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Premaxillary tooth count tends to be stable amongst toothed dinosaurs, and most theropods have four teeth in each pre−
maxilla. Only one case of bilaterally asymmetric variation is known in theropod premaxillary dentition, and there is no re−
cord of ontogenetic or individual variation in premaxillary tooth count. Based on these observations, a tyrannosaurid left
premaxilla with three teeth (TMP 2007.20.124) is an interesting deviation and represents an unusual individual of
Daspletosaurus sp. with a developmental abnormality. The lower number of teeth is coupled with relatively larger alve−
oli, each of which is capable of hosting a larger than normal tooth. This indicates that tooth size and dental count vary in−
versely, and instances of reduction in tooth count may arise from selection for increased tooth size. On the other hand, the
conservative number of premaxillary teeth in most theropods implies strong developmental constraints and a functional
trade−off between the dimensions of the premaxillary alveolar margin and the size of the teeth. In light of recent advances
in the study of tooth morphogenesis, tooth count is a function of two parameters: dimensions of an odontogenic field for a
tooth series, and dimensions of tooth positions. A probable developmental cause for the low tooth count of TMP
2007.20.124 is that the dimensions of the alveoli expanded by approximately a third during tooth morphogenesis. Numer−
ical traits such as tooth count are difficult to treat in a phylogenetic analysis. When formulating a phylogenetic character,
a potential alternative to simply counting is to rely on the morphological signature for developmental parameters that con−
trol the number of the element in question.
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Introduction
Premaxillary tooth count is remarkably stable amongst toot−
hed theropod dinosaurs, and an overwhelming majority of
taxa have four teeth in each premaxilla. There are only six ex−
ceptions to this rule. Pelecanimimus and spinosauroids have
six or seven premaxillary teeth (Perez−Moreno et al. 1994;
Charig and Milner 1997; Rauhut 2003; Dal Sasso et al. 2005).
Allosaurus and Neovenator each have five premaxillary teeth
(Gilmore 1920; Madsen 1976; Hutt et al. 1996), whereas
Ceratosaurus is unique in having just three (Gilmore 1920;
Madsen and Welles 2000). Torvosaurus is also previously re−
ported to have only three premaxillary teeth on each side
(Galton and Jensen 1979), but it has the fourth tooth, which is
pathological and covered by a rugose excrescence of bone
(Britt 1991; Roger Benson personal communication 2009). In
almost all theropods, there is no known individual or bilateral
variation in the number of premaxillary teeth. An exception is
the holotype of Baryonyx, which has six premaxillary teeth on
the left side, and seven on the other (Charig and Milner 1997).

No theropod is known to increase or decrease the number of
premaxillary teeth in ontogeny, although most theropod taxa
lack ontogenetic series of specimens. Amongst coelurosaurs
with teeth, the premaxillary tooth count of four is universal,
with the exception of the unusual Pelecanimimus. Tooth count
does vary in maxillae and dentaries, notably in tyrannosaurids,
both individually and bilaterally (Currie 2003a). These varia−
tions in tyrannosaurids most likely represent developmental
plasticity near the back end of the tooth rows, but this is not the
case in the front part in proximity of the premaxilla (rationale
for this in Discussion).

Premaxillary tooth count is similarly stable in sauropods
(Table 1). The count is universally four amongst sauropods,
even in the sauropod Nigersaurus with its highly modified
skull and dentition in which the dental battery houses more
than five hundred teeth (Sereno et al. 2007). Because the tooth
count is variable amongst prosauropods, the conservation of
four premaxillary teeth is either retention of the presiomorphic
archosaur condition or an independently acquired trait. The
latter hypothesis is dependent on the paraphyly of prosauro−
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pods. Ornithischians repeatedly evolved edentulous premaxil−
lae that are correlated with the presence of extensive beaks.
The tooth count is more variable across clades, but an impor−
tant trend in the currently available data is that the lack of
premaxillary teeth in stegosaurs, ankylosaurs, iguanodonts
and ceratopsids is not preceded by sequential loss. This is also
true for the lineages of edentulous theropods (e.g., ornitho−
mimosaurs and oviraptorids). In summary, premaxillary tooth
count is relatively stable within major clades of dinosaurs, re−
gardless of a wide variety of snout morphology. This conser−
vatism suggests that premaxillary tooth count in dinosaurs is a
trait under strong developmental regulation.

