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ABSTRACT
The necks of the sauropod dinosaurs reached 15 m in length: six times longer than
that of the world record giraffe and five times longer than those of all other terrestrial
animals. Several anatomical features enabled this extreme elongation, including:
absolutely large body size and quadrupedal stance providing a stable platform for a
long neck; a small, light head that did not orally process food; cervical vertebrae that
were both numerous and individually elongate; an efficient air-sac-based respiratory
system; and distinctive cervical architecture. Relevant features of sauropod cervical
vertebrae include: pneumatic chambers that enabled the bone to be positioned
in a mechanically efficient way within the envelope; and muscular attachments
of varying importance to the neural spines, epipophyses and cervical ribs. Other
long-necked tetrapods lacked important features of sauropods, preventing the
evolution of longer necks: for example, giraffes have relatively small torsos and large,
heavy heads, share the usual mammalian constraint of only seven cervical vertebrae,
and lack an air-sac system and pneumatic bones. Among non-sauropods, their
saurischian relatives the theropod dinosaurs seem to have been best placed to evolve
long necks, and indeed their necks probably surpassed those of giraffes. But 150
million years of evolution did not suffice for them to exceed a relatively modest 2.5 m.

Subjects Evolutionary Studies, Paleontology, Zoology
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INTRODUCTION
Neck elongation occurs in many extant clades and is also found in many extinct groups.

Some modern birds and certain extinct tetrapods have necks that are relatively long (i.e. as

a proportion of total body length). Although these are interesting modifications of the

basic tetrapod body plan, here we are concerned with absolute neck length. This is of

interest because of the great mechanical difficulties imposed by absolutely long necks, and

the anatomical novelties that needed to evolve to make such necks possible.

The necks of the sauropod dinosaurs were by far the longest of any animal, six times

longer than that of the world record giraffe and five times longer than those of all other

terrestrial animals. In many long-necked animals, the legs are of a similar length and so the

neck elongation can be explained as a simple consequence of the need to reach down to

ground level – for example in order to drink. By contrast, the necks of all sauropods were

longer than necessary to reach the ground – in most cases, many times longer.
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Table 1 Neck statistics of some sauropods, chosen because of unusually long, short or complete necks.

Taxon Neck length (m) Cervical count Longest centrum (cm) Longest cervical rib (cm) Maximum
elongation index

Mamenchisaurus hochuanensis 9.5 19 73 (C11) 210 (C14) 2.9 (C6)

Mamenchisaurus sinocanadorum 12 est. 19? ≥ 410

Brachytrachelopan mesai 1.1 est. 12? 10 ≤ centrum ≤ 1

Apatosaurus louisae 5.9 15 55 (C11) 39 (C11) 3.7 (C4)

Diplodocus carnegii 6.5 15 64 (C14) 48 (C11) 4.9 (C7)

Barosaurus lentus 8.5 est. 16? 87 (C14) <centrum 5.4 (C8)

Supersaurus vivianae 15.0 est. 15? ≥ 138 ≤ centrum

Giraffatitan brancai 8.5 13 100 (C10) 290 (C7) 5.4 (C5)

Sauroposeidon proteles 11.5 est. 13? 125 (C8) 342 (C6) 6.1 (C6)

Euhelopus zdanskyi 4.0 17 28 (C11) 72 (C14) 4.0 (C4)

We survey the evolutionary history of long necks in sauropods and other animals, and

consider the factors that allowed sauropod necks to grow so long. We then examine the

osteology of sauropod necks more closely, comparing their cervical anatomy with that of

their nearest extant relatives, the birds and crocodilians, and discussing unusual features

of sauropods’ cervical vertebrae. Finally we discuss which neck elongation features were

absent in non-sauropods, and show why giraffes have such short necks.

LONG NECKS IN DIFFERENT TAXA
While they reach their zenith in sauropods, long necks have evolved repeatedly in several

different groups of tetrapods. Long necks impose a high structural and metabolic cost,

but provide evolutionary advantages including an increased browsing range (Cameron &

du Toit, 2007) and the ability to graze a wide area without locomotion (Martin, 1987) and

probably played some role in mate attraction (Simmons & Scheepers, 1996; Senter, 2006;

Taylor et al., 2011). Here we survey the longest necked taxa in several groups of extant and

extinct animals (Figs. 1 and 2).

Note that most of the length estimates in this section are necessarily imprecise, being

based on incomplete specimens and cross-scaling assumptions. They can be taken only as

indicative, not as reliable figures.

Extant animals
Among extant animals, adult bull giraffes can attain a neck of 2.4 m (Toon & Toon, 2003,

p. 399), and no other extant animal exceeds half of this. The typical length of the neck of

the ostrich is only 1.0 m (sum of vertebral lengths in Dzemski & Christian (2007), Table 1,

plus 8% to allow for intervertebral cartilage – see Cobley, 2011, p. 16).

Extinct mammals
The largest terrestrial mammal of all time was the long-necked rhinoceratoid Parac-

eratherium Forster-Cooper, 1911 (= Baluchitherium Forster-Cooper, 1913, Indri-

cotherium Borissiak, 1915). The length of its neck can be measured as 1.95 m from the
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Figure 1 Necks of long-necked non-sauropods, to scale. The giraffe and Paraceratherium are the longest necked mammals; the ostrich is the
longest necked extant bird; Therizinosaurus and Gigantoraptor are the largest representatives of two long-necked theropod clades; Arambourgiania
is the longest necked pterosaur; and Tanystropheus has a uniquely long neck relative to torso length. Human head modified from Gray’s Anatomy
(1918 edition, fig. 602). Giraffe modified from photograph by Kevin Ryder (CC BY, http://flic.kr/p/cRvCcQ). Ostrich modified from photograph by
“kei51” (CC BY, http://flic.kr/p/cowoYW). Paraceratherium modified from Osborn (1923, figure 1). Therizinosaurus modified from Nothronychus
reconstruction by Scott Hartman. Gigantoraptor modified from Heyuannia reconstruction by Scott Hartman. Arambourgiania modified from
Zhejiangopterus reconstruction by Witton & Naish (2008, figure 1). Tanystropheus modified from reconstruction by David Peters. Alternating blue
and pink bars are 1 m tall.

skeletal reconstruction of Granger & Gregory (1936, figure 47). This length, however, is

rather shorter than suggested by the text (pp. 10–20), in which lengths of 39, 39, 36, 29.6

and 18 cm are given for cervicals 1, 2, 4, 6 and 7, even though C2 and C7 are reported

as of “size class III”. When the lengths of C2 and C7 are multiplied by 1.3 to give lengths
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Figure 2 Full skeletal reconstructions of selected long-necked non-sauropods, to scale. 1, Paraceratherium. 2, Therizinosaurus. 3, Gigantoraptor.
4, Elasmosaurus. 5, Tanystropheus. Elasmosaurus modified from Cope (1870, plate II, figure 1). Other image sources as for Fig. 1. Scale bar= 2 m.

of equivalent “size class I” bones (Granger & Gregory, 1936, p. 65), their lengths become

50.7 and 23.4 cm. The total length of the preserved cervicals would then be 178.7 cm even

though C3 and C5, which were not recovered, are omitted. If these vertebrae are tentatively

assigned lengths intermediate between those that preceded and succeeded them (i.e., 43.4

and 32.8 cm) then the total length of all seven centra is 254.9 cm, more than 30% longer
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than the illustrated length. At any rate, the material available suggests a total neck length in

the 2–2.5 m range.

Theropods
In each of the successively more derived clades Ornithodira, Dinosauria, and Saurischia,

the primitive state was an increasingly long neck (Gauthier, 1986; Sereno, 1991a; Langer,

2004). Within Saurischia, both branches of that clade, Sauropodomorpha and Theropoda,

further elongated their necks (Galton & Upchurch, 2004). So sauropods inherited as their

primitive state necks that were already more elongated, and heads that were proportionally

smaller, than in most animals.

Within Theropoda, at least three lineages evolved especially long necks. The lengths

of their necks can be estimated from their incomplete remains, though with some

uncertainty, as follows.

Therizinosaurus cheloniformis Maleev, 1954 is a bizarre, long-necked giant theropod,

known from incomplete remains. Measuring from Barsbold (1976, figure 1), its humerus

was about 75 cm long. In a skeletal reconstruction of the therizinosauroid Nanshiun-

gosaurus Dong, 1979 by Paul (1997, p. 145), the neck is 2.9 times the length of the humerus.

If Therizinosaurus were similarly proportioned, its neck would have been about 2.2 m long.

Another giant theropod, Gigantoraptor erlianensis Xu et al., 2007 belongs to another

long-necked group, Oviraptorosauria. Measured from the skeletal reconstruction of

Xu et al. (2007, figure 1A), it appears to have had a neck 2.15 m in length – although this is

conjectural as almost no cervical material is known.

Pterosaurs
Although it is often noted in general terms that azhdarchid pterosaurs had long necks

(e.g., Howse, 1986; Witton & Naish, 2008), there are no published numeric estimates of

neck length in this group. This is due to the lack of any published azhdarchid specimen

with a complete neck (Witton & Habib, 2010): Quetzalcoatlus specimens at the Texas

Memorial Museum may have complete necks, but have been embargoed since the early

1980s (Langston, 1981): a monographic description is still awaited. In the absence of a

complete neck, all length estimates are uncertain, but it is nevertheless possible to arrive at

an approximate length.

The azhdarchid for which the most complete neck has been described is Zhejiangopterus

linhaiensis Cai & Wei, 1994, so we will base our estimates on this species. Cai & Wei (1994,

table 7), give the lengths of cervicals 3–7 for three specimens, ZMNH M1323, M1324

and M1328. In all three, C5 is the longest cervical, as is generally true of pterodacyloid

pterosaurs including azhdarchids (Howse, 1986, p. 323). Cai & Wei (1994) do not give

lengths for C1 and C2, stating only that “the atlas-axis is completely fused and extremely

short but morphological details are indistinct due to being obscured by the cranium”

(p. 183, translation by Will Downs). Their figure 6, a reconstruction of Zhejiangopterus

linhaiensis, bears this out, showing the atlas-axis as about one quarter the length of

C3. Using this ratio to estimate the C1–2 lengths for each specimen, we find by adding

the lengths of the individual cervicals that the three specimens had necks measuring
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Figure 3 Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-
necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified
from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue
bars are one meter in width. Inset shows Fig. 1 to the same scale.

approximately 511, 339 and 398 mm. These lengths are 3.60, 4.04 and 4.06 times the

lengths of their respective C5s. On average, then, total C1–C7 neck length in known

Zhejiangopterus specimens was about 3.85 times that of C5.

