal weights parsimony through a New Technology (Goloboff, Farris & Nixon,
2008) search, with ratchet and drift set at their default values and with 100 random
additional sequences. A second search, following the protocol of Ezcurra (2016) was then
done, in which trees were searched for using a New Technology Search (Goloboff, Farris &
Nixon, 2008) with ratchet set to 20 iterations, with five rounds of tree fusing and 100
additional sequences. The most parsimonious trees (MPTs) produced in this second type
of analysis were then subjected to a second round of TBR branch swapping, with a change
probability of 33 and 100 additional sequences as the default search settings. Finally,
a search was carried out using implied weights parsimony, with implied weights (k-values)
set to 3, 5, and 10 (see Parry, Baron & Vinther, 2017; Golobof, Torres & Arias, 2018).

This manuscript and the nomenclatural acts it contains was registered with ZooBank
and the manuscript assigned the following LSID: urn:lsid:zoobank.org:pub:BE350658-
1D5C-456B-B129-FFDE827E7DDF.

RESULTS
An initial analysis was run that excluded the additional 27 characters that were to be added
to the dataset of Britt et al. (2018). This was done using equal weights and a simple New
technology search. This analysis was carried out to test the effect of an expanded set of
outgroup taxa alone, without the effect of added characters. The analysis produced
31 MPTs each of length 305 steps (Fig. 2). In spite of the lack of additional characters that
could help to resolve the relationships within Ornithodira and Avemetatarsalia, this
analysis still recovered a monophyletic Pterosauria and generated fairly good resolution
within this clade. The resolution among outgroup taxa is poor, with most outgroup
taxa forming a polytomy outside of Pterosauria. Within Pterosauria there exists a
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‘basal’ trichotomy. Austriadactylus cristatus and Preondactylus bufarinii are recovered in
a sister taxon relationship; a second ‘basal’ clade comprises Arcticodactylus cromptonellus,
Austriadraco dallavecchiai, Seazzadactylus venieri, Carniadactylus rosenfeldi,
‘Raeticodactylus’ filisurensis, Caviramus schesaplanensis and unnamed specimen MCSNB
8950; the third of the ‘basal’ clades in the trichotomy contains Peteinosaurus zambelli,
Dimorphodontidae and Lonchognatha. This result is more similar to the results of the
analysis carried out by Dalla Vecchia (2019) than those of Britt et al. (2018), though this
analysis has poorer resolution at the base of the pterosaur tree. The addition of new
outgroups has, without the addition of new characters, generated more uncertainty about
the fundamental interrelationships between the earliest diverging pterosaur groups.
Furthermore, the resolution between taxa in the second clade produced in this analysis—
the one containing Arcticodactylus cromptonellus, Austriadraco dallavecchiai,
Seazzadactylus venieri, Carniadactylus rosenfeldi, ‘Raeticodactylus’ filisurensis, Caviramus
schesaplanensis and specimen MCSNB 8950—is poorer with the addition of the new
outgroups. In this analysis Arcticodactylus cromptonellus and Austriadraco dallavecchiai
from a grade leading to a polytomy containing all other taxa in this group. In the results of
Dalla Vecchia, on the other hand, found Seazzadactylus venieri and Carniadactylus
rosenfeldi to also for part of this grade leading to a smaller polytomy of Raeticodactylus’
filisurensis, Caviramus schesaplanensis and specimen MCSNB 8950. Within the other
clades the recovered topology is the same as in the analyses of Dalla Vecchia (2019)
(Fig. 1B). The addition of new outgroup taxa alone did not result in the recovery of a
monophyletic Austriadraconidae or Eopterosauria, as in other previous studies (Andres,
Clark & Xu, 2014; Britt et al., 2018) (Figs. 1A and 1C). By adding in new characters
that better resolve the relationships within Ornithodira and the character optimisation
at the base of Pterosauria, this uncertainty at the base of the pterosaur tree was resolved
and a different topology within certain constituent pterosaurian clades was recovered
(Fig. 3).