Based on these observations, a left tyrannosaurid pre−
maxilla with three alveoli (TMP 2007.20.124) is an interest−
ing deviation. This provides the first evidence that the pre−
maxillary tooth count varies in tyrannosaurids, and a second
exception from the four−tooth “rule” in coelurosaurs in addi−
tion to the unusual Pelecanimimus. It is common across ver−
tebrates that tooth count morphologically distinguishes spe−
cies from one another. Therefore, plasticity in tooth count
provides an opportunity to understand the developmental
background for discrete morphological variation. This paper

addresses the developmental and functional implications of
three premaxillary teeth in tyrannosaurids and explores the
developmental mechanisms that may account for tooth count
variation.

Institutional abbreviation.—CMNH, Cleveland Museum of
Natural History, Cleveland, Ohio, USA; TMP, Royal Tyrrell
Museum of Palaeontology, Drumheller, Alberta, Canada.

Systematic palaeontology
Theropoda Marsh, 1881
Coelurosauria von Huene, 1914
Tyrannosauridae Osborn, 1906
Genus Daspletosaurus Russell, 1970
cf. Daspletosaurus sp.
Fig. 1.

Material.—TMP 2007.20.124, a partial left premaxilla.

Description.—TMP 2007.20.124 is a left tyrannosaurid pre−
maxilla, based on the angle between the alveolar margin and
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Fig. 1. A–D. A left partial tyrannosaurid premaxilla with three alveoli, from the Dinosaur Park Formation (Campanian), Alberta, Canada; TMP
2007.124.20; in lateral (A, B) and posteromedial (C, D) views; illustrations (A, C) and photographs (B, D). E. Stratigraphic column showing succession of
tyrannosaurids during the Upper Cretaceous of Alberta, Canada. Shaded units indicate occurrence of tyrannosaurids identifiable down to generic level.



the interpremaxillary suture, which is more than 50� (Fig. 1).
The angle is 60�, and is comparable to that of immature
tyrannosaurines (63� in TMP 1994.143.1 Daspletosaurus
sp.), but larger than that of albertosaurines (35� and 47� in
TMP 1991.36.500 and TMP 1999.33.1, Gorgosaurus libra−
tus). Because of abrasion, it lacks the supranarial and sub−
narial processes, and most of the medial surface, including the
interdental plates, is missing. The arc length along the com−
plete alveolar margin is 20% larger than that of a juvenile
Daspletosaurus sp. (TMP 1994.143.1) and about as large as
that of an adult Gorgosaurus libratus (TMP 2005.9.9) (Table
2; ACL). When in its life position, the premaxilla is relatively

short anteroposteriorly and wide lateromedially, just as in
those of similar−sized tyrannosaurids. The narial fossa is par−
tially preserved. The interpremaxillary suture is a flat surface
that extends along the medial edge of the anterior wall of the
first alveolus. The interdental plates are missing, but two
ridges clearly mark the boundaries between the three teeth.
The partially preserved, smooth surface along the posterior
edge of the bone is part of the maxillary suture. The texture is
unlike the pitted, spongy alveolar surface. The three alveoli
are variable in size (Table 2). The first alveolus is the largest,
and the next two alveoli are successively smaller. The three
alveoli gradually taper dorsally, following the external bone
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Table 1. Summary of premaxillary tooth count in dinosaurs. The tooth count of four is independently conserved in theropods and sauropods.
Ornithischians repeatedly evolved edentulous premaxillae. The ornithischians with premaxillary teeth tend to lack alveoli in the anterior part of the
element where kelatinous sheath form a beak (“partly” in the “edentulous” column). There is no positive evidence for sequential loss of teeth into
edentulous premaxilla.