The azhdarchid Arambourgiania philadelphiae Arambourg, 1959 is the largest pterosaur

for which cervical material has been described. Its type specimen, UJF VF1, is a single

cervical vertebra. It was nearly complete when found, but has since been damaged and

is now missing its central portion, but plaster replicas made before the damage indicate

the extent of the missing portion. The preserved part of the vertebra was 620 mm long

before the damage, and when complete it would have been about 780 mm long (Martill et

al., 1998, p. 72). Assuming that the preserved element is C5, as considered likely by Howse

(1986, p. 318) and Frey & Martill (1996, p. 240), the length of the C1–C7 region of the neck

can be estimated as 3.85 times that length, which is 3.0 m.

The total number of cervical vertebrae in Zhejiangopterus is not clear: Cai & Wei (1994)

imply that there are seven, and their illustrations (Figs. 5 and 6) indicate that in at least

one specimen the vertebral column is complete. However, at least some azhdarchids seem

to have have nine cervical vertebrae (e.g., Phosphatodraco, Pereda-Suberbiola et al., 2003),
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Figure 4 Extent of soft tissue on ostrich and sauropod necks. 1, Ostrich neck in cross section from Wedel (2003, figure 2). Bone is white, air-spaces
are black, and soft tissue is grey. 2, Hypothetical sauropod neck with similarly proportioned soft-tissue. (Diplodocus vertebra silhouette modified
from Paul, 1997, figure 4A). The extent of soft tissue depicted greatly exceeds that shown in any published life restoration of a sauropod, and is
unrealistic. 3, More realistic sauropod neck. It is not that the soft-tissue is reduced but that the vertebra within is enlarged, and mass is reduced by
extensive pneumaticity in both the bone and the soft-tissue.

although the ninth “cervical” bears a long vertically oriented rib and must have contributed

to the length of the torso rather than the neck. Bearing this in mind, the total neck length of

Arambourgiania may have somewhat exceeded 3.0 m. In azhdarchids, C8 may be between

20% and 50% the length of C5 (Pereda-Suberbiola et al., 2003, p. 86), which might amount

to 16–39 cm in Arambourgiania.

Another azhdarchid, Hatzegopteryx thambema Buffetaut, Grigorescu & Csiki (2002), may

have been even larger than Arambourgiania, but no cervical material is known. Since its

skull was much more robust that those of other azhdarchids (Buffetaut, Grigorescu & Csiki,

2002, p. 183), it was probably carried on a proportionally shorter and stronger neck.

Plesiosaurs
As marine reptiles, plesiosaurs benefited from the support of water and so lived under

a wholly different biomechanical regime than terrestrial animals. The long necks of

elasmosaurid plesiosaurs were constructed very differently from those of sauropods,

consisting of many very short cervicals – 76 in the neck of Albertonectes vanderveldei Kubo,

Mitchell & Henderson, 2012 and 71 in Elasmosaurus platyurus Cope, 1868 (Sachs, 2005,

p. 92). Despite their marine lifestyle and very numerous cervicals, elasmosaurids did not

attain neck lengths even half those of the longest-necked sauropods. According to Kubo,

Mitchell & Henderson (2012, p. 570), “The approximately 7 m long neck of Albertonectes

is the longest known for elasmosaurs (equal to 62% of total postcranial length).” Since

the neck of Albertonectes was found articulated, the reported total neck length presumably

includes the invertebral cartilage. Other elasmosaurs may have had equally long necks.

The cervical vertebrae of Elasmosaurus platyurus holotype ANSP 10081 sum to 610.5 cm,

based on individual vertebral lengths listed by Sachs (2005, p. 95). For other plesiosaurs,

Evans (1993) estimated that the thickness of intercervical cartilage amounted to 14%
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Figure 5 Simplified myology of the sauropod neck, in left lateral view, based primarily on homology with birds, modified from Wedel & Sanders
(2002, figure 2). Dashed arrows indicate muscle passing medially behind bone. A, B. Muscles inserting on the epipophyses, shown in red. C, D, E.
Muscles inserting on the cervical ribs, shown in green. F, G. Muscles inserting on the neural spine, shown in blue. H. Muscles inserting on the
ansa costotransversaria (“cervical rib loop”), shown in brown. Specifically: A. M. longus colli dorsalis. B. M. cervicalis ascendens. C. M. flexor colli
lateralis. D. M. flexor colli medialis. E. M. longus colli ventralis. In birds, this muscle originates from the processes carotici, which are absent in the
vertebrae of sauropods. F. Mm. intercristales. G. Mm. interspinales. H. Mm. intertransversarii. Vertebrae modified from Gilmore (1936, plate 24).

of centrum length in Muraenosaurus Seeley, 1874 and 20% in Cryptoclidus Seeley, 1892.

Using the average of 17% for Elasmosaurus, we can estimate its total neck length as 7.1 m

(Fig. 2.4). This is within 6% of Leidy’s (1870) estimate of “almost twenty-two feet”, or about

6.7 m, and approximately equal to the 7-m neck length reported for Albertonectes by Kubo,

Mitchell & Henderson (2012).

These longest necks are in the Diplodocus class. They lack most of the characters that

we later identify as contributing to neck length in sauropods, but solved the support

issue by being marine. We know from whales (see below) that a 7 m trachea need not

impose the difficulties we might expect; but we don’t know whether sufficiently large lungs

would fit inside an elasmosaur torso. So far, little work has been done on the physiological

implications of neck elongation in plesiosaurs; more is needed.

Tanystropheus
The bizarre prolacertiform Tanystropheus merits mention as possessing perhaps the longest

neck relative to torso length of any animal. The complete skeleton PIMUZ T 2818 has

a total length of 420 cm (Nosotti, 2007, p. 8), of which the neck accounts for 211.2 cm

(Tschanz, 1988, p. 1003) – almost exactly half. Nosotti (2007, p. 8) estimates the total length
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Figure 6 Basic cervical vertebral architecture in archosaurs. 1, Seventh cervical vertebra of a turkey, Meleagris gallopavo Linnaeus, 1758, traced
from photographs by MPT. 2, Fifth cervical vertebra of the abelisaurid theropod Majungasaurus crenatissimus Depéret, 1896, UA 8678, traced
from O’Connor (2007, figures 8 and 20). In these taxa, the epipophyses and cervical ribs are aligned with the expected vectors of muscular forces.
The epipophyses are both larger and taller than the neural spine, as expected based on their mechanical importance. The posterior surface of the
neurapophysis is covered by a large rugosity, which is interpreted as an interspinous ligament scar like that of birds (O’Connor, 2007). Because this
scar covers the entire posterior surface of the neurapophysis, it leaves little room for muscle attachments to the spine. 3, Fifth cervical vertebra of
Alligator mississippiensis Daudin, 1801, MCZ 81457, traced from 3D scans by Leon Claessens, courtesy of MCZ. Epipophyses are absent. 4, Eighth
cervical vertebra of Giraffatitan brancai (Janensch, 1914) paralectotype MB.R.2181, traced from Janensch (1950, figures 43 and 46). Abbreviations: cr,
cervical rib; e, epipophysis; ns, neural spine; poz, postzygapophysis.

of the incomplete specimen PIMUZ T 2793 as 535 cm. If it were similarly proportioned to

PIMUZ T 2818, its neck would have measured 269 cm.

Despite more than a century of study, there is no consensus on the habits or even

environment of Tanystropheus. However, Nosotti (2007, p. 76) argues that limb proportions

“unequivocally indicate the adaptation to an aquatic mode of life”. If this is correct, then its

neck was subject to a quite different biomechanical regime than those of sauropods.

Sauropods
The necks of sauropod dinosaurs greatly exceeded in length those of all other an-

imals (Wedel, 2006a). As noted above, they inherited long necks from their basal

sauropodomorph ancestors. From this base, they elongated them yet further – both in

ancestral forms and further still in more derived groups. Exceptionally long necks evolved

in at least four distinct sauropod lineages (Fig. 3).

The basal eusauropod Mamenchisaurus Young, 1954 is known from several species.

One, M. hochuanensis Young & Zhao, 1972, is known from an individual with a
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complete neck that is 9.5 m in length (personal measurement, MPT). Another species,

M. sinocanadorum Russell & Zheng, 1993 is known only from skull elements and anterior

cervical vertebrae, but by comparing this material with the corresponding elements of

M. hochuanensis, its neck can be estimated to have been about 12 m long.

The known material of the diplodocid Supersaurus Jensen, 1985 includes a cervical

vertebra whose centrum is 138 cm long. Comparing this with the lengths of similar

vertebrae from the closely related Barosaurus Marsh, 1890, for which much more

complete necks are known, suggests a complete neck length in the region of 15 m

(Wedel, 2007a, p. 197).

The holotype and largest known specimen of Sauroposeidon Wedel, Cifelli & Sanders,

2000a consists of a sequence of four articulated cervical vertebrae, the largest of which

has a centrum 125 cm long. The complete cervical series of the morphologically similar

and possibly closely related brachiosaurid Giraffatitan Paul, 1988 is known, and consists

of 13 cervicals measuring 8.5 m. The Sauroposeidon cervicals are on average 37% longer

than the corresponding vertebrae of Giraffatitan, suggesting a complete neck length of

about 11.5 m. If Sauroposeidon is a basal somphospondyl rather than a brachiosaurid, as

suggested by D’Emic & Foreman (2012), then a more apposite comparison might be to

Euhelopus, which had 17 cervicals. The complete cervical series of Euhelopus PMU R233 is

13.2 times the length of the longest cervical (3765 mm vs 285 mm; Wiman, 1929). Applying

a similar scaling relationship to Sauroposeidon, and conservatively assuming that the largest

available vertebra was the longest in the neck, yields an estimated neck length of 16.5 m. We

will not know which of the two estimates is more accurate until more articulated cervical

material of Sauroposeidon comes to light.