In this first full analysis that included both the added taxa and added characters, and
using equal weights and a simple New technology search, two MPTs were recovered, each

Figure 2 Strict consensus rule tree produced in the initial analysis that did not utilise any new
anatomical characters. Nodes: 1, Preondactylia; 2, Caviramidae (clade novo); 3, Zambellisauria (clade
novo). Full-size DOI: 10.7717/peerj.9604/fig-2
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of length 390 steps. In the strict consensus rule tree produced from the two MPTs
recovered in the analysis, a monophyletic Pterosauria was found (Fig. 3). This clade
contains all the taxa analysed in this analysis that are traditionally considered to be
pterosaurs, and together this clade forms a sister-taxon to a clade containing almost all
of the newly added avemetatarsalian taxa, except for Aphanosauria and Lagerpetidae.
Dinosauria is recovered, as is Dracohors and Dinosauriformes. Lagerpetidae is recovered
without the clade containing Dinosauriformes and Pterosauria. H. ischigualastensis, which
was the only non-pterosaurian ornithodiran outgroup included in the analyses of Britt
et al. (2018) and Dalla Vecchia (2019), is found nested within Dracohors, in a position
closer to Dinosauria than to Silesauridae, as is more consistent with some recent analyses
of early dinosaurs (Baron & Williams, 2018).

In this full analysis, with all of the additional taxa and characters being active, the base of
the pterosaurian clade no longer contained a trichotomy. Instead, Austriadactylus cristatus
and Preondactylus bufarinii are recovered as sister-taxa, forming their own small
monophyletic group at the base of the pterosaur tree, falling outside of the clade that
contains all other pterosaurs sensuDalla Vecchia (2019). This clade—named Preondactylia
by Andres, Clark & Xu (2014)—has also been found in a number of other studies
(Upchurch et al., 2015; Britt et al., 2018; Dalla Vecchia, 2019). Preondactylia forms the
sister taxon to a clade containing two distinct monophyletic groups: one group contains
Arcticodactylus cromptonellus, Austriadraco dallavecchiai, Seazzadactylus venieri,
Carniadactylus rosenfeldi, ‘Raeticodactylus’ filisurensis, Caviramus schesaplanensis and
specimen MCSNB 8950; the other contains Peteinosaurus zambelli and all other
pterosaurs. This too largely agrees with the results obtained by Dalla Vecchia (2019)—
however, the topology within the first of the two clades differs. As discussed above, in the
results presented by Dalla Vecchia (2019), Arcticodactylus cromptonellus, Austriadraco
dallavecchiai, Seazzadactylus venieri and Carniadactylus rosenfeldi formed a grade leading

Figure 3 Strict consensus rule tree produced in full analysis one, using equal weights parsimony.
Nodes: 1, Dinosauromorpha; 2, Dinosauriformes; 3, Dinosauria; 4, Pterosauria; 5, Preondactylia;
6, Austriadraconidae; 7, Caviramidae (clade novo); 8, Zambellisauria (clade novo); 9, Macronychoptera;
10, Dimorphodontidae; 11, Lonchognatha; 12, Novialoidea; 13, Anurognathidae; 14, Caelidracones;
15, Monofenestrata; 16, Pterodactyloidea. Full-size DOI: 10.7717/peerj.9604/fig-3
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to a clade containing ‘Raeticodactylus’ filisurensis, Caviramus schesaplanensis and
specimen MCSNB 8950. This expanded analysis did not find such a topology within
this clade. Instead, the results recover Arcticodactylus cromptonellus, Austriadraco
dallavecchiai and Seazzadactylus venieri in their own clade, which is sister-taxon to a clade
containing the others. This first clade is akin to Austriadraconidae, as named by Kellner
(2015). Austriadraconidae, in this form, is not supported in the results presented by
Dalla Vecchia, but was recovered, albeit in a different position by Britt et al. (2018).
The placement and composition of Austriadraconidae in the results of this analysis are
novel and appear to be the result of the combination of wider outgroup sampling and
anatomical character choice. Within other major pterosaurian sub-clades, such as
Macronychoptera, Dimorphodontidae, Anurognathidae, and Pterodactyloidea, the
topology recovered in this analysis agrees with the topology recovered in the analysis by
Dalla Vecchia (2019). Moreover, this analysis found no support for the placement of
Arcticodactylus cromptonellus and Austriadraco dallavecchiai in their own exclusive clade
placed as sister-taxon to all other pterosaurs, as had been found by Britt et al. (2018), sensu
Dalla Vecchia (2019).