Clade Tooth count Note Edentulous Sources

Theropoda 3–7 or 0 majority have four premaxillary teeth partly or entirely Cited in text

Prosauropoda 3–6 four or five in most taxa;
5–6 in Plateosaurus

– Galton and Upchurch (2004a)

Sauropoda 4 all sauropods have four – Upchurch et al. (2004); Sereno et al. (2007)

Basal Ornithischia 6 the count based on Lesothosaurus partly Sereno (1991)

Basal Thyreophora 5 the count based on Emausaurus
and Scelidosaurus

partly Norman et al. (2004)

Stegosauria 7 or 0 Huayangosaurus (7) partly or entirely Sereno and Dong (1992); Galton and
Upchurch (2004b)

Ankylosauria 8, 6, or 0 Silvisaurus (8), Cedarpelta (6),
Sauropelta, and Struthiosaurus

partly or entirely Nopcsa (1929); Eaton (1960); Coombs
(1971); Carpenter et al. (2001)

Basal Ornithopoda 5, 3 or 2 five in most taxa; 3 in Heterodontosaurus,
and 2–3 in Abrictosaurus

partly Galton (1974); Weishampel and Witmer
(1990); Norman et al. (2004)

Iguanodontia 0 all with edentulous premaxilla entirely Norman (2004); Horner et al. (2004)

Pachycephalosauria 3 three where premaxilla is known partly Maryańska et al. (2004)

Ceratopsia 3, 2, or 0 Archaeoceratops, Liaoceratops, and
Yinlong (3); Protoceratops (2) partly or entirely Brown and Schlaikjer (1940); Dong and

Azuma (1997); Xu et al. (2002, 2006)

Table 2. Measurements on and proportions of the tyrannosaurid premaxillae stored at TMP, not including the specimens on display. Arc length was
measured by a tape measure, and the others were by a caliper. All measurements in mm. Abbreviations: A1, mesiodistal diameter of first alveolus;
A2, mesiodistal diameter of second alveolus; A3, mesiodistal diameter of third alveolus; A4, mesiodistal diameter of fourth alveolus; ACL, arc
length (outside the curvature) of alveolar margin; AM, mean mesiodistal alveolus diameter; A/ACL, sum of mesiodistal alveolar diameters divided
by the arc length.

Taxon Specimen number ACL A1 A2 A3 A4 AM AM/ACL

Gorgosaurus libratus TMP 2005.12.69 36 7.1 6.65 6.75 7.25 6.94 0.193

Daspletosaurus sp. TMP 1994.143.1 42 – 8.65 6.4 – 7.53 0.179

Gorgosaurus libratus TMP 1992.36.1014 50.5 11 10.5 – – 10.75 0.213

Gorgosaurus libratus TMP 1999.33.1 52 13.8 8 12.6 10.7 11.28 0.217

Gorgosaurus libratus TMP 2005.9.9 53 13.9 9.55 10.55 8.5 10.63 0.2

cf. Daspletosaurus sp. TMP 2007.20.124 55 14.45 13.45 11.4 – 13.1 0.238

Tarbosaurus bataar TMP 2000.50.5 57 9.7 10.5 10.35 13.9 11.11 0.195

Gorgosaurus libratus TMP 1986.36.116 60 11.75 10.5 10.35 11.2 10.95 0.183

Daspletosaurus sp. TMP 1985.62.1 71 15.45 14.2 16 13.7 14.84 0.209

Daspletosaurus torosus TMP 2001.36.1 75 13 14 12.5 12.15 12.91 0.172

Daspletosaurus sp. TMP 1992.36.636 76 14.7 15.7 14.8 15.6 15.2 0.2

Daspletosaurus torosus TMP 2001.36.1 78 13.7 13.8 12 12.8 13.08 0.168



profile. There is no indication of a space for an extra alveolus
anywhere along the alveolar margin.