Puertasaurus Novas et al., 2005 is the largest titanosaur for which cervical material has

been described. The single known cervical vertebra is 118 cm in total length, including

overhanging prezygapophyses, and its incomplete centrum can be reconstructed after

related titanosaurs as having been 105 cm long. Cross-scaling with Malawisaurus Jacobs

et al., 1993, which has the most similar cervical vertebrae among titanosaurs known from

complete cervical material, yields a total neck length of 9 m.

Table 1 lists a selection of sauropods, mostly known from complete or nearly complete

necks, showing how they vary in length, cervical count, centrum length, cervical rib length,

and maximum elongation index.

FACTORS ENABLING LONG NECKS
Discounting the aquatic plesiosaurs, whose necks were subject to different forces from

those of terrestrial animals, neck-length limits in the range of two to three meters seem

to apply to every group except sauropods, which exceeded this limit by a factor of five.

Whatever mechanical barriers prevented the evolution of truly long necks in other

terrestrial vertebrates, sauropods did not just break that barrier – they smashed it. Since

four separate sauropod lineages evolved necks three or four times longer than those of any

of their rivals, it seems likely that sauropods shared a suite of features that facilitated the

evolution of such long necks. What were these features?
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Absolutely large body size
It is obviously impossible for a terrestrial animal with a torso the size of a giraffe’s to carry

a 10 m neck. Sheer size is probably a necessary, but not sufficient, condition for evolving

an absolutely long neck. Mere isometric scaling would of course suffice for larger animals

to have longer necks, but Parrish (2006, p. 213) found a stronger result: that neck length is

positively allometric with respect to body size in sauropods, varying with torso length to

the power 1.35. This suggests that the necks of super-giant sauropods may have been even

longer than imagined: Carpenter (2006, p. 133) estimated the neck length of the apocryphal

giant Amphicoelias fragillimus Cope, 1878 as 16.75 m, 2.21 times the length of 7.5 m used

for Diplodocus, but if Parrish’s allometric curve pertained then the true value would have

been 2.211.35
= 2.92 times as long as the neck of Diplodocus, or 21.9 m; and the longest

single vertebra would have been 187 cm long.

The allometric equation of Parrish (2006) is descriptive, but does not in itself suggest

a causal link between size and neck length. As noted by Wedel, Cifelli & Sanders (2000b,

p. 377), one possible explanation is that, because of their size, sauropods were under strong

selection for larger feeding envelopes, which drove them to evolve longer necks.

Quadrupedal stance
One of the key innovations in the evolution of sauropods was quadrupedality, facilitated by

characters such as forelimb elongation, columnar limbs and short metapodials (Wilson &

Sereno, 1998, p. 24). As well as providing a platform for the evolution of large body size, the

stability of the quadrupedal posture also enabled the evolution of longer necks: although

progressive elongation displaced the centre of mass forwards from above the hindlimbs, it

remained in the stable region between fore and hindlimbs.

Computer modelling shows that theropod dinosaurs such as Tyrannosaurus rex Osborn,

1905 attained masses of 7 or even 10 tonnes (Hutchinson et al., 2011), and other giant

theropods including Therizinosaurus and Gigantoraptor were probably of comparable

size. However, they did not evolve necks as long as those of sauropods with similar mass,

probably in part for this reason: the increased moment caused by neck elongation in a

biped must be counteracted by an equal moment caused by a longer or more massive tail,

increasing the physiological cost.

Small head
Sauropods inherited proportionally small heads from ancestral sauropodomorphs, and

continued to reduce their proportional size. In many clades, they were further lightened

by reduced dentition, because unlike other large-bodied animals such as hadrosaurs,

ceratopsians and elephants, sauropods did not orally process their food. Sauropod

heads were simple cropping devices with a brain and sense organs, and did not require

special equipment for obtaining food, such as the long beaks of azhdarchids (Chure et

al., 2010, pp. 388–389). The reduction in head weight would have reduced the required

lifting power of the necks that carried them, and therefore the muscle and ligament mass

could be reduced, allowing the necks to be longer than would have been possible with
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heavier heads. Other groups of large-bodied animals have not evolved long necks, instead

either developing large heads on short necks (ceratopsians, proboscideans, tyrannosaurs)

or a compromise of a medium-sized head on a medium-length neck (hadrosaurs,

indricotheres). It is significant that all other clades of large (>10 ton) terrestrial herbivores

– ceratopsians, hadrosaurs, proboscideans, and indricotheres – practiced extensive oral

processing of their food, requiring massive dentition and correspondingly large heads.

Numerous cervical vertebrae
Many groups of animals seem to be constrained as to the number of cervical vertebrae

they can evolve. With the exceptions of sloths and sirenians, mammals are all limited to

exactly seven cervicals due to developmental constraints: mutations to the Hox genes that

control the number of cervicals also give rise to neonatal cancer and other birth defects

(Galis, 1999; Galis & Metz, 2003). Azdarchids are variously reported as having seven to nine

cervical vertebrae, but never more; non-avian theropods do not seem to have exceeded the

13 or perhaps 14 cervicals of Neimongosaurus Zhang et al., 2001, with eleven or fewer being

more typical.

By contrast, sauropods repeatedly increased the number of their cervical vertebrae,

attaining as many as 19 in Mamenchisaurus hochuanensis (Young & Zhao, 1972, p. 3–7).

Modern swans have up to 25 cervical vertebrae, and as noted above the marine reptile

Albertonectes had 76 cervical vertebrae. Multiplication of cervical vertebrae obviously

contributes to neck elongation.

Elongate cervical vertebrae
The shape of cervical vertebrae is quantified by the elongation index (EI), defined by Wedel,

Cifelli & Sanders (2000b, p. 346) as the anteroposterior length of the centrum divided by

the midline height of its posterior articular face. As shown in Table 1, EI in sauropods

routinely exceeded 4.0, and in some cases exceeded 6.0: Sauroposeidon C6 attained 6.1, and

Erketu Ksepka & Norell, 2006 C5 attained 7.0.

A similar degree of elongation is approached by the ostrich, in which C12 can attain

an EI of 4.4 (measured from Mivart, 1874, figure 29), and by the giraffe, in which the axis

can attain an EI of 4.71 (personal measurement of FMNH 34426). It is greatly exceeded

by azhdarchid pterosaurs, among which C5 of Quetzalcoatlus Lawson, 1975 can attain an

astonishing 12.4 (measured from Witton & Naish (2008, figure 4c)) and an isolated cervical

from the Hell Creek Formation might have achieved 15 (measured from Henderson &

Peterson (2006, figure 3)).

But other long-necked groups are more limited in their elongation of individual

vertebrae. Paraceratherium seems have been limited to about 3.3 for C2 (measured

from Granger & Gregory (1936, figure 7)) and much less for the other vertebrae. Elongation

indexes of therizinosaurs such as Therizinosaurus probably did not greatly exceed 1.0

(measured for Nanshiungosaurus from Dong (1979, figures 1–2)); those of oviraptorosaurs

such as Gigantoraptor, 2.0 (measured from a photograph by MJW of referred specimen

IGM 100/1002 of Khaan mckennai Clark, Norell & Barsbold, 2001). The very numerous
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vertebrae of Elasmosaurus are not very elongate, mostly having an EI around 1.0 and not

exceeding about 1.4 (measured from Sachs (2005), figure 4).

Air-sac system
One limiting factor on neck length is the difficulty of breathing through a long trachea.

If the trachea is narrow, then it is difficult to inhale sufficient air quickly – a problem

exacerbated by friction of inhaled air against the tracheal wall. But if the trachea is wider,

its volume is increased, and a larger quantity of used air in the “tracheal dead space” is

re-inhaled in each breath, reducing the oxygen content of each breath.

For this reason, it would be reasonable to expect animals to evolve the shortest possible

trachea. However, in one clade – birds – an elongate trachea is not unusual, having evolved

in swans (Banko, 1960), cranes (Johnsgard, 1983), moas (Worthy & Holdaway, 2002),

birds-of-paradise (Frith, 1994) and several other groups. This trend reaches its peak in

the trumpet manucode Phonygammus keraudrrenii (Clench, 1978). In some mature males,

the trachea coils back on itself so many times that its total length exceeds 800 mm, nearly

three times the total body length of approx. 30 cm. Alone among extant animals, birds are

able to cope with such extreme tracheal elongation, due to their very efficient lungs and the

large tidal volume of the whole respiratory system on account of the voluminous air-sacs.

It is now well established that sauropods had an air-sac system similar to that of extant

birds (Wedel, 2003), and most likely a similarly efficient flow-through lung (Wedel, 2009).

These features would have greatly eased the problem of tracheal dead space, facilitating

the evolution of longer necks. The air-sac system, including cervical air-sacs and extensive

cervical diverticula running the full length of the neck, would also have served to lighten

long necks.

Among other long-necked animals, theropods (including Therizinosaurus and

Gigantoraptor) and pterosaurs also had air-sac systems; but the mammals (giraffes,

Paraceratherium) did not. However, whales provide an example suggesting it is unlikely

that the evolution of long necks in terrestrial mammals has been limited by tracheal dead

space. In a male sperm whale (Physeter) with a total body length of 16 m, the length of the

head is 5.6 m (Nishiwaki, Ohsumi & Maeda (1963), cited in Cranford (1999, table 1)). The

largest sperm whales are up to 20 m in total body length (Gosho, Rice & Breiwick, 1984),

which would give a head length of 7 m if these largest individuals scaled isometrically with

the 16-m whales. However, the head length of sperm whales is positively allometric and

increases with age even in adults (Cranford, 1999, p. 1141 and figure 4), so a 20-m adult

might well have a head slightly more than 7 m long. As in all cetaceans, the skull of a sperm

whale is separated from the ribcage by the highly compressed cervical series. Finally, the

nasal airways in sperm whales do not take a direct path from the blowhole to the lungs

but describe sinuous curves through the head (Cranford, 1999, figures 1 and 3). In a sperm

whale with a 7-m head, the internal convolution of the nasal airways and the addition of

the trachea spanning from the head to the trunk would give the path from blowhole to

lungs a total length of perhaps 9 m, showing that tracheae at least that long are possible

without an air sac system.