Further comparisons with previous studies
While the placement of Preodactylia as the earliest diverging of the pterosaur subclades
agrees with the analysis by Dalla Vecchia (2019), the result differs from Britt et al.
(2018). Whereas in the taxon-reduced analyses of Britt et al. (2018), a clade containing
Austriadraco dallavecchiai and Arcticodactylus cromptonellus—termed Austriadraconidae
by Kellner (2015)—was found as the earliest diverging pterosaur clade, the results of
Dalla Vecchia (2019) and those of the first analysis of this study do not provide support for
such a position, but rather place the austriadraconids in a more deeply nested position.
This result also differs substantially from that found by Codorniú et al. (2016) who did not
find a sister-taxon relationship between Austriadactylus cristatus and Preondactylus
bufarinii at all.

As stated above, the results of this first analysis support a monophyletic
Austriadraconidae, sensu Kellner (2015), but, for the first time, also places Seazzadactylus
venieri within it (Fig. 2). In this analysis, the austriadraconids form a sister-taxon to a
clade containing Carniadactylus rosenfeldi + ‘Raeticodactylus’ filisurensis, Caviramus
schesaplanensis and unnamed specimen MCSNB 8950. Dalla Vecchia (2019) also
recovered all of these taxa together into a monophyletic group, but his analysis did
not recover the same interrelationships between them; Arcticodactylus cromptonellus,
Austriadraco dallavecchiai and Seazzadactylus venieri form a grade leading into the clade
containing Carniadactylus rosenfeldi and a trichotomy of ‘Raeticodactylus’ filisurensis,
Caviramus schesaplanensis and MCSNB 8950 in the analysis of Dalla Vecchia (2019)
(see, Fig. 1A).

No close relationship is found between this group of pterosaurs and Eudimorphodon
ranzii, contra the findings of Andres, Clark & Xu (2014), Upchurch et al. (2015) and
Britt et al. (2018). Similarly, no support is found for the clade Eudimorphodontidae.
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Instead, Eudimorphodon ranzii is found within Macronychoptera and Lonchognatha,
sensu Dalla Vecchia (2019).

Also consistent with the analysis of Britt et al. (2018) and of Dalla Vecchia (2019),
D. macronyx and Caelestiventus hanseni are found to be sister-taxa, forming their own
clade Dimorphodontidae. This stands in contrast to the results of Codorniú et al. (2016),
who recovered Peteinosaurus zambelli as the sister-taxon to D. macronyx.

Both the analyses by Britt et al. (2018) and Dalla Vecchia (2019) found a
Macronychoptera containing Dimorphodontidae and Lonchognatha, sensu Unwin (2003),
and with Peteinosaurus zambelli forming the sister-taxon to Macronychoptera. This again
differed from the results of Codorniú et al. (2016) who found a different position for
Peteinosaurus zambelli (see above). However, despite the agreement between Britt et al.
(2018) and Dalla Vecchia (2019) on the subgroups comprising Macronychoptera, the
constituent taxa of Lonchognatha differed between these two analyses, with Britt et al.
(2018) finding taxa such as ‘Raeticodactylus’ filisurensis and Caviramus schesaplanensis
to be members of this more ‘derived’ clade (see also, Kellner, 2003). This study has
not found such a construction of Lonchognatha, and instead has found a more
reduced clade, sensu Dalla Vecchia (2019). Further, within Lonchognatha is a clade
containing Campylognathoides and all other pterosaurs analysed in this study—that is,
a monophyletic Novialoidea sensu Kellner (2003)—and this result largely agrees with the
analyses of Kellner (2003), Andres & Myers (2013), Andres, Clark & Xu (2014), Upchurch
et al. (2015), Britt et al. (2018) and Dalla Vecchia (2019).

Also consistent with each of the above studies is the recovery of a monophyletic
Caelidracones. However, a sister-taxon relationship between Anurognathidae and
Pterodactyloidea, as recovered by Andres & Myers (2013) is not supported in this analysis.
As in the analyses by Britt et al. (2018) and Dalla Vecchia (2019), Caelidracones contains
two clades: one containing a trichotomy of Sordes pilosus, ‘ramphorynchids’, and
Monofenestrata, and the other containing taxa that could be loosely termed ‘anurognathid
types’. Again, a contrast can be drawn with the results of this analysis and the results of
the analysis by Codorniú et al. (2016), who placed Anurognathidae in a much more
stem-ward position within Pterosauria.