Stratigraphic and geographic range.—Dinosaur Park For−
mation, Belly River Group (Campanian, Cretaceous); 5 m
above the boundary with the underlying Oldman Formation.
Denhart Coulee, southern Alberta, Canada.

Discussion
Taxonomic affinity.—Two tyrannosaurid taxa are known
from the Dinosaur Park Formation: the albertosaurine Gor−
gosaurus libratus and the tyrannosaurine Daspletosaurus sp.
(Currie 2003a; Fig. 1E). TMP 2007.20.124 is identified as cf.
Daspletosaurus sp. based on the greater relative width of the
premaxilla in its life position, as determined by the angle be−
tween the interpremaxillary suture and the alveolar margin in
ventral view. Even though the width of a tyrannosaurid pre−
maxilla is influenced by allometry, the premaxillary width
can be differentiated between albertosaurines and tyranno−
saurines (Currie 2003a; Carr and Williamson 2004). Carr and
Williamson (2004) used the “narrow” width to distinguish
albertosaurines from tyrannosaurines, but they did not pro−
vide objective, quantitative criteria to define “narrow.” In
this paper, a “wide” premaxilla typical of tyrannosaurines is
defined as one in which all the premaxillary teeth are visible
in anterior view. That is, each of the teeth after the first one
is not overlapped for more than a third of its width by the
sequentially more anterior tooth. This visibility criterion
applies to immature specimens of tyrannosaurines (TMP
1994.143.1, Daspletosaurus sp.; CMNH 7514, Nanotyran−
nus lancensis), but may differ in specimens with aberrant
tooth counts. TMP 2007.20.124 is still interpreted as “wide”
because the angle between the interpremaxillary suture and
the alveolar margin is comparable to that of tyrannosaurines
(50–80�).

TMP 2007.20.124 possibly represents a new tyranno−
saurid taxon because it deviates from the remarkably conser−
vative condition of four premaxillary teeth amongst thero−
pods. However, it is not warranted to assume a distinct taxon
based only on the tooth count of a single element, regardless of
how unusual. No other potentially diagnostic character is seen
in the specimen, and there is no way to test the possibility of
bilateral asymmetry, as is the case for Baryonyx (Charig and
Milner 1997). Furthermore, the Dinosaur Park Formation is an
extremely well−sampled stratigraphic unit from which more
than thirty associated skulls and skeletons of tyrannosaurids
have been collected, all unambiguously identified either as
Daspletosaurus or Gorgosaurus (Currie 2003a, 2005). The
discovery of another distinct large tyrannosaurid theropod is
unlikely from this formation. Unless supported by further evi−
dence, TMP 2007.20.124 is best identified as Daspletosaurus
sp., the only tyrannosaurine from the formation.

Developmental abnormality.—TMP 2007.20.124 provides
the first evidence that the premaxillary tooth count can vary