Taylor and Wedel (2013), PeerJ, DOI 10.7717/peerj.36 13/41

https://peerj.com
http://dx.doi.org/10.7717/peerj.36


Vertebral architecture
Aside from the factors previously discussed, the elongation of sauropod necks was made

possible by the distinctive architecture of their cervical vertebrae. The various aspects of

their architecture are discussed in detail in the next section.

ARCHITECTURE OF SAUROPOD NECKS
Pneumaticity of cervical vertebrae
Not only did sauropods have a soft-tissue diverticular system, but the diverticula often

invaded the vertebrae, leaving extensive excavations and other traces (e.g., Janensch, 1947;

Wedel, Cifelli & Sanders, 2000b). Indeed, it is from the latter that we are able to infer the

former.

The air space proportion (ASP) of a bone is the proportion of its volume taken up

by pneumatic cavities (Wedel, 2005). Dicraeosaurids (Dicraeosaurus, Amargasaurus, and

related taxa) had reduced postcranial pneumaticity compared to other neosauropods,

both in terms of the number of presacral vertebrae that were pneumatized, and in the air

space proportion (Schwarz & Fritsch, 2006). The presacral vertebrae of most neosauropod

taxa had ASPs between 0.50 and 0.70 (Table 2) – as lightly built as the pneumatic bones

of most birds (Wedel, 2005). Basal sauropods outside or near the base of Neosauropoda,

such as Cetiosaurus, Jobaria, and Haplocanthosaurus, had much lower ASPs, around 0.40.

(ASPs of Cetiosaurus and Jobaria are estimates based on personal observations of the

holotypes and referred specimens, and comparisons to CT scans of similarly-constructed

Haplocanthosaurus vertebrae.)

The effects of pneumatization on the mass of the cervical series have been little explored.

The centrum walls, laminae, septae, and struts that comprised the vertebrae were primarily

made of compact bone (Reid, 1996). The specific gravity (SG) of compact bone is 1.8–2.0 in

most tetrapods (Spector, 1956), so an element with an ASP of 0.60 (and therefore a compact

bone proportion of 0.40) would have an in-vivo SG of 0.7–0.8. Some sauropod vertebrae

were much lighter. For example, Sauroposeidon has ASP values up to 0.89 and therefore SG

as low as 0.2 in some parts of its vertebrae. On the other hand, many basal sauropods had

ASPs of 0.30–0.40 and therefore SG of 1.1–1.4.

An important effect of postcranial pneumaticity is to broaden the range of available

densities in skeletal construction. Animals without postcranial pneumaticity, including

mammals and ornithischian dinosaurs, are constrained to build their skeletons out of

bone tissue (SG = 1.8–2.0) and marrow (SG = 0.93; Currey & Alexander, 1985, p. 455).

Therefore, the whole-element densities of their postcranial bones will always be between

1.0 and 2.0; they cannot be more dense than bone tissue, nor can they be constructed

entirely out of marrow. The pneumatic bones of pterosaurs and saurischian dinosaurs are

made of bone tissue (SG = 1.8–2.0) and air space (SG = 0), which allows them to have

whole-element densities that are much lower. The lightest postcranial bones for which data

are available are those of Sauroposeidon and some pterosaurs. The cranial bones of some

birds are even lighter. Seki, Schneider & Meyers (2005) reported an SG of 0.05 for the “bone
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Table 2 Air Space Proportion (ASP) of sections through sauropod vertebrae. Measurements are taken
from CT sections, photographs, and published images. Sections are transverse unless otherwise noted.
Although this dataset is almost three times as large as that reported by Wedel (2005), the mean is the
about same, 0.61 compared to 0.60. Abbreviations: C, cervical; Cd, caudal; D, dorsal; P, presacral.

Taxon Region ASP Source

Apatosaurus C condyle 0.69 OMNH 01094

mid-centrum 0.52 ,,

posterior centrum 0.73 ,,

cotyle 0.32 ,,

C condyle 0.63 OMNH 01340

mid-centrum 0.69 ,,

cotyle 0.49 ,,

C condyle 0.52 CM 555 C6

mid-centrum 0.75 ,,

posterior centrum 0.59 ,,

cotyle 0.34 ,,

C parapophysis 0.6 BYU 11998

C cotyle 0.7 BYU 11889

Brachiosaurus C condyle 0.55 BYU 12866

mid-centrum 0.67 ,,

posterior centrum 0.81 ,,

Brachiosauridae C mid-centrum 0.89 MIWG 7306

P 0.65 Naish & Martill (2001, plate 32)

P 0.85 Naish & Martill (2001, plate 33)

P 0.85 MIWG uncatalogued

Camarasaurus C condyle 0.51 OMNH 01109

mid-centrum 0.68 ,,

cotyle 0.54 ,,

C condyle 0.49 OMNH 01313

mid-centrum 0.52 ,,

cotyle 0.5 ,,

D mid-centrum 0.58 Ostrom & McIntosh (1966, plate 23)

D mid-centrum 0.63 Ostrom & McIntosh (1966, plate 23)

D mid-centrum 0.71 Ostrom & McIntosh (1966, plate 23)

Chondrosteosaurus P centrum (horiz.) 0.7 Naish & Martill (2001, figure 8.5)

Diplodocus C condyle 0.56 BYU 12613

mid-centrum 0.54 ,,

posterior centrum 0.66 ,,

Giraffatitan C condyle 0.73 Janensch (1950, figure 70)

C condyle (sagittal) 0.57 Janensch (1947, figure 4)

D mid-centrum 0.59 Janensch (1947, figure 2)

Haplocanthosaurus C condyle 0.39 CM 879-7

mid-centrum 0.56 ,,

posterior centrum 0.42 ,,
(continued on next page)
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Table 2 (continued)
Taxon Region ASP Source

cotyle 0.28 ,,

D mid-centrum 0.36 CM 572

Malawisaurus C condyle 0.56 MAL-280-1

mid-centrum 0.62 ,,

C condyle 0.57 MAL-280-4

mid-centrum 0.56 ,,

Phuwiangosaurus C mid-centrum 0.55 Martin (1994, figure 2)

Pleurocoelus C mid-centrum 0.55 Lull (1911, plate 15)

Saltasaurus D centrum (horiz.) 0.62 Powell (1992, figure 16)

mid-centrum 0.55 ,,

neural spine (horiz.) 0.82 ,,

D prezygapophysis 0.78 Powell (1992, figure 16)

Sauroposeidon C prezyg. ramus 0.89 OMNH 53062

postzygapophysis 0.74 ,,

anterior centrum 0.75 ,,

Supersaurus C mid-centrum 0.64 WDC-DMJ021

Tornieria C mid-centrum 0.56 Janensch (1947, figure 8)

C posterior centrum 0.77 Janensch (1947, figure 3)

D condyle (sagittal) 0.78 Janensch (1947, figure 9)

Cd mid-centrum 0.47 Janensch (1947, figure 7)

Sauropoda indet. C mid-centrum 0.54 OMNH 01866

C posterior centrum 0.46 OMNH 01867

C mid-centrum 0.55 OMNH 01882

MEAN 0.61

foam” inside the beak of the toucan (Rhamphastos toco), and an SG of 0.1 for the entire

beak. To date, this is the lightest form of bone known in any vertebrate.

While the impact of soft-tissue diverticula is more difficult to assess, it is easy to imagine

that the density of a typical neosauropod neck may have been less than 0.5 kg/dm3. Al-

though pneumaticity was undoubtedly an important adaptation for increasing the length

of the neck without greatly increasing its mass, a longer neck remains more mechanically

demanding than a shorter neck of the same mass, because that mass acts further from the

fulcrum of the cervicodorsal joint, increasing the moment that must be counteracted by

the epaxial tension members. Also, longer trachea and blood vessels cause physiological

difficulties: weight support is only one of the problems imposed by a long neck.

While pneumaticity may be necessary for the development of a long neck, it is

clearly not sufficient: while three groups of theropods, all pneumatic, evolved necks in

the 2–2.5 m range, and pneumatic pterosaurs attained 3 m, these remain well short

of even the less impressive sauropod necks (e.g., 4 m in Camarasaurus AMNH 5761;

Osborn & Mook, 1921).

Taylor and Wedel (2013), PeerJ, DOI 10.7717/peerj.36 16/41

https://peerj.com
http://dx.doi.org/10.7717/peerj.36


Extent of soft-tissue relative to size of vertebrae
In most extant vertebrates including birds and crocodilians, the diameter of the neck

is three or four times that of the cervical vertebrae that form its core. Even in long,

thin-necked animals such as the ostrich, the muscular part of the neck is twice as wide

and 2.3 times as tall as the enclosed vertebra (Fig. 4.1), and if the trachea and skin and

related soft-tissue is included the dorsoventral thickness of the neck is fully 3.3 times that

of the vertebra alone (Dzemski & Christian, 2007, figure 2). (In the caption to Wedel (2003,

figure 2), from which Fig. 4.1 of the present paper is modified, the small airspace ventral to

the vertebra was misidentified as the trachea. In fact it is a complex of diverticula around

the carotid arteries.)

If the necks of sauropods were as heavily muscled as those of ostriches, then they would

have appeared in cross section as shown in Fig. 4.2. But life restorations of sauropods going

back to the 1800s have been unanimous that this cannot have been the case in sauropods,

as such over-muscled necks would have been too heavy to lift; and the various published

reconstructions of sauropod neck cross sections (e.g., Paul, 1997, figure 4; Schwarz, Frey &

Meyer, 2007, figure 7, 8A, 9E) all agree in making the total diameter including soft-tissue

only 105–125% that of the vertebrae alone.

This is a consequence of scaling, which makes it impossible for sauropod necks to be

similar to those of ostriches. Consider an ostrich neck scaled up by a linear factor of L.

The weight exerted by the neck is proportional to L3 but the cross-sectional area of the

bracing members is proportional to only L2. Stress is force/area, which is proportional

to L3/L2
= L, so the stress on the bracing members that support the neck varies linearly

with L. (The weight of the neck acts at a distance proportional to L from the torso, and the

bracing members acts at a distance proportional to L above the neck-torso articulation,

so these factors cancel out of the balancing moment equation.) Since isometric similarity

is precluded the necks of sauropods had to be re-engineered in order to attain such great

sizes. Can that have been done by reducing the amount of muscle?