Anurognathidae is also recovered in this analysis, but the interrelationships between
the taxa in this clade differ from the analyses of Britt et al. (2018) and Dalla Vecchia (2019)
in that Jeholopterus and Anurognathus form sister taxa, with Dendrorynchoides and
Batrachognathus forming successive sister-taxa. The taxon provisionally named
‘Dimorphodon’ weintraubi then forms the sister taxon to Anurognathidae, and this is
consistent with the results of Dalla Vecchia (2019). These ‘anurognathid types’ together
form the sister-taxon to the grouping of Sordes pilosus, the ‘ramphorynchids’ and
monofenestratans, which is, as yet, also unnamed (see Dalla Vecchia, 2019).

One interesting aspect of this analysis is that it would appear, when applying current
definitions, that Pterosauria falls within Dinosauromorpha sensu Benton (1985) and
not as its sister-taxon, sensu Gauthier (1986) and Nesbitt et al. (2017). Because
Lagerpetidae falls outside of the clade containing Pterosauria and the grade leading into
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dinosaurs in this analysis, under the current definition of Dinosauromorpha—the last
common ancestor of Lagerpeton chanarensis, Marasuchus lilloensis, Dinosauria and all its
descendants (Benton, 1985)—Pterosauria and, by definition, Ornithodira, would fall
within Dinosauromorpha. Ornithodira would comprise Pterosauria and Dinosauriformes,
rather than Pterosauria and Dinosauromorpha, as suggested in previous analyses
(Langer & Benton, 2006; Nesbitt, 2011; Baron, Norman & Barrett, 2017a; Nesbitt et al.,
2017). However, this position is only relatively weakly supported for now, and such
interaltionships within the higher Ornithodira was not the focus of this analysis.
Subsequent studies may recover more traditional topologies within Avemetatarsalia and
composition of Ornithodira, so this study refrains from revising any definitions based
upon this result alone. Within Dinosauriformes are Marasuchus lilloensis and Dracohors,
sensu Cau (2018). Silesaurids form the sister-taxon to dinosaurs + herrerasaurs, sensu
Baron & Williams (2018). Dinosauria in this analysis contains Ornithoscelida (see Baron,
Norman & Barrett, 2017a) and Sauropodomorpha (see Baron, Norman & Barrett, 2017b).

The following is a list some of the notable nodes recovered from the base of the
pterosaur tree and including Pterosauria, with all synapomorphies listed for each
(Node numbers refer to numbering in Fig. 3):

Node 4. Pterosauria, sensu Kellner (2003) ((Preondactylus bufarinii + Austriadactylus
cristatus)/Preondactylia + (Caviramidae + Zambellisauria))

Definition: Node-based—the most recent common ancestor of the Anurognathidae,
Preondactylus bufarinii and Quetzalcoatlus northropi and all their descendants (Kellner,
2003).

Character support: 7 (1–>3), 9 (0–>1), 16 (1–>2), 22 (0–>1), 39 (0–>1), 40 (0–>1), 58
(0–>1), 60 (0–>1), 70 (0–>1), 74 (0–>1), 75 (0–>1), 91 (0–>1), 94 (0–>1), 117 (0–>1),
120 (2–>0).

Remarks: The definition given by Kellner (2003) is sufficient to contain all taxa found
in this analysis to be contained within the pterosaur group. As Preondactylus bufarinii,
together with Austriadactylus cristatus, forms the earliest diverging clade within
Pterosauria—a monophyletic Preondactylia—this definition for Pterosauria encompasses
the same set of taxa as Pterosauromorpha, sensu Padian (1997). Pterosauria would, in
this hypothesis, take precedence over Pterosauromorpha. However, it should be worth
noting that, in results that do not find Preondactylia to be the earliest diverging pterosaur
clade (Britt et al., 2018), Pterosauria would encompass fewer taxa than Pterosauromorpha,
as certain clades would fall outside of the taxa encompassed by the definition for
Pterosauria given by Kellner (2003). In the example of Britt et al. (2018), Austriadraconidae
would not be within Pterosauria but rather would be non-pterosaurian pterosauromorphs,
under such a regime (see below).

Node 5. Preondactylia, sensu Andres, Clark & Xu (2014) (Preondactylus bufarinii +
Austriadactylus cristatus)
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Definition: The least inclusive clade that includes Preondactylus bufarinii and
Austriadactylus cristatus.

Character support: 11 (0–>1), 48 (0–>1), 49 (0–>1).