in tyrannosaurids. The loss of one tooth position is not due to
breakage of the specimen because the maxillary suture is still
preserved. Neither does the low tooth count represent post−
natal modification or a pathological condition, because the
specimen lacks an alveolus filled with bone, and because
there is no abnormal bone texture. The size differences be−
tween the alveoli are also minor. It is therefore unlikely that
any one of the alveoli expanded to incorporate another alve−
olus at some stage of development. Past bibliographic re−
views of theropod palaeopathology (Tanke and Rothschild
2002; Rothschild and Tanke 2005) do not include observa−
tions of theropod premaxilla tooth count variation due to
pathological conditions. The low tooth count is not attribut−
able to ontogenetic variation either. A juvenile specimen of
Daspletosaurus (TMP 1994.143.1, 10 years old, 496 kg esti−
mated body mass; Erickson et al. 2004) is smaller than TMP
2007.20.124 in size, but clearly has four premaxillary teeth
on both premaxillae as in all other specimens of Daspleto−
saurus. This means that the premaxillary tooth count neither
increases nor decreases in Daspletosaurus under normal
conditions. Thus, the low premaxillary tooth count in TMP
2007.20.124 represents a case of abnormal tooth develop−
ment. Under this hypothesis, it is unlikely that the number of
the premaxillary teeth is subject to developmental plasticity
under normal conditions, because no other tyrannosaurid
premaxilla is known to have more than or less than four teeth.
The three complete alveoli with no trace indicating the fourth
precludes post−natal modification to the number of the pre−
maxillary teeth. Thus, the three−tooth state may be inter−
preted as a developmental abnormality due to an error during
odontogenesis. Further analysis of this character requires a
brief review of tooth morphogenesis and discussion for a de−
velopmental model to explain tooth count variation.

Developmental models for tooth count variation.—Using
mice, Kavanagh et al. (2007) demonstrated that inhibitory
signals from a developing tooth bud successively regulate
development of the next tooth. Under this model, prolonged
or accelerated development of a tooth bud changes the pro−
portions of molars that subsequently develop, and results in
variation in the number and relative size of the teeth (Fig.
2A). A long history of morphological works on mammal
dentition lends support for this model. Most importantly,
teeth that develop later have lower heritabilities for size or
are more variable in size and shape (Lundstrüm 1948; Bader
1965; Bader and Lehman 1965; Guthrie 1965; Sofaer et al.
1971a; Gingerich and Winkler 1979). This is because the last
tooth to develop must accommodate fluctuations in size
growth of earlier developing teeth. Indeed, if the teeth that
develop earlier end up being relatively larger, the ones that
develop later tend to compensate for this by reducing their
relative size (Gruneburg 1951; Grewal 1962; Van Valen
1962; Gould and Garwood 1969; Sofaer 1969; Sofaer et al.
1971a, b) Recently, Laffont et al. (2009) and Renaud et al.
(2009) provided positive evidence for the cascading effect of
molar proportions in voles and mice. These observations
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demonstrate that the dimensions of a tooth position are regu−
lated separately from the dimensions of an odontogenic field,
and that changes in tooth size alter the proportions of the
teeth and eventually lead to tooth count variation. Renvoisé
et al. (2009) used the molar dimensions in arvicolines to re−
ject proportional reduction in molar size predicted by the in−
hibitory cascade model. However, proportional reduction in
tooth size is only possible if the inhibitory signals propor−
tionally accumulates from one tooth to next, and if relative
dimensions of the odontogenic field remains constant be−
tween animals under comparison. In other words, a cascade
of inhibitory signals can create teeth of identical size if the
signals proportionally decrease in expression levels from one
tooth to the next.

Outside Mammalia, there is evidence for shared regulatory
pathways and similar regulatory mechanisms for tooth size
and an odontogenic field (Smith 2003; Streelman et al. 2003;
Fraser et al. 2004, 2006a, 2009). But tooth patterning is more
complicated in non−mammalian vertebrates, partly because
primary tooth position patterning must translate into continu−

ous replacement pattern (Fraser et al. 2006b; Huysseune and
Witten 2006), and partly because teeth do not necessarily form
in an apparent sequential manner. In alligators, for example,
primary tooth positions are established anterior and posterior
to the first tooth bud, and secondary tooth positions are set in
between some of the primary ones (Westergaard and Ferguson
1986, 1987, 1990). To interpret this, Osborn (1971, 1978) pos−
tulated a zone of inhibition around a developing tooth bud,
coupled with growth of an entire odontogenic field (Kulesa et
al. 1996; Osborn 1998). That is, a tooth bud can only develop
outside the sphere of a threshold concentration of inhibitors
around an already developing tooth bud (Fig. 2B). Growth of
the odontogenic field allows adjacent teeth to form outside the
zone of inhibition. Under this model, a zone of inhibition mor−
phologically manifests itself in the space that each tooth posi−
tion occupies.