In fact, comparing the restored neck of a sauropod with that of an ostrich scaled to the

same body size, it is apparent that the sauropod neck has not so much reduced the size of

the neck muscles as increased the size of the cervicals vertebrae themselves (Fig. 4.3): they

are much larger compared to the torso than in the ostrich. Simply increasing the size of

the vertebrae would not be a good strategy for neck support, because bone is the densest

material in the body apart from tooth enamel and dentine. But as noted above, sauropod

vertebrae were very pneumatic, typically consisting of 60% air. In effect, sauropods inflated

their vertebrae within the muscular envelope of the neck, moving the bone, muscle and

ligament away from the centre so that they acted with greater mechanical advantage:

higher epaxial tension members, lower hypaxial compression members, and more laterally

positioned paraxials.

Muscle attachments
In extant animals, the mechanically significant soft tissues of the neck (muscles, tendons

and ligaments) can be examined and their osteological correlates identified. In extinct
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animals, except in a very few cases of exceptional preservation, only the fossilized bones

are available: but using extant animals as guides, osteological features can be interpreted

as correlates of the absent soft tissue, so that the ligaments and musculature of the extinct

animal can be tentatively reconstructed (Bryant & Russell, 1992; Witmer, 1995). In order to

do this for sauropods, it is necessary first to examine their extant outgroups, the birds and

crocodilians.

In all vertebrates, axial musculature is divided both into left and right sides and into

epaxial and hypaxial (i.e., dorsal and ventral to the vertebral column) domains, yielding

four quadrants. In birds, the largest and mechanically most important epaxial muscles (M.

longus colli dorsalis and M. cervicalis ascendens) insert on the epipophyses of the cervical

vertebrae – that is, distinct dorsally projecting tubercles above the postzygapophyses. The

large hypaxial muscles (M. flexor colli lateralis, M. flexor colli medialis, and M. longus

colli ventralis) insert on the cervical ribs (Fig. 5; Baumel et al., 1993; Tsuihiji, 2004). The

osteology of the cervical vertebrae makes mechanical sense; the major muscle insertions

are prominent osteological features located at the four “corners” of the vertebrae (Fig. 6.1).

Non-avian theropods resembled birds in this respect, having prominent epipophyses and

sizable cervical ribs, which point in the four expected directions (Fig. 6.2).

The cervical architecture is rather different in crocodilians, and in non-archosaurian

diapsids such as lizards, snakes, ichthyosaurs and plesiosaurs: there are no epipophyses,

and the main epaxial neck muscles are the Mm. Interspinales, which attach to the neural

spines rather than to epipophyses (Fig. 6.3). In most sauropods, the cervical vertebrae

do have epipophyses, but the neural spines are as prominent or more so (Fig. 6.4). In

this respect, sauropod osteology is intermediate between the conditions of crocodilians

and birds – so the widely recognized similarity of sauropod cervicals to those of birds

(e.g., Wedel & Sanders, 2002; Tsuihiji, 2004), while significant, should not be accepted

unreservedly. Since the prominent neural spine serves as the primary attachment site for

epaxial muscles in most theropod outgroups, the condition in birds and other theropods is

derived; that of sauropods retains aspects of the primitive condition.

Although sauropods shared a common bauplan, their morphological disparity was

much greater than has usually been assumed (Taylor & Naish, 2007, pp. 1560–1561).

This disparity is particularly evident in the cervical vertebrae (Fig. 7). Those of Ap-

atosaurus Marsh, 1877, for example, are anteroposteriorly short and dorsoventrally tall,

and have short, robust cervical ribs mounted far ventral to the centra; the cervical centra

of Isisaurus colberti (Jain & Bandyopadhyay, 1997) are even shorter anteroposteriorly,

but have more dorsally located cervical ribs; by contrast, the cervical vertebrae of Erketu

ellisoni Ksepka & Norell, 2006 are relatively much longer and lower, and have long, thin

cervical ribs mounted only slightly ventral to the centra, which are sigmoid rather than

cylindrical. Towards the middle ground of these extremes fall the cervical vertebrae of

Giraffatitan, which are anteroposteriorly longer and dorsoventrally shorter than those of

Apatosaurus, but not as anteroposteriorly long or as dorsoventrally short as those of Erketu.

In light of the demanding mechanical constraints that were imposed on sauropods, it is
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Figure 7 Disparity of sauropod cervical vertebrae. 1, Apatosaurus “laticollis” Marsh, 1879b holotype YPM 1861, cervical ?13, now referred to
Apatosaurus ajax (see McIntosh, 1995), in posterior and left lateral views, after Ostrom & McIntosh (1966, plate 15); the portion reconstructed in
plaster (Barbour, 1890, figure 1) is grayed out in posterior view; lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV).
2, “Brontosaurus excelsus” Marsh, 1879a holotype YPM 1980, cervical 8, now referred to Apatosaurus excelsus (see Riggs, 1903), in anterior and
left lateral views, after Ostrom & McIntosh (1966, plate 12); lateral view reconstructed after Apatosaurus louisae (Gilmore, 1936, plate XXIV). 3,
“Titanosaurus” colberti Jain & Bandyopadhyay, 1997 holotype ISIR 335/2, mid-cervical vertebra, now referred to Isisaurus (See Wilson & Upchurch,
2003), in posterior and left lateral views, after Jain & Bandyopadhyay (1997, figure 4). 4, “Brachiosaurus” brancai paralectotype MB.R.2181, cervical
8, now referred to Giraffatitan (see Taylor, 2009), in posterior and left lateral views, modified from Janensch (1950, figures 43–46). 5, Erketu ellisoni
holotype IGM 100/1803, cervical 4 in anterior and left lateral views, modified from Ksepka & Norell (2006, figures 5a–d).

surprising that their necks vary so much morphologically, with different lineages having

evolved dramatically different solutions to the problem of neck elongation and elevation.
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Interpretation of sauropods as living animals is made especially difficult by the lack

of good extant analogues. Among animals with long necks, giraffes, camels, and other

artiodactyls have very different cervical osteology and (we assume) myology; and even

the longest of their necks, at about 2.4 m, is only one sixth the length attained by some

sauropods. Birds are phylogenetically closer to sauropods, and some birds (e.g., swans

and ostriches) have proportionally very long necks. Furthermore, the presence in

most sauropods of epipophyses similar to those of birds suggests that sauropods were

myologically similar to birds. However, the small absolute size of birds means that the

forces acting on their necks are so different that we can’t assume that sauropod necks

functioned in the same ways – just as the problems involved in flight through air for

high-Reynolds number fliers such as birds are very different than than they are for

low-Reynolds number fliers such as fruit-flies, whose aerodynamics are dominated by

friction drag rather than form drag.

Because sauropods were so much bigger than their relatives, and their necks so much

longer, mechanical considerations in the construction of their necks were significantly

more important than in their outgroups. Furthermore, the great size and shape disparity

between sauropods and their outgroups means that interpretations of cervical soft-tissue

anatomy in sauropods cannot be based purely on the extant phylogenetic bracket method:

this alone would be no more informative than trying to determine the anatomy of

elephants from that of manatees and hyraxes.

With all these caveats in mind, the best extant analogues for sauropod necks nevertheless

remain those of birds: they are the only extant animals that share with sauropods

epipophyses above their postzygapophyses, pronounced cervical ribs, and pneumatic

foramina (Figs. 6.1 and 6.4). The first two of these features were inherited from a common

saurischian ancestor. The foramina seem to have been independently derived in birds, but

this was possible because air sacs and soft-tissue pneumatic diverticula were likely present

in the common saurischian ancestor (Wedel, 2006b; Wedel, 2007b). These observations

enable us to draw conclusions about sauropod neck soft tissue beyond what the extant

phylogenetic bracket would allow. Specifically, the epipophyses are osteological correlates

of the M. longus colli dorsalis and M. cervicalis ascendens epaxial muscles, which must

therefore have been present in sauropods, although we can not conclude from this that they

were necessarily the dominant epaxial muscles as they are in birds.

Neural spines
The neural spines and epipophyses of sauropods both anchored epaxial muscles, but as

they were differently developed in different taxa, they were probably of varying mechanical

importance in different taxa. For example, based on their relative heights, epipophyses

probably dominated neural spines in Apatosaurus (Fig. 7.1) but neural spines may have

dominated in Isisaurus Wilson & Upchurch, 2003 and Giraffatitan (Figs. 7.3 and 7.4).

In some sauropods, including Erketu and Mamenchisaurus, which were proportionally

long-necked even by sauropod standards, the neural spines are strikingly low, and the

epipophyses no higher – a surprising arrangement, as low spines would have reduced
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Figure 8 Sauropod cervical vertebrae showing anteriorly and posteriorly directed spurs projecting
from neurapophyses. 1, Cervical 5 of Sauroposeidon holotype OMNH 53062 in right lateral view,
photograph by MJW. 2, Cervical 9 of Mamenchisaurus hochuanensis holotype CCG V 20401 in left lateral
view, reversed, from photograph by MPT. 3, Cervical 7 or 8 of Omeisaurus junghsiensis Young, 1939
holotype in right lateral view, after Young (1939, figure 2). (No specimen number was assigned to this
material, which has since been lost. DWE Hone personal communication 2008.)

the lever arm with which the epaxial tension members worked. Among these sauropods

with low neural spines, some have rugose neurapophyses with spurs directed anteriorly

and posteriorly from the tip of the spine (Fig. 8). These appear either to have anchored

discontinuous interspinous ligaments, as found in all birds (see Wedel, Cifelli & Sanders,

2000b, figure 20), or to have been embedded in a continuous supraspinous ligament, as

found in the ostrich (Dzemski & Christian, 2007, pp. 701–702).