Remarks: Often found to be the earliest diverging members of Pterosauria (Dalla Vecchia,
2019), or early diverging members of ‘Eopterosauria’ (Andres, Clark & Xu, 2014; Upchurch
et al., 2015), this small clade is fairly consistently recovered among early pterosaur
cladistic studies, with the notable exception of Codorniú et al. (2016).

Unnamed clade (Caviramidae + Zambellisauria)

Character support: 45 (1–>0), 47 (1–>0), 77 (0–>1), 95 (0–>1).

Remarks: This clade contains all pterosaur taxa except for the clade containing
Preondactylus bufarinii + Austriadactylus cristatus that is, all pterosaurs more ‘derived’
than Preondactylia. This clade has consistently been found among studies (Codorniú et al.,
2016; Britt et al., 2018; Dalla Vecchia, 2019), although the placement of certain taxa
within this clade varies, for example in the results of Britt et al. (2018), this clade does not
contain Arcticodactylus cromptonellus and Austriadraco dallavecchiai (see Fig. 1C).
It may prove necessary in the future to erect a stem-based clade to contain all taxa more
closely related to, as an example, Q. northropi than to Preondactylus bufarinii.

Node 7: Caviramidae (new clade)

Definition: Node-based—the least inclusive clade that includes Arcticodactylus
cromptonellus and Caviramus schesaplanensis (new).

Etymology: For Caviramus schesaplanensis—one of two anchoring member taxa used in
the node-based definition for the clade, as outlined above.

Character support: 3 (0–>1), a skull that is curved down caudally; 12 (0–>1), a jugal
process of the maxilla that is subtrapezoidal, tapering to a point only distally, and a
proximal part with parallel dorsal and ventral margins; 43 (0–>1), a dentition that has
tri- to quinticuspid tooth crowns; 81 (0–>1), a wing phalanx two that is as long as the ulna.

Remarks: This clade has been recovered in the recent analysis of Dalla Vecchia (2019) and
is also supported in the first analysis of this study by a number of shared anatomical
character states, or synapomorphies (see above). The topology within the clade varies
between the analyses of Dalla Vecchia (2019) and this study, but both find the same set of
taxa and specimens to fall within it. This early diverging subgroup contains within it the
austriadraconids of Kellner (2015) and a handful of other Triassic taxa and specimens,
including the as yet unnamed MCSNB 8950, which has previously been the source of
phylogenetic uncertainty in other studies (see Britt et al., 2018). This clade is the least
consistently supported among the various analyses of this study and this is discussed
further below. However, it is worth noting that the clade was found in both the analysis
that used only new outgroup taxa but no new characters and the analysis that used both.

Baron (2020), PeerJ, DOI 10.7717/peerj.9604 13/26

http://dx.doi.org/10.7717/peerj.9604
https://peerj.com/


The internal topology differed between these two analyses, as did the position of the clade
within Pterosauria, but the constituent taxa was consistent, and consistent with the results
of Dalla Vecchia (2019).

Node 6. Austriadraconidea, sensu Kellner (2015) (Arcticodactylus cromptonellus +
Austriadraco dallavecchiai + Seazzadactylus venieri)

Definition: The least inclusive clade that includes Arcticodactylus cromptonellus and
Austriadraco dallavecchiai, sensu Kellner (2015).

Character support: 103 (1–>0), 120 (0–>1).

Remarks: This clade was named by Kellner (2015), but was not supported in a number
of other recent analyses of early pterosaurs (Andres, Clark & Xu, 2014; Upchurch et al.,
2015). However, this close relationship was found in the more recent analyses of Britt et al.
(2018), who recovered the clade as the earliest diverging within Pterosauria, and then
Dalla Vecchia (2019), who, like this study, found the clade to be slightly more ‘derived’.
Unlike either of the aforementioned studies, this study has found that the clade also
contains Seazzadactylus venieri; as in the analysis of Dalla Vecchia (2019) this grouping of
taxa fall within a larger clade of early-diverging pterosaur taxa (here named as
Caviramidae, clade nov.).

Unnamed clade (Carniadactylus rosenfeldi + ‘Raeticodactylus’ filisurensis, Caviramus
schesaplanensis + MCSNB 8950)

Character support: 11 (0–>2), 21 (0–>1), 65 (0–>1), 76, (0–>1), 80 (0–>1).

Remarks: This clade was also recovered in the analysis by Dalla Vecchia (2019) and
contained the same taxa and the same internal topology.