Developmental implications.—These developmental insights
are useful in the interpretation of tooth count variation. In
tyrannosaurid theropods, tooth count varies intraspecifically
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and bilaterally in the maxillae and dentaries. Amongst speci−
mens of Gorgosaurus, for example, the maxillary tooth count
varies from thirteen to fifteen, and bilateral variation may exist
by a difference of one additional tooth on either side (Currie
2003a). In these animals, maxillary tooth row length is highly
correlated with maxillary length (Currie 2003b), suggesting
consistent spatial regulation of the odontogenic field. At the
same time, correspondence of anterior alveolus positions with
other morphological landmarks within maxillae (Miyashita
2008) indicates that the sizes of the teeth and of their zones of
inhibition are also controlled. As such, putting teeth of given
sizes along the alveolar margin lines up the alveoli in predict−
able positions. Posteriorly along the tooth row, however, the
accumulation of small errors in regulation of tooth sizes and
the zones of inhibition, plus perhaps slight difference in di−
mensions of the odontogenic field between right and left sides,
would leave either enough or too little room for the last few
teeth. At this stage, any presumptive tooth potential outside
the field would be aborted. The net result is bilateral asymme−
try and intraspecific variation in tyrannosaurid maxillary tooth
count. Such hypothesised compensatory interaction is consis−
tent with the mammalian trend of shifting molar proportions.
Sofaer (1973) explains the mammalian compensatory interac−
tion that teeth are genetically too large for the element in
which they develop, and therefore modulate their proportions
and number to fit in it. A compensatory interaction between
the regulatory parameters offers a simpler explanation for
tooth count variation than assuming that developmental regu−
lation acts directly upon the determination of each tooth posi−
tion. Although the zone of inhibition and tooth size cannot be
decoupled for most dinosaurs with their teeth being closely
packed together, the widely spaced dentition of the theropod
Archaeornithoides (Elżanowski and Wellnhofer 1993) and the
heterodont premaxillary dentition of spinosaurid theropods
(Charig and Milner 1997; Dal Sasso et al. 2005) demonstrate
that these traits can be independent.

As for premaxillary dentition in dinosaurs, less plasticity in
tooth count is expected than for maxillary or dentary den−
titions, simply because the relatively smaller dimensions of
the alveolar margin of the premaxilla would leave little room
for the accumulation of perturbations to include or exclude an
extra tooth. A taxonomic difference in premaxillary tooth
count must be a rare consequence of significant alterations to
one or more of the regulatory properties to create or remove a
tooth position. These predictions accurately describe the
trends of premaxillary tooth count in dinosaurs (Table 1).
Odontogenic fields of the premaxilla and maxilla are inde−
pendent from each other (Westergaard and Ferguson 1990),
partly because a tooth never develops across the boundary be−
tween the premaxilla and maxilla. In tyrannosaurids, the ante−
rior borders of the maxillae serve as posterior walls of the last
premaxillary alveoli (Currie 2003a). Also in tyrannosauroids,
premaxillary teeth equal each other in size but are smaller than
maxillary teeth, which suggests that relative size of the teeth is
regulated independently between premaxilla and maxilla.