In some sauropods, the cervical neural spines are bifid (i.e., having separate left

and right metapophyses and a trough between them). This morphology appears to

have evolved at least five times (in Mamenchisaurus, flagellicaudatans, Camarasaurus

Cope, 1877, Euhelopodidae sensu D’Emic (2012) and Opisthocoelicaudia Borsuk-Bialynicka,

1977) with no apparent reversals. This morphology, then, seems to have been easy for

sauropods to gain, but difficult or perhaps impossible to lose. Bifid cervical vertebrae

are extremely uncommon in other taxa, and among extant animals they are found

only in birds: the ibis Theristicus (Tambussi et al., 2012) and ratites including Rhea

americana Linnaeus, 1758 (Tsuihiji, 2004, figure 2B), Casuarius casuarius Brisson, 1760
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(Schwarz, Frey & Meyer, 2007, figure 5B) and Dromaius novaehollandiae Latham, 1790

(Osborn, 1898, figure 1). It has often been assumed that in sauropods with bifid cervical

spines, the intermetapophyseal trough housed a large ligament analogous to the nuchal

ligament of artiodactyl mammals (e.g., Janensch, 1929, plate 4; Alexander, 1985, pp.

13–14; Wilson & Sereno, 1998, p. 60). Such an arrangement seems unlikely, as lowering

the ligament into the trough would reduce its mechanical advantage; however, this is

similar to the arrangement seen in Rhea americana, in which branches of the “nuchal

ligament” attach to the base of the trough (Tsuihiji, 2004, figure 3). More direct evidence

is found in ligament scars in the troughs of some diplodocids: these can be prominent,

as in the doorknob-sized attachment site in the Apatosaurus sp. cervical OMNH 01341

(Fig. 9.1).

However, ligament cannot have filled the trough as envisaged by Alexander (1985,

figure 4C), because pneumatic foramina are often found in the base of the troughs of

presacral vertebrae, for example in the cervicals of Apatosaurus (Fig. 9.1) and the dorsal

vertebrae of Camarasaurus sp. CM 584 (Fig. 9.2). In some specimens, a ligament scar and

pneumatic foramen occur together in the intermetapophyseal trough (Fig. 9.1; Schwarz,

Frey & Meyer, 2007, figure 6E). Pneumatic diverticula are sometimes found between the

centropostzygapophyseal laminae even in sauropods with non-bifid spines, as shown by

the isolated brachiosaurid cervical MIWG 7306 from the Isle of Wight (Naish, 2008), so the

presence of soft-tissue diverticula in this location is probably primitive for Neosauropoda

at least. In conclusion, while some ligament was undoubtedly present within the trough

formed by the metapophyses of bifid neural spines, much of the space was probably filled

with pneumatic diverticula.

One possible advantage of bifid spines would be to increase the lateral leverage of the

ligaments and muscles that attach to the metapophyses, enabling them to contribute to

lateral stabilisation and motion as well as vertical. A cantilevered beam, which is what a

sauropod neck is in mechanical terms, requires only a single dorsal tension member to

stabilize it vertically, but two (one on each side) to stabilize it horizontally. A sauropod

neck that was supported from above only by a single midline tension member would need

additional horizontal stabilization from muscles and ligaments not directly involved in

support.

Whatever the advantages of bifid spines, they were clearly not indispensable, as some

sauropod lineages evolved very long necks with unsplit spines (e.g., brachiosaurids,

Sauroposeidon, and most titanosaurs, including the very long-necked Puertasaurus).

Even in taxa that do have bifid spines, they are rarely split through the whole series: for

example, the first eight cervicals of Barosaurus do not have bifid spines (McIntosh, 2005;

MJW, pers. obs). Even in Camarasaurus lewisi BYU 9047, in which every postaxial cervical

vertebra is at least partially bifid (McIntosh et al., 1996b), the bifurcation is very slight in the

anterior cervicals and probably of little mechanical consequence. If bifid spines conferred

a great advantage, they would presumably be found throughout the neck – although the

importance of stability, and the difficulty of attaining it, is greater in the posterior part of

the neck, which bears greater forces than the anterior part. Since bifid spines always occur

Taylor and Wedel (2013), PeerJ, DOI 10.7717/peerj.36 22/41

https://peerj.com
http://dx.doi.org/10.7717/peerj.36


Figure 9 Ligament scars and pneumatic foramina in intermetapophyseal troughs. Bifid presacral ver-
tebrae of sauropods showing ligament scars and pneumatic foramina in the intermetapophyseal trough.
1, Apatosaurus sp. cervical vertebra OMNH 01341 in right posterodorsolateral view, photograph by MJW.
2, Camarasaurus sp. dorsal vertebrae CM 584 in dorsal view, photograph by MJW. Abbreviations: las,
ligament attachment site; pfa, pneumatic fossa; pfo, pneumatic foramen.

together with unsplit spines, it seems likely that however they were used mechanically, it

was probably not radically different from neural spine function in vertebrae with unsplit

spines.
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Epipophyses
As noted above, the epipophyses are the insertion points of the largest and longest

epaxial muscles in birds, whereas in crocodilians the epipophyses are non-existent, and

no major muscles insert above the postzygapophyses (Tsuihiji, 2004). Epipophyses are

found in most, though not all, sauropods and theropods. For example, they are absent

in the titanosaurs Malawisaurus (pers. obs., MJW; Gomani, 2005, figure 8) and Isisaurus

(Fig. 7.3); but their presence in other titanosaurs such as Rapetosaurus Curry & Forster,

2001 (Curry & Forster, 2001, figure 3A), and Saltasaurus Bonaparte & Powell, 1980 (Powell,

1992, figure 5) and in outgroups such as Giraffatitan (Fig. 7.4) and Camarasaurus (Osborn

& Mook, 1921, plate LXVII, figure 9; McIntosh et al., 1996a, figure 29) indicates that

their absences in Malawisaurus and Isisaurus, if not due to damage to the material,

represent secondary losses. Not all muscles leave diagnostic traces on the skeleton, so

the absence of epipophyses does not mean that the epaxial muscles that insert above

the postzygapophyses were absent. It is worth noting that the available material of

Malawisaurus and Isisaurus pertains to relatively small individuals; perhaps the forces

exerted by the epaxial muscles were not enough to produce distinctive scarring of the bone

that we would recognize as epipophyses.

The existence of epipophyses on the cervical vertebrae of most sauropods, together

with those in theropods and birds, suggests that epaxial muscles were inserting above

the postzygapophyses at least by the origin of Saurischia. Epipophyses are also known

in basal ornithischians, e.g., Lesothosaurus Galton, 1978 (Sereno, 1991b, figure 8A) and

Heterodontosaurus Crompton & Charig, 1962 (Santa Luca, 1980, figure 5A), and also in the

basal pterosaur Rhamphorhynchus Meyer, 1846 (Bonde & Christiansen, 2003, figures 6–9),

suggesting that these insertion points were in use at the base of Dinosauria and possibly

Ornithodira.

In sauropods, the size and location of the epipophyses is variable: in C8 of Giraffatitan,

the epipophyses are approximately half as high above the centrum as the neurapophysis

(Fig. 7.4); in anterior cervicals of Erketu, the epipophyses are equally as high as the tips

of the neural spines (Fig. 7.5), although the spines are higher in posterior cervicals. It is

possible that in the posterior cervicals of some Apatosaurus ajax Marsh, 1877 specimens,

the epipophyses are higher than the metapophyses (Fig. 7.1), but it is difficult to be sure

as the vertebrae that seem to most closely approach this condition are at least partly

reconstructed in plaster (Barbour, 1890, figure 1). In any event, it is clear from preserved

sequences of Apatosaurus cervicals (Gilmore, 1936, plate XXIV; Upchurch, Tomida &

Barrett, 2005, plate 1) that in this genus the neural spines are proportionally higher

relative to the epipophyses in the anterior cervicals than in the posterior. The trend

is opposite in Erketu, in which the epipophyses increasingly dominate neural spines

anteriorly. This further demonstrates the variety of different mechanical strategies used

by different sauropods to support their long necks. In those sauropods without ostensible

epipophyses, phylogenetic bracketing nevertheless suggests that muscles did insert above

the postzygapophyses, but the insertions are not marked by obvious scars or processes and

these muscles were probably less important than those attached to the spine.
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Cervical ribs
In extant birds, cervical ribs are the insertion points for the M flexor colli lateralis, M

flexor colli medialis and M longus colli ventralis hypaxial muscles (Zweers, Vanden Berge

& Koppendraier, 1987; Baumel et al., 1993; see also Fig. 5). No bird has cervical ribs long

enough to overlap, but the tendons that insert on the cervical ribs do overlap and are free to

slide past each other longitudinally. In less derived saurischians, including sauropods, the

ventral tendons are ossified into long, overlapping cervical ribs (Klein, Christian & Sander,

2012) which are secondarily shortened to less than a centrum length in Diplodocoidea and

in Maniraptoriformes, including birds. The null hypothesis is that the long cervical ribs of

theropods and sauropods functioned similarly to the short cervical ribs and long tendons

of birds, as the insertions of long hypaxial muscles. However, some aspects of muscle

insertion in sauropod necks are mysterious and may be illuminated by closer comparisons

to their extant relatives.

In birds, ossification (or at least mineralization) of tendon has many functional effects:

it (1) restricts tendon deformation; (2) reduces tendon strain at a given stress; (3) accom-

modates higher load bearing (to a point; see below); and (4) reduces damage to the tendon

(Landis & Silver, 2002, p. 1153). In general, proportionally longer and thinner tendons

are more extensible and allow more elastic recoil, and shorter, thicker tendons are less

extensible and provide less elastic recoil (Biewener, 2008, pp. 272–274). Mineralization or

ossification reduces the extensibility of a tendon, and can allow a long, thin tendon to be-

have more like a short, thick one. Ossified tendons in the lower limbs of birds are typically

found distal to the knee (Hutchinson, 2002, p. 1071), where the tendons are constrained to

be long and thin by the overall construction of the limb; ossification may be the only viable

way for birds to advantageously shift the mechanical properties of these tendons.

The long hypaxial tendons in the necks of sauropod dinosaurs may have been similarly

constrained. Ossification of the hypaxial tendons into long cervical ribs may have provided

several benefits for sauropods:

• Long tendons move the bulk of the hypaxial neck muscles closer to the base of the

neck, which reduces the lever arm of the neck mass. Tendon has a much lower Young’s

modulus than bone, and reducing the elastic recoil of the hypaxial tendons would have

allowed the hypaxial muscles of sauropods to more directly affect the vertebrae to which

they were attached. Reduced tendon elasticity is known to improve position control of

the involved muscles (Alexander, 2002, p. 1009).