Node 8. Zambellisauria (new clade) (Peteinosaurus zambelli + Macronychoptera)

Definition: Node-based—the least inclusive clade that includes Peteinosaurus zambelli,
D. macronyx, Pterodactylus antiquus and Q. northropi (new).

Etymology: The clade name honours Rocco Zambelli, curator of the Bergamo natural
history museum, for whom Peteinosaurus zambelli was named; Peteinosaurus zambelli
being one of the two taxa chosen as an anchor in this cladistic definition. Zambelli (1973)
also named Eudimorphodon ranzii, a well-known and important early pterosaur and
putative member of Zambellisauria (see Andres, Clark & Xu, 2014; Britt et al., 2018;
Dalla Vecchia, 2019).

Character support: 56 (0–>1), more than three sacral vertebrae; 59 (0–>1), filiform
processes of the caudal zygapophyses present in caudal vertebrae.

Remarks: This clade is consistently recovered by most modern analyses (Britt et al., 2018,
Dalla Vecchia, 2019) and in all of the analyses in this study, regardless of the optimality
criteria used in searching for trees in the analyses, and both with and without the inclusion
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of the new anatomical characters. Such a clade was not found in the analysis of Andres,
Clark & Xu (2014), who instead placed Peteinosaurus zambelli as sister-taxon to
Eudimorphodontoidae, within a monophyletic Eopterosauria—a hypothesis that has fallen
out favour in more recent studies and is not supported in any of the analyses carried out in
this study.

Node 9. Macronychoptera (Dimorphodontidae + Lonchognatha)

Character support: 63 (1->2), 64 (0->1), 65 (0->1)

Node 10. Dimorphodontidae (D. macronyx + Caelestiventus hanseni)

Character support: 7 (3–>2), 8 (0–>1), 10 (0–>1), 12 (0–>2), 20 (0–>1), 26 (0–>1),
35 (0–>1), 41 (0–>1), 48 (0–>1), 52 (0–>1), 96 (1–>0), 118 (1–>2).

Remarks: As in the analyses of Britt et al. (2018) and Dalla Vecchia (2019), this study finds
a close relationship between D. macronyx and Caelestiventus hanseni

Node 11. Lonchognatha

Character support: 70 (1–>2), 80 (0–>2), 88 (0–>1)

Remarks: The composition of Lonchognatha and its possible sister-taxon relationship with
Dimorphodontidae has been fairly consistently recovered in recent analyses (Britt et al.,
2018; Dalla Vecchia, 2019), although other studies have placed Lonchognatha within
Novialoidae (Andres, Clark & Xu, 2014). This second hypothesis is not recovered in all but
one of the analyses of this study. That is to say, in only one analysis does this study find
Campylognathoides to be ‘less derived’ than Eudimorphodon species (see below).

In the second full analysis, utilising both the new taxa and new anatomical characters,
TBR branch swapping after a differently configured New Technology search produced
two MPTs, each also of length 390 steps. However, in this analysis, the resolution in this
tree was greatly reduced (Fig. 4A). While Aphanosauria and Lagerpetidae were still
found outside of Ornithodira, and the monophyly of and interrelationships within
Dinosauriformes remained consistent with previous analyses, in this second full analysis,
the interrelationships between the groups within Pteorsauria was not clearly resolved—
although monophyletic Austriadraconidae and Novialoidea were both found again.
The large polytomy at the base of Pterosauria is more reminiscent of the full-taxon-sample
analysis carried out using TNT by Britt et al. (2018). As in Britt et al. (2018), the specimen
MCSNB 8950 was removed as a wildcard taxon and the analysis re-run. In this
reduced analysis, a single tree was recovered (Fig. 4B). In this tree, Austriadraconidae is
once again recovered as monophyletic, as in the first analysis of this study and the
second full-taxon-range analysis with TBR. However, in the reduced second analysis, but
unlike in the full second analysis, Austriadraconidae contains Seazzadactylus venieri.
This is similar to the result obtained in the first analysis, although the position of
Austriadraconidae is different in both the reduced and full second analyses (compare
Figs. 3 and 4B).
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Finally, in the implied weights analyses, the topology within Pterosauria differed from
the first and second analyses (Figs. 5A and 5B). Only one tree was produced in each of
three analyses, with lengths of 37.03690, 27.65440, and 17.04634 for k = 3, 5 and 10
respectively. In the first two of these analyses (k = 3 and 5), the earliest diverging clade of
pterosaurs are the Austriadraconidae—however, this clade was not found to contain
Seazzadactylus venieri in this analysis. The clade made up of Austriadactylus cristatus and
Preondactylus buffarini, named above as Preondactylidae, then forms the sister-taxon
of the clade of Peteinosaurus zambelli +Macronychoptera, named above as Zambellisauria.
In searches with k at or above 10 however, the structure of the tree once again changes,
with the preondactylids once again falling out as the most stem-ward of the clades in
Pterosauria and, as in some of the previous analyses of this study, Austriadraconidae
was found to contain Seazzadactylus venieri (Fig. 5B). Caviramidae was not supported in
any of these analyses, whereas Zambellisauria was consistently recovered in each. Likewise,
clades such as Dimorphodontidae, Lonchognatha, Novialoidea, Caelidracones,