TMP 2007.20.124 has the largest alveolar dimensions
relative to premaxillary size among all the tyrannosaurid pre−
maxillae listed in Table 2 (Fig. 3). The sizes of the alveoli in
TMP 2007.20.124 are comparable to those of TMP
2001.36.1, one of the largest specimens of Daspletosaurus,
whereas the length of the premaxillary alveolar margin mea−
sured is approximately 30% smaller than that in TMP
2001.36.1. Because all alveoli in TMP 2007.20.124 are simi−
lar in size to each other, it is possible that the first three
premaxillary tooth positions grew relatively large and even−
tually “pushed” the potential fourth tooth outside the odonto−
genic field of the premaxilla at an early stage in the develop−
ment. The implication is that the low premaxillary tooth
count of TMP 2007.20.124 is a result of an abnormal in−
crease in tooth size, rather than to a change in relative dimen−
sions of the odontogenic field or to an inconsistent regulation
on tooth size along the tooth row. By simple calculation, a
zone of inhibition a third larger could alter the tooth count to
three from four (Fig. 4), which roughly coincides with rela−
tive size of premaxillary alveoli in TMP 2007.20.124 com−
pared to other tyrannosaurids. When a mean alveolar diame−
ter is corrected for length of the alveolar margin, TMP
2007.20.124 has a diameter 1.23 times the average of those
in four−toothed tyrannosaurid premaxillae (Table 2: mean
alveolus diameter/ premaxillary arc length). In contrast, the
premaxillary tooth count of seven in Pelecanimimus is attrib−
uted to the relatively small size of the teeth (Perez−Moreno et
al. 1994), which could be a consequence of decreased ex−
pression of the inhibitor. Finally, a test for cascading effect
and compensatory interaction in tooth size regulation in di−
nosaurs must meet three predictions: (i) tooth count co−varies
with relative dimensions of the tooth−bearing portion of the
alveolar margin and/or the relative size of the alveoli taken
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together but not individually; (ii) the teeth and the alveoli
show higher covariance in size and shape between adjacent
ones than between those spaced widely apart along the se−
ries; and (iii) the last developing tooth and alveolus in the
series are more variable in relative size and shape than the
earlier ones. Although these predictions await quantitative
tests, the relatively large tooth size and low tooth count in
TMP 2007.20.124 provides qualitative support for tooth
count as a function of relative tooth size. Also consistent with
the first prediction is the association of a high premaxillary
tooth count of seven with either small teeth (Pelecanimimus)
or an elongate premaxillary alveolar margin (spinosaurids) in
theropods.

Phylogenetic implications.—It is always an issue how to
treat numerical traits such as tooth count and number of verte−
brae in phylogenetic analysis, because implicit character
weighting is an inevitable consequence of assigning a charac−
ter state to continuous variation. All but one major character
set for phylogenetic analysis of tyrannosaurids is free of char−
acters based on tooth count (Holtz 2001, 2004; Carr 2004;
Carr and Williamson in Brusatte et al. 2009; Sereno et al.
2009; as opposed to Currie et al. 2003). These characters do
not accurately reflect true phylogenetic signals, not only be−
cause tooth count is variable individually, but also because
tooth count is a function of size regulation of both an
odontogenic field and tooth positions. Therefore, variation in
tooth count should be assessed using a morphological signa−
ture for alteration in each parameter. Relative dimensions of
an odontogenic field and relative tooth size may be difficult to
determine. A more indirect alternative is to use a combination
of particular positions of teeth relative to other landmarks. For
example, a sixth maxillary tooth position coincides with the
anterior margin of an antorbital fossa in all tyrannosaurids and
in the basal tyrannosauroids Dilong and Raptorex, but not in
another basal tyrannosauroid (Guanlong).

Functional implications.—The lower number of tooth posi−
tions and the sizes of the alveoli in TMP 2007.20.124 show
that the premaxillary teeth were relatively larger, and pre−
sumably mechanically more resistant. However, the other−
wise consistent presence of four teeth in tyrannosaurids sug−
gests that the selective advantage of larger premaxillary
teeth, if any, is limited. The conservatism in theropod pre−
maxillary tooth count may imply that four is the functionally
optimal number for premaxillary teeth. Lack of functional
morphological studies on relatively small, lateromedially
wide tyrannosaurid premaxillary teeth restrains the authors
from exploring a functional implication of the larger pre−
maxillary teeth.
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