• It has been suggested (Wedel, Cifelli & Sanders, 2000b, p. 380) that elongate cervical

ribs may have played a role in ventrally stabilizing the neck, i.e., preventing involuntary

dorsal extension by contracting antagonistically against the stronger epaxial tension

members (which had to counteract gravity in addition to shifting the mass of the neck).

• Stiff cervical ribs would have helped provide lateral stabilization for the neck,

which would have been especially important in taxa with epaxial tension members

concentrated on the midline (i.e., those with non-bifid spines) as discussed above.

• Stiff cervical ribs would have provided resistance against torsion of the neck.
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(It has also been suggested by Martin, Martin-Rolland & Frey (1998) that the cervical

ribs of at least some sauropods functioned as incompressible ventral bracing members.

But this hypothesis is badly flawed – see Wedel, Cifelli & Sanders, 2000b, p. 379–380; Klein,

Christian & Sander, 2012).

If either of the first two hypotheses is accurate, it is difficult to understand why

diplodocids evolved apomorphically short cervical ribs, especially long-necked forms

such as Barosaurus and Supersaurus. If the primary role of long cervical ribs was in

providing lateral stabilization for taxa with midline epaxial tension members, then

the need for this stabilization would be reduced in forms with bifid spines, such as

diplodocids, which shifted their epaxial tension members laterally as they were attached

to the metapophyses. This, however, would raise the question of why other taxa with

bifid spines (e.g., Camarasaurus) also retained elongate cervical ribs, and in the case of

Mamenchisaurus apparently evolved apomorphically long cervical ribs (Russell & Zheng,

1993, pp. 2089–2090). It may be that these taxa retained their epaxial tension members

primarily on the midline, in the intermetapophyseal trough, while diplodocids shifted

theirs laterally; but we know from osteological evidence (see above) that at least some

diplodocids did have ligaments or muscles anchored within the trough. Mallison (2011,

p. 238) suggested that the short cervical ribs of diplodocids could be an adaptation for neck

flexibility. This would be useful in tripodal feeding in dense canopies – a behaviour that

their hips and hindlimbs were adapted for.

Apatosaurus presents a final riddle regarding cervical ribs. Even among diplodocids,

it had extraordinary cervical ribs: very short, very robust, and positioned very low, far

below the centra on extremely long parapophyses (Figs. 7.1 and 7.2), so that the neck of

Apatosaurus must have been triangular in cross-section. What function can the ribs have

evolved to perform? They were much too short to have functioned efficiently in horizontal

or vertical stabilization, and in any case seem over-engineered for these functions. It is

tempting to infer that the autapomorphies of the neck in Apatosaurus are adaptations

for some unique aspect of its lifestyle, perhaps violent intraspecific combat similar to

the “necking” of giraffes. Even if this were so, however, it is difficult to see the benefit

in Apatosaurus excelsus Marsh, 1879a of cervical ribs held so far below the centrum –

an arrangement that seems to make little sense from any mechanical perspective, and

may have to be written off as an inexplicable consequence of sexual selection or species

recognition.

Asymmetric elongation of cervical ribs and epipophyses
A central paradox of sauropod cervical morphology is that in the elongation of the cervical

ribs, the vertebrae appear better adapted for anchoring hypaxial than epaxial musculature

– even though holding the neck up was important and, due to gravity, much more difficult

than drawing it down. First, the cervical ribs present a greater area for muscle attachment

than the epipophyses do; and second, the much greater length of the cervical ribs in most

sauropods enabled the hypaxial musculature to be shifted backwards much further than

the epaxial musculature, as the epipophyses are not elongate in any known sauropod.
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Figure 10 Real and speculative muscle attachments in sauropod cervical vertebrae. 1, The second
through seventeenth cervical vertebrae of Euhelopus zdanskyi Wiman, 1929 cotype specimen PMU R233a-
δ (“Exemplar a”). 2, Cervical 14 as it actually exists, with prominent but very short epipophyses and long
cervical ribs. 3, Cervical 14 as it would appear with short cervical ribs. The long ventral neck muscles
would have to attach close to the centrum. 4, Speculative version of cervical 14 with the epipophyses
extended posteriorly as long bony processes. Such processes would allow the bulk of both the dorsal and
ventral neck muscles to be located more posteriorly in the neck, but they are not present in any known
sauropod or other non-avian dinosaur. Modified from Wiman (1929, plate 3).

We know that posterior elongation of the epipophyses is developmentally possible in

saurischians, because those in the tail of Deinonychus Ostrom, 1969a are extended to the

length of a centrum (Ostrom, 1969b, figure 37). Figure 10 shows the cervical skeleton of

Euhelopus as it actually is, and reconstructed with speculative muscle attachments that

would have been more mechanically efficient: why did sauropod necks not evolve this way?

In fact, there are several likely reasons.

• First, positioning and moving the neck for feeding would have required fine control, and

precise movements requires short levers.

• Second, although bone is much stiffer than tendon, it is actually not as strong in tension,

so that an ossified tendon is more likely to break under load.

• Third, muscles expand transversely when contracted lengthways. For epaxial muscles

in sauropods necks, this expansion would strongly bend ossified epipophyseal tendons,

subjecting them to greater stress than simple longitudinal tension. (The same effect

would also have caused some bending of cervical ribs, but the lower stresses in ventral

musculature would have reduced the effect.)

Short neural spines in long necks
In many cases, the sauropods with the proportionally longest necks are also those

whose necks superficially make the least mechanical sense. It is particularly notable that

mamenchisaurids (Mamenchisaurus and Omeisaurus) have very low neural spines, as does

Erketu in the preserved, anterior, cervicals. Since excessively long neural spines would

impede neck extension by overlapping with each other, as in dicraeosaurids, shorter spines

would be advantageous for improving neck flexibility. But these low spines would have

reduced the lever arm with which epaxial tension members acted.

A speculative explanation, at least, can be offered. Counter-intuitively, the height above

the centrum at which a muscle of given size acts has no effect at all on its ability to move

the vertebra through a given arc. Although muscles attached to a short spine need to exert

greater force to allow for the shorter lever arm, they correspondingly need contract a
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shorter distance in order to raise the neck by the same amount. Low neural spines, then,

may have been connected by strongly pennate muscles, able to contract very forcefully but

only over a short distance.

In an animal adopting this low-spine strategy to neck elongation, the difficulty is simply

one of fitting the muscle into the space available. A lower limit to neural spine length is

imposed by the volume of muscle needed to produce the range of motion. (Raising the

neck is work, and while the force exerted by a muscle is proportional to its cross-sectional

area, the work it can do varies with volume, so shorter muscles need a correspondingly

larger cross-sectional area.)

Another possibility is that taxa with short spines had shifted almost all of their epaxial

muscle attachments to the epipophyses, as with the long dorsal muscles of birds. In

birds, the long multisegment epaxial muscles are free to “bowstring” across the dorsal

curvature at the base of the neck (van der Leeuw, Bout & Zweers, 2001, figure 5). Short

neural spines do not indicate poor mechanical advantage for these muscles, because they

act at high angles of inclination to the long axis of each vertebra. Tall neural spines increase

mechanical advantage of muscles when the vertebrae are held horizontally, but this is

unlikely to have been a common posture for sauropods (Taylor, Wedel & Naish, 2009).

Homology and analogy of vertebral features
Bony attachment sites for the large cervical muscles have varied along the evolutionary

line from basal amniotes to birds (Fig. 11). In extant lizards and crocodilians, as in basal

archosaurs (Fig. 11.1), the neural spine is very large and anchors essentially all of the large

multisegment epaxial muscles (Tsuihiji, 2005, figure 2), and there are no epipophyses at all.

However, in extant birds, as in non-avian theropods (Figs. 11.4, 11.5), the epipophyses are

more prominent and significant than the neural spines and serve as insertion points for

all of the multisegment dorsal muscles. The very short neural spines serve as the origins of

long dorsal muscles running anteriorly from each vertebra, but the only muscles that insert

on the spines and adjacent bony ridges are the small and short Mm. interspinales and Mm.

intercristales.

In intermediate forms such as sauropods the situation is more complex, as both the

neural spines and epipophyses are prominent – to varying degrees in different species.

In sauropods with unsplit neural spines, such as Giraffatitan (Fig. 11.2), the muscles of

the neural spine were presumably significant, and would have acted primarily along the

midline of the neck. The muscles of the epipophyses were also present, but because their

insertions are positioned laterally, the action of these muscles would have functioned

both in support and in lateral movement. In sauropods with bifid neural spines, such as

Camarasaurus (Fig. 11.3), the muscles inserting on the neural spine were also laterally

displaced, so that they as well as the Mm. longus colli dorsalis would have had the dual

function of support and lateral motion. In sauropods with bifid spines, then, the one-

or two-segment Mm. intercristales and Mm. interspinales shared the function of lateral

stabilization and movement with the multisegment Mm. longus colli dorsalis.
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Figure 11 Archosaur cervical vertebrae in posterior view, Showing muscle attachment points in phylogenetic context. Blue arrows indicate
epaxial muscles attaching to neural spines, red arrows indicate epaxial muscles attaching to epipophyses, and green arrows indicate hypaxial muscles
attaching to cervical ribs. While hypaxial musculature anchors consistently on the cervical ribs, the principle epaxial muscle migrate from the neural
spine in crocodilians to the epipophyses in non-avial theropods and modern birds, with either or both sets of muscles being significant in sauropods.
1, Fifth cervical vertebra of Alligator mississippiensis, MCZ 81457, traced from 3D scans by Leon Claessens, courtesy of MCZ. Epipophyses are absent.
2, Eighth cervical vertebra of Giraffatitan brancai paralectotype HMN SII, traced from Janensch (1950, figure 43 and 46). 3, Eleventh cervical vertebra
of Camarasaurus supremus, reconstruction within AMNH 5761/X, “cervical series I”, modified from Osborn & Mook (1921, plate LXVII). 4, Fifth
cervical vertebra of the abelisaurid theropod Majungasaurus crenatissimus, UA 8678, traced from O’Connor (2007, figures 8 and 20). 5, Seventh
cervical vertebra of a turkey, Meleagris gallopavo, traced from photographs by MPT.