Figure 4 Strict consensus (A) and reduced strict consensus (B) trees produced when following the
analysis protocol of Ezcurra (2014) and using equal weights parsimony. White circle and arrow
indicate the position of Zambellisauria in this analysis. Full-size DOI: 10.7717/peerj.9604/fig-4
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Monofenestrata, Pterodactyloidea, and Anurognathidae were all found to be largely
consistent through the various implied weights parsimony analyses. The taxon
referred to as ‘Dimorphodon’ weintraubi was recovered closer to Sordes pilosus and the
monofenestratans than to Anurognathidae in the lower weighted implied weights analyses,
but closer to Anurognathidae in analyses with a k value = 10 or more. In all the implied
weights analyses, the ‘ramphorynchids’ we found to be more closely related to
Monofenestrata than to Sordes pilosus, which was recovered as the sister-taxon to the
clade of Monofenestrata + the ‘ramphorynchids’ (Figs. 5A and 5B).

The largest difference in the arrangement of taxa between the implied weights analyses
for k < 10 and for k = 10 or more is the composition of Zambellisauria. In all the
analyses Zambellisauria is recovered as monophyletic, but in the lower k value analyses,
contains, inter alia, Seazzadactylus venieri, Carniadactylus rosenfeldi, ‘Raeticodactylus’
filisurensis, Caviramus schesaplanensis and the specimen MCSNB 8950, whereas in

Figure 5 Trees produced using implied weights implementation of parsimony for k values < 10
(A) and k values = 10 more (B). Coloured nodes and tips added to highlight the taxa whose posi-
tions changed substantially between the implied weights parsimony analyses. White circles and arrows
indicate the position of Zambellisauria in each analysis. Full-size DOI: 10.7717/peerj.9604/fig-5
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analyses with k = 10 or more, these five operational taxonomic unites were recovered
outside of Zambellisauria (see Figs. 5A and 5B). These differences in topology between
the results of the various implied weights parsimony analyses suggests that certain
anatomical characters in the dataset are broadly distributed across the taxa whilst also
being important for uniting certain clades—as the implied weighting factor is increased,
the weight of characters that could support the monophyly of clades such as Caviramidae
(see above), or support a ‘basal’ position for Austriadraconidae, are being reduced by
the search programme because these characters appear to be more homoplastic. However,
these effects may be reduced by the further addition of anatomical characters as the dataset
is expanded upon in subsequent studies.

DISCUSSION
It is clear from the variability in the results of the analyses in this study alone that the
phylogenetic position of certain early pterosaur clades is still highly unstable, even with
better taxon and character sampling. When analysed using certain methods, the addition
of more avemetatarsalian taxa and new characters provided further support for certain
clades and helped to revolve interrelationships between genera within some subclades.
In addition, this expanded analysis changed the composition of some recognised clades,
from example Austriadraconidae, which was, in analysis one, found to also include
the recently described Seazzadactylus venieri for the first time. Choice of taxa and
anatomical characters clearly has had some effect on the interrelationships of the
ingroup pterosaur taxa, as has also been demonstrated to be the case in early studies
of dinosaur (Müller & Dias-da-Silva, 2019). This study has taken steps to address the
under-sampling from closely related ornithdiran clades in previous pterosaur studies, but
much work needs to be done to further broaden the datasets used in phylogenetic analyses,
in terms of both the operational taxa and anatomical characters and character states.

What this study has also demonstrated is how using different approaches to
phylogenetic analysis can produce substantially different results when it comes to the
interrelationships within Pterosauria. The earliest diverging clade of pterosaurs has been
found to be either the Preondactylia (in analysis one and in implied weights analyses for
k = 10 or more), or Austriadraconidae (when using TBR branch swapping or implied
weights with k < 10).

However, in spite of this uncertainty, some clades have been consistently recovered
throughout the various analyses of this study, and many too have been supported in
previous analyses (Andres, Clark & Xu, 2014; Britt et al., 2018; Dalla Vecchia, 2019).
This would suggest that the evidence is increasingly supporting the validity of such
monophyletic subsets within Pterosauria, and these should, for the sake of stability and
clarity in future research, be defined and, if not already so, named. This study has erected
two clades for these purposes. Zambellisauria is erected to contain all pterosaur taxa
descended from the most recent common ancestor of Peteinosaurus zambellii and the
various members of Macronychoptera. This clade is now consistently recovered in most
phylogenetic analyses and is strongly supported in the results of these analyses. Should
Peteinosaurus zambellii be recovered in a much more stem-ward position in the future, for
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example if future analyses resurrect Eopterosauria, with Peteinosaurus zambellii contained
within it, the definition for Zambelliasauria would then encompass the same set of taxa
as Pterosauria and, as a result, would become obsolete. However, in the emerging
consensus on early pterosaur relationships in this part of the tree, the clade Zambellisauria
remains well-supported and distinct for now.

Under the definition given for Caviramidae, as also given above, in scenarios in which
a distinct monophyletic group is found to be more ‘derived’ than Preondactylia but outside
of the clade containing all other, more ‘derived’ pterosaurs (see Fig. 3), the name
would be distinct and valid. However, in scenarios such as presented in the results of the
second and third analyses, or in other studies (Britt et al., 2018) the clade Caviramidae
would contain the same taxa as Pterosauria and therefore become obsolete. However,
the validity of Caviramidae is not dependent on the position taxa such as Peteinosaurus
zambellii and Eudimorphodon ranzii, which have a tendancy to ‘bounce around’ the tree,
so long as the Autriadraconids are not found to be either more or less ‘derived’ than
the small clade containing Carniadactylus rosenfeldi, ‘Raeticodactylus’ filisurensis, and
Caviramus schesaplanensi. It is only in hypotheses in which Austriadraconids fall as the
earliest diverging members of Pterosauria (e.g. analysis two of this study; Britt et al., 2018),
or are paraphyletic (Codorniú et al., 2016), that Caviramidae would be invalid as a distinct
clade.

It would also appear from the results of these analyses, and other recent works, that
the higher-level interrelationships between pterosaur taxa are becoming more stabilised.
Clades such as Dimorphodontidae, Lonchognatha, Novialoidea, Caelidracones,
Monofenestrata, Pterodactyloidea, and Anurognathidae are all consistently found in these
analyses, and only the composition of each varies a little between them. In particular
Eudimorphodon ranzii is a particularly difficult taxon in terms of its position, having been
recovered in a range of ‘derived’ and more ‘basal’ positions within the tree, in the both the
analyses of this study and previous recent studies. With the addition of more taxa and
more characters, and as more phylogenetic analysis techniques are turned on the question
of pterosaur systematics, such problems of placing difficult to classify taxa may yet be
resolved.

CONCLUSIONS
Pterosaur interrelationships have been shown to vary between analyses, with the
fundamental interrelationships that are recovered being dependant upon the method of
analysis, the character choice and taxon choice. The addition of more appropriate
avemetatarsalian outgroup taxa to the early pterosaur dataset of Britt et al. (2018) made a
difference in the overall topologies recovered within the various pterosaur clades, and to
the fundamental structure of the pterosaur tree. However, a more dramatic change in
result could be achieved through the use of different phylogenetic analysis techniques, such
and implied weights parsimony. While some pterosaur clades have proven to be stable
throughout the various analyses, others have not, particularly those that fall most
stem-ward on the tree. More needs to be done to resolve this issue, but wider character and
taxon sampling in the future would be an important first step. Additional, utilisation of a

Baron (2020), PeerJ, DOI 10.7717/peerj.9604 19/26

http://dx.doi.org/10.7717/peerj.9604
https://peerj.com/


wider range of phylogenetic analysis techniques should be adopted to test the strength of
hypotheses of early pterosaur interrelationships as more taxa and character states are
added.
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