It is tempting to imagine an evolutionary pathway in which bifurcation of neural

spines was an intermediate step in the evolutionary shift of the insertions of the large

multisegment epaxial muscles from the neural spine to the epipophyses. However, this

explanation cannot be correct, as bifid spines are not known in taxa along the line to

birds – only in sauropods and a few modern birds. This is particularly clear in Fig. 11.4,

where a small neural spine remains in the cervical of Majungasaurus, but is dominated by

epipophyses. The sequence instead seems simply have been one of progressive reduction

of the neural spine and enlargement of the epipophyses. The outcome of this evolutionary

sequence, as shown in Fig. 11.5, is that from a myological perspective, modern birds

have functionally bifid neural spines: that is, their vertebrae have evolved in a way that is

analogous with the true bifid spines of sauropods even though it is not homologous.

CONCLUSIONS: WHY GIRAFFES HAVE SUCH SHORT
NECKS
Reviewing the characters that facilitate the evolution of extremely long necks, it is apparent

that only sauropods have them all (Table 3). Although the necks of giraffes are the longest
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Table 3 Neck-elongation features by taxon.

Absolutely large
body size

Quadrupedal
stance

Small
head

Numerous
cervical vertebrae

Elongate
cervical vertebrae

Air-sac
system

Vertebral
pneumaticity

Human

Giraffe 3 3

Ostrich 3 3 3 3 3

Paraceratherium 3 3

Therizinosaurus 3 3 3 3

Gigantoraptor 3 3 3 3

Arambourgiania 3 3 3

Sauropods 3 3 3 3 3 3 3

of any extant animals, they are shorter by a factor of six than those of the longest sauropods,

because giraffes have relatively small torsos, relatively large, heavy heads, only seven

cervical vertebrae, no air-sac system and no vertebral pneumaticity. Absence of elongated

cervical ribs may also impede neck elongation. In defence of giraffes, they are relative

latecomers in evolutionary terms: given a few tens of millions more years, it is conceivable

that they might overcome some of these disadvantages to evolve longer necks. But in some

respects they seem locked into a mammalian pattern that will always prevent them from

matching the necks of sauropods: extensive oral processing of food requires a large head

with heavy teeth; almost no mammal has evolved more than seven cervical vertebrae; and

the mammalian lung has attained a local maximum of efficiency that makes it unlikely

ever to evolve into something analogous to the avian flow-through lung, so both an air-sac

system and vertebral pneumaticity are precluded.

Similarly, ostriches seem unlikely ever to evolve really long necks, despite the prerequi-

site small heads and avian lung, simply because they are small bipeds. Birds seem unable

to attain sizes exceeding the 500 kg of the “elephant bird” Aepyornis maximus, probably

because adult body size and egg size, which were not tightly correlated in non-avian

dinosaurs, are correlated in birds (Birchard & Deeming, 2009; Deeming & Birchard, 2009).

There are strong mechanical constraints on the latter: as body size increases, the eggs

approach a point at which the shell cannot simultaneously be thick enough to support the

egg and thin enough for the hatchling to break out of (Murray & Vickers-Rich, 2004, p. 212;

Birchard & Deeming, 2009).

Some of the other long-necked taxa listed in Table 3 seem to have been better equipped

to evolve longer necks. It is impressive that the azhdarchid pterosaurs seem likely to have

achieved 3m while retaining flight: no doubt their pneumaticity was a key feature in

making this possible in spite of their large heads. Nevertheless, the absolute size constraints

imposed by flight make it unlikely that pterosaurs would have greatly exceeded this mark

even had they survived the end-Cretaceous extinction.

The two theropod clades mentioned above (therizinosaurs and to a lesser extent

oviraptorosaurs) appear to have had small heads, proportionally similar in size to those
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of sauropods, as well pneumatic systems that invaded their vertebrae. Why did they not

evolve necks as long as those of sauropods? Possible reasons include the following:

• All theropods were bipedal, and the demands of bipedal locomotion may have

prevented them from evolving the giant body sizes that are required for very long necks.

• The long-necked theropods may not have been under the same selection pressure to

evolve long necks as were sauropods. If they were omnivorous, for example, then

their use of more nutritious food may have mitigated the need for increased feeding

envelopes. Among extant theropods, the ostrich is proportionally long-necked but feeds

mostly from the ground (Dzemski & Christian, 2007), and so has no selective pressure to

evolve a yet longer neck.

• All of the largest long-necked theropods lived in the Late Cretaceous, two of them in the

Campanian–Maastrichtian. Had they not died out at the end of the Cretaceous, they

might have gone on to attain larger size. On the other hand, sauropods attained large

size very quickly in evolutionary terms, with a 104 cm humerus from the late Norian or

Rhaetian indicating a Camarasaurus-sized sauropod only about ten million years after

the first known dinosaurs (Buffetaut et al., 2002). If theropods did not evolve larger body

size in the 150 million years available to them, it seems likely that they did not have the

potential to do so.

• Finally, it should be noted that both of the long-necked theropods discussed above are

known from incomplete remains that do not include any informative cervical material.

It is possible that neck length was positively allometric in these clades, as in sauropods,

and they may have had necks somewhat longer than isometric scaling suggests.

In summary, no other clade has all of the suggested adaptations for long necks that are

found in sauropods. Were it not for the end-Cretaceous extinction, non-avian theropods

would have been the most likely candidates for evolving sauropod-like neck lengths, due to

the combination of pneumaticity, small heads in some clades. and potential for large body

size.
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Depéret C. 1896. Note sur les dinosauriens sauropodes & théropodes du Cretace Superieur de
Madagascar. Bulletin de la Société Geologique de France 24:176–194.

Dong Z. 1979. The Cretaceous dinosaurs of South China. In Institute of Vertebrate Paleontology
and Paleoanthropology and Nanjing Institute of Paleontology, (eds.), Mesozoic and Cenozoic Red
Beds of South China: Selected Papers from the Cretaceous–Tertiary Workshop. Nanxiong: Science
Press, 342–350 (In Chinese).

Dzemski G, Christian A. 2007. Flexibility along the neck of the ostrich (Struthio camelus)
and consequences for the reconstruction of dinosaurs with extreme neck length. Journal of
Morphology 268:701–714 DOI ./jmor..

Evans M. 1993. An investigation into the neck flexibility of two plesiosauroid plesiosaurs:
Cryptoclidus eurymerus and Muraenosaurus leedsii. Unpublished MSc Thesis, University
College London, London, UK.

Forster-Cooper C. 1911. Paraceratherium bugtiense, a new genus of Rhinocerotidae from the Bugti
Hills of Baluchistan, preliminary notice. Annals and Magazine of Natural History 8:711–716.

Forster-Cooper C. 1913. Correction of generic name [Thaumastotherium to Baluchitherium].
Annals and Magazine of Natural History 12: 504.

Frey E, Martill DM. 1996. A reappraisal of Arambourgiania (Pterosauria, Pterodactyloidea): one of
the world’s largest flying animals. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen
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Ornithischia). Paläontologische Zeitschrift 52:138–159.

Galton PM, Upchurch P. 2004. Prosauropoda. In: Weishampel DB, Dodson P, Osmólska H, eds.
The Dinosauria. second edition, Berkeley: University of California Press, 232–258.

Gauthier JA. 1986. Saurischian monophyly and the origin of birds. California Academy of Sciences
Memoir 8:1–55.

Gilmore CW. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie
Museum. Memoirs of the Carnegie Museum 11:175–298.

Gomani EM. 2005. Sauropod dinosaurs from the Early Cretaceous of Malawi, Africa. Palaeon-
tologia Electronica 8.1.27A:1–37 6.9MB; http://palaeo-electronica.org/2005 1/gomani27/
issue1 05.htm.

Gosho ME, Rice DW, Breiwick JM. 1984. The sperm whale. Physeter macrocephalus. Marine
Fisheries Review 46(4):54–56.

Granger W, Gregory WK. 1936. Further notes on the gigantic extinct rhinoceros, Baluchitherium,
from the Oligocene of Mongolia. Bulletin of the AMNH 72:1–73 and plates I–IV.

Hatcher JB. 1901. Diplodocus (Marsh): its osteology, taxonomy and probable habits, with a
restoration of the skeleton. Memoirs of the Carnegie Museum 1:1–63 and plates I–XIII.

Taylor and Wedel (2013), PeerJ, DOI 10.7717/peerj.36 35/41

https://peerj.com
http://dx.doi.org/10.1002/jmor.10542
http://dx.doi.org/10.2307/1369335
http://dx.doi.org/10.1002/(SICI)1097-010X(19990415)285:1%3C19::AID-JEZ3%3E3.0.CO;2-Z
http://dx.doi.org/10.1002/bies.10366
http://palaeo-electronica.org/2005_1/gomani27/issue1_05.htm
http://palaeo-electronica.org/2005_1/gomani27/issue1_05.htm
http://dx.doi.org/10.7717/peerj.36


Henderson MD, Peterson JE. 2006. An azhdarchid pterosaur cervical vertebra from the Hell
Creek Formation (Maastrichtian) of southeastern Montana. Journal of Vertebrate Paleontology
26(1):192–195 DOI ./-()[:AAPCVF]..CO;.

Howse SCB. 1986. On the cervical vertebrae of the Pterodactyloidea (Reptilia: Archosauria).
Zoological Journal of the Linnean Society 88:307–328 DOI ./j.-..tb.x.

Hutchinson JR. 2002. The evolution of hindlimb tendons and muscles on the line to
crown-group birds. Comparative Biochemistry and Physiology, Part A 133:1051–1086
DOI ./S-()-.

Hutchinson JR, Bates KT, Molnar J, Allen V, Makovicky PJ. 2011. A computational analysis of
limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny,
and growth. PLoS ONE 6(10): e26037 DOI ./journal.pone..

Jacobs LL, Winkler DA, Downs WR, Gomani EM. 1993. New material of an Early Cretaceous
titanosaurid sauropod dinosaur from Malawi. Palaeontology 36:523–534.

Jain SL, Bandyopadhyay S. 1997. New titanosaurid (Dinosauria: Sauropoda) from
the Late Cretaceous of Central India. Journal of Vertebrate Paleontology 17:114–136
DOI ./...